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Abstract—For nonlinear systems there exist several Kalman
filter extensions that linearize or do moment matching to approx-
imate the nonlinear update. These algorithms usually assume
Gaussian measurement noises. The assumption of Gaussian
noises degrades the performance when the data contain outliers
or are otherwise non-Gaussian. In this paper, we present a
new way of treating non-Gaussian noises in a Kalman-type
filter. We propose to model non-Gaussian noise as a non-linear
transformation of a Gaussian noise, and we develop an algorithm
for estimation with this kind of models. Results show that
the proposed algorithm can achieve similar estimation accuracy
as state-of-the-art methods designed for a specific distribution.
However, with some models the estimate diverges and there is
still work to do in the development of a suitable Kalman filter
extension.

I. INTRODUCTION

Kalman-type filters are commonly used in state estimation
of dynamical systems. The original Kalman Filter (KF) [1]
can be used with linear-Gaussian state and measurement
models. KF has been extended to be able to handle non-
linear measurement and state transition functions. In real-
world situations, measurement models are often nonlinear and
measurement noises non-Gaussian. Many Kalman-type non-
linear filtering algorithms, such as Unscented Kalman Filter
(UKF) [2], can be seen as approximations of the Gaussian
filtering paradigm [3]. However, as shown in [4] in Gaussian
Filter (GF) a measurement model with non-Gaussian noise will
be treated exactly as a Gaussian noise with the same mean and
covariance. Thus, the same approach cannot perform well with
non-Gaussian noises.

For Kalman-type filtering with non-Gaussian noises a score
function approach is proposed in [5]. The score function
weights the measurements based on the predicted measure-
ments. The method involves computing a convolution of two
probability density functions (PDFs), which can be done
analytically only in special cases. The score approach has
been further developed in [6], which provides methods for
computing approximate scores by expanding the non-Gaussian
PDF as a product of a standard normal PDF and Hermite
polynomials. The score algorithms are based on computing
the residual between realized measurement and expected mea-
surement value. For heavy-tailed noise the update weight is
reduced when the residual is large.

In [4] the measurement noise is assumed to be a sum of a
Gaussian and a heavy tailed random variable. The algorithm
generates a virtual measurement that uses weights based on
the PDFs of the Gaussian and heavy tailed distributions.

In [7] an Expectation–Maximization algorithm for robust
filtering is presented. For Student’s t-distribution [8] and [9]
present algorithms based on variational Bayes. These algo-
rithms can be interpreted as iterative algorithms that increase
the innovation covariance when measurements are unlikely and
they are designed for heavy tailed noise distributions.

The above-presented methods approximate the state dis-
tribution after each time step as a Gaussian. Particle Filters
(PFs) [10] and Gaussian Mixture Filters (GMFs) [11] can
be used in nonlinear and non-Gaussian estimation. PFs use
a set of weighted points (“particles”) to approximate the state
distribution and the application of non-Gaussian noise models
is easy; GMFs use sums of Gaussians. Both these approaches
have the problem that the number of particles and components
has to be set large enough so that the estimation accuracy is
good enough, but not so high that the computation time is
unacceptable.

In this paper, we present an approach for estimation prob-
lems with measurements with additive non-Gaussian noises.
The proposed approach can be applied to noise models
whose inverse cumulative distribution function (CDF) can be
determined or easily approximated. The state distribution is
approximated as a Gaussian between the measurement updates
and state propagation.

II. MODELING NON-GAUSSIAN NOISES

We consider measurement models of the form

y = f(x) + ε̃, (1)

where x is the d-dimensional state, y is the measurement value,
f is the measurement function and ε̃ is the measurement noise,
which is not necessarily normal distributed. The measurements
are used in a Bayesian setting to update a Gaussian prior with
mean µ− and covariance P− to a posterior with mean µ+

and covariance P+. We propose to model the noise in (1)
as a nonlinear transformation of a standard normal distributed
noise ε

ε̃ = g (ε) . (2)
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Fig. 1. g(ε) for normal, uniform and Student-t distributions

Thus, the problem is transformed from filtering with non-
Gaussian noise to nonlinear filtering with Gaussian noise.

For a scalar measurement, if the CDF F of the distribution
of the noise is invertible, the transforming function g (·) can be
obtained using the probability integral transform (aka inversion
principle aka quantile transform) as

g(ε) = F−1(Φ(ε)), (3)

where Φ(·) is the CDF of a standard normal distribution and
the ε has a standard normal distribution. The transforma-
tion (3) holds also in the more general case of discontinuous
and not strictly increasing CDF by letting F−1 denote the
quantile function

F−1(y) = inf{x : F (x) ≥ y}, 0 < y < 1. (4)

For independent univariate noise elements, the transforma-
tions can be made independently for each noise element.
We consider only such measurements in this paper. However,
transformations exist also for dependent noises. One possible
approach for dependent noises is to use the Knothe–Rosenblatt
rearrangement [12], [13].

Figure 1 shows the transformations g(ε) for normal, uniform
and Student-t distributions. All distributions are scaled so that
they have zero mean and unit variance. The Student-t distri-
bution has 3 degrees of freedom. The Student-t distribution
has heavier tails than the normal distribution. In Figure 1 this
can be seen from the steep slope of the function when ε is
not close to zero. The uniform distribution does not have any
tails and so the function range is limited to (−

√
3,
√

3).
If a GF is applied to measurement model (1–2), the lin-

earization of g (·) defined by (3) is made at zero because of
the standard normal prior for ε, and so the measurement noise
could be also replaced in (1) with a normal distributed noise.
This naturally applies also to the approximations of the GF,
such as UKF.

In [14], the Posterior Linearization Filter (PLF) is pre-
sented. Compared to the GF the PLF does the linearization
in the posterior and in [14] it is argued that this produces
better estimates, because it reduces the joint Kullback-Leibler
Divergence (KLD) of the posterior and measurement. The
linearization of the nonlinearly transformed noise depends
on the posterior and, thus, the approach that uses nonlinear
transformations can be used. The computation of the PLF is
intractable, but an iterative algorithm is given to approximate
it. However, in [14] only the situation with additive Gaussian
noise is considered. Using augmented state, i.e. a state where
also the noise terms are updated in iterations without an
additive Gaussian noise term in the PLF, may produce singular
matrices and their inverses, so the algorithm is not feasible for
this problem.

The Iterated Extended Kalman Filter (IEKF) [15] would be
an option for the filtering, but it requires analytical differenti-
ation of the nonlinear functions and it is known to diverge in
certain situations.

To our knowledge the literature does not have an algorithm
that would make the linearizations iteratively for the aug-
mented state and that can be used with sigma-point filters, such
as UKF. We will extend and use an iterative algorithm called
Recursive Update Filter (RUF) [16] for this purpose. The main
idea of RUF is to process a measurement in a sequence of
update steps using down-weighted Kalman gains. Each down-
weighted Kalman gain changes the state estimate less than the
full update would. Between each partial measurement update,
the filter takes the correlation of the partly updated state and
measurement noise into account.

III. RUF AND ITS GENERALIZATION

The RUF algorithms in [16], [17] use measurement models
with additive Gaussian noise

y = f(x) + ε, (5)

where ε is assumed to be zero mean Gaussian with covariance
Pεε. RUF is modified to be used with sigma-point filters (
Sigma-Point Recursive Update Filter (SPRUF)) in [17]. The
SPRUF algorithm [17] is given in Algorithm 1.

The use of SPRUF is not limited to sigma-point filters.
It can be used with any filter that computes the predicted
measurement value µ̂y , innovation covariance Pf(x)f(x), and
cross covariance between state and measurement Pf(x)x. In
the case of KF or Extended Kalman Filter (EKF) that uses
measurements of the form (5) these variables are: µ̂y = f (µ),
Pf(x)x = JPxx and Pf(x)f(x) = JPxxJ

T + Pεε, where
J is the Jacobian J = ∂f(x)

∂x

∣∣∣
x=µ

. When these variables

are substituted into Algorithm 1 the inverses P−1xx can be
eliminated and the algorithm is equivalent to the original RUF
algorithm [16]. The estimate of the original RUF algorithm is
identical to the estimate obtained with EKF when the number
of steps N is 1.

Next we generalize SPRUF for estimation with non-additive
noises. Let z denote the augmented state defined as z =

[
x
ε

]
.



input : µx̂ – predicted mean, Pxx – predicted
covariance, y – measurement value,
f (·) – measurement function,
Pεε – measurement noise covariance,
N – number of steps

output : µ+
x – posterior mean, P+

xx – posterior
covariance

Pxε ← 0 // Correlation
µ← µx̂ // Assign predicted mean
P ← Pxx // Assign predicted covariance
i← 0 // Current step index
while i ≤ N do

Use a KF extension algorithm to compute:
Predicted measurement µ̂y
Measurement function covariance Pf(x)f(x)
Cross covariance of the state and the predicted
measurement Pf(x)x

Pf(x)f(x) ← Pf(x)f(x) + Pεε + Pf(x)xP
−1
xx Pxε +(

Pf(x)xP
−1Pxε

)T
// Innovation

covariance
γ ← 1

N+1−i // Update weight

K ← γ
(
PTf(x)x + Pxε

)
P−1f(x)f(x) // Kalman

gain with reduced weight
µ← µ+K (y − µ̂y) // Updated state mean
Pxε ← Pxε −K

(
Pεε + Pf(x)xP

−1Pxε
)

// Updated correlation

P ← P +
(

1− 2
γ

)
KPf(x)f(x)K

T // Updated

covariance
i← i+ 1

end
µ+
x ← µ
P+
xx ← P

Algorithm 1: Update step of the SPRUF

When using the augmented state formulation, the noise term
is included in the state and the separate computation of
correlation Pxε used in SPRUF is not required. The augmented
measurement model is

h(z) = f(x) + g(ε). (6)

One iteration of SPRUF becomes a Generalized Recursive
Update Filter (GRUF)-iteration:

K ← γPzh(z)P
−1
h(z)h(z) (7)

µz ← µz +K (y − ŷ) (8)

Pzz ← Pzz +

(
1− 2

γ

)
KPh(z)h(z)K

T . (9)

After making all iterations of the GRUF-update, the state
variable’s mean and covariance are extracted from the aug-
mented state’s mean and covariance and the noise variables
are discarded. Note also that after the last iteration when
γ = 1 the augmented covariance may become singular. If
one uses a very large number of iterations the augmented

input : µx̂ – prior mean, Pxx – prior covariance,
y – measurement value,
h( · ) – measurement function for
augmented state, µε – mean of measurement
noise, Pεε – measurement noise covariance,
Pxε – cross covariance between state and
measurement noise N - Number of steps

output : µ+
x – posterior mean, P+

xx – posterior
covariance

µz ←
[
µx̂
µε

]
// Set augmented mean

Pzz ←
[
Pxx Pxε
PTxε Pεε

]
// Set augmented

covariance
i← 0 // Current progress
while i < N do

Use a KF extension algorithm to compute:
Predicted measurement µ̂y
Innovation covariance Ph(z)h(z)
Cross covariance of the augmented state and the
predicted measurement Pzh(z)

γ ← 1
N+1−i

K ← γPzh(z)P
−1
h(z)h(z) // Reduced Kalman

gain
µz ← µz +K (y − µ̂y) // Update the

augmented state mean

Pzz ← Pzz +
(

1− 2
γ

)
KPh(z)h(z)K

T // Update

the augmented state covariance
i← i+ 1

end
µ+
x ← µz [1:d] // Extract the posterior mean
from the augmented mean

P+
xx ← Pzz [1:d,1:d] // Extract the posterior
covariance from the augmented
covariance

Algorithm 2: Update step of the GRUF

covariance may become nearly singular before the end of
the update loop. However, the state part is singular only if
the measurement noise covariance is not full rank. So the
state posterior covariance may become singular only in same
situations where any GF would produce a singular covariance
matrix for the state. The use of augmented state allows the
predicted state and measurement noise to be correlated i.e.
Pzz does not need to be block diagonal. The GRUF algorithm
is given in Algorithm 2.

In addition to the already mentioned EKF and UKF, the
covariances in this algorithm can be computed with any
appropriate Kalman filter extension. When using only one
iteration, the GRUF produces identical results with the KF
extension that was used for computing the covariances.

Algorithm 1 contains the inverse of the state covariance,
which may become the computationally heaviest part of an
iteration. In our proposed filter (Algorithm 2) the inverse is
not needed and the computational complexity of the algorithm
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Fig. 2. Update of standard normal prior with 2 uniformly distributed
measurements

may be smaller than with the previous algorithm in situations
where the state dimension is high. As shown earlier the inverse
of the state covariance is not needed when using EKF or other
filter that computes the Jacobian.

For RUF an adaptive method for choosing the number of
steps is presented in [18]. It can be adapted to be used with
GRUF. We use only the pre-defined number of steps in this
paper for brevity.

IV. EXAMPLES

In this section, we present five examples. We use UKF for
computing the moments in GRUF.

A. Uniform noise

In our first example, we consider uniformly distributed noise

ε̃ ∼ U(−1, 1). (10)

The inverse CDF is

F−1(x) = 2x− 1. (11)

We consider a one-dimensional state and two measurements.
The measurement model is (1-2) with

f(x) =

[
x
x

]
(12)

g(ε) =

[
2Φ(ε1)− 1
2Φ(ε2)− 1

]
, (13)

where Φ is the CDF of the standard normal distribution.
Figure 2 shows two cases of a standard normal prior updated

using model (12-13). In the top row the measurement vector
is y =

[
1 1.5

]T
. The left plot shows the prior and the

likelihood functions of the two measurements. The right plot
shows the true posterior, the posterior obtained with GRUF,
the posterior obtained with KF that approximates the noise
as a Gaussian, and the Gaussian that has the same mean and

covariance as the true posterior. In this example all Gaussian
posterior estimates are similar.

In the bottom row the measurement vector is y =[
0.4 2.1

]T
and the support interval of the joint measurement

likelihood is considerably smaller than in the top row case
and, thus, the posterior variance is smaller. The KF estimate
is exactly the same as in the first case, and its variance is much
larger than the true posterior variance. The GRUF estimate’s
variance is smaller than in first case, and is only slightly larger
than the true variance.

B. Range measurements with outliers

In our second example we consider range measurements:

f (x) = ‖x− ri‖+ ε̃ (14)

Figure 3 shows 4 such measurements one of them having
a large error considered to be a Non-Line-of-Sight (NLOS)
measurement while 3 other measurements are Line-of-Sight
(LOS). The left plot shows the update using UKF, the middle
plot uses GRUF with normal noise having variance 3 and
the right plot uses Student-t distributed noise with 3 degrees
of freedom and the same variance. The inverse CDF for a
Student-t does not have a simple analytic form, but efficient
numerical algorithms are available. The figure shows how
GRUF with Student-t noise has the estimate closest to the
true location.

C. 1-D Student-t distributed noise

In our third example, we test the accuracy of the proposed
filter with Student-t noise and compare it with other algorithms
found in the literature. We consider the measurement model

y = x+ ε̃, (15)

where x ∼ N(0, σ2
x−) and ε̃ is Student-t distributed with 3

degrees of freedom. The variance of ε̃t is 3. We chose a linear
measurement model for the test, so that the algorithm’s ability
to handle nonlinear measurements does not affect the result.

We compute the true posterior PDF using a dense grid. For
comparison we use a normal distribution with the same mean
and covariance as the true posterior and estimates computed
with KF and two algorithms designed specifically for Student-t
errors: Recursive Outlier Robust Filter (RORF) [8] and Outlier
Robust Kalman Filter (ORKF) [9].

The estimate accuracies are evaluated using the Kullback-
Leibler (KL) divergence of approximate posteriors with re-
spect to the true posterior computed using the grid. Table I
shows the mean KL divergences of the estimates obtained
with different methods in 1000 tests of measurement update,
with varying prior variances. Column Ref. gives the KL
divergence of the Gaussian with same mean and covariance
as the true posterior and KF gives the KL divergence when
the measurements are updated using KF. The table shows how
GRUF is better than the Student-t specific methods when the
prior variance is large. When the prior variance is smaller the
GRUF is not as good as RORF. ORKF is the worst of the
three robust methods.
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TABLE I
KULLBACK-LEIBLER DIVERGENCES IN STUDENT-t TEST

σ2
x− Ref. KF GRUF RORF ORKF

KL
0.1 0.0000 0.04 0.04 0.0004 0.02
1 0.005 0.2 0.08 0.02 0.1

10 0.06 0.4 0.2 0.3 0.4

TABLE II
MEAN RMS ERRORS IN THE FILTERING TEST

RORF GRUF N = 5 GRUF N = 50 KF
mean RMS x1 4.8 5.4 21.1 6.6
mean RMS xx 2.0 2.1 2.8 2.8

D. Filtering example

In our fourth example we consider a simple filtering prob-
lem with two-dimensional state with state transition model

xt+1 =

[
1 1
0 1

]
xt + εQ, (16)

where εQ ∼ N
([

0
0

]
,
[
0 0
0 1

])
and x0 ∼ N

([
0
0

]
,
[
40 0
0 4

])
. The

measurements are noisy observations of the first state variable

yt =
[
1 0

]
xt + ε̃t, (17)

where ε̃t is again Student-t distributed with 3 degrees of
freedom scaled with

√
100
3 . The variance of ε̃t is thus 10.

We simulated 50 sequences, each 50 time steps long.
Table II shows mean RMS errors of the filtering tests. The

results show that GRUF with 5 iterations is slightly worse
in accuracy than RORF, but has better accuracy than KF.
However, GRUF with 50 iterations has large errors.

Figure 4 shows the evolution of residuals of the first state
variable in one simulation. There are two clear outliers, one
at time step 24 and another at 34. In both these situations
KF reacts to the outlier more than RORF or GRUF with 5
iterations. GRUF with 50 iterations does not react to any
measurements clearly. The reason for poor GRUF performance
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Fig. 4. Residuals of the first state variable on one filtering run

with many iterations seems to be the correlations between
variables. The down-weighted updates store the information
of the linear dependence of state and noise variables. Because
the model is nonlinear, this causes problems in the estimate.
We have found similar problems happening with RUF and
SPRUF, as illustrated in the next example.

E. Bearings update example

Figure 5 shows an update of a prior using a bearings
measurement

y = 6 x+ ε. (18)

In this example, we used normal distributed ε and, thus, it can
be solved with the original EKF-based RUF (red dashed line)
and UKF-based SPRUF (blue line).

When the number of iterations is increased, the posterior
estimate moves close to the beacon. This is also caused by
the correlations of nonlinearly evolving variables that was the
cause of problems in the previous example.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a systematic approach for
estimation with non-Gaussian measurement noises. In our ap-
proach, the non-Gaussian noise is represented as a nonlinearly
transformed Gaussian noise. The proposed method can be
applied to different error distributions.

We extended the RUF algorithm into GRUF to allow
filtering with the proposed model. In our tests with Student-t
distributed noises, the proposed algorithm had similar accuracy
as a method designed specifically for the Student-t noise.
However, we found that the GRUF-algorithm used for filtering
may have some problems in certain situations when the
number of iterations is large. We also showed that a similar
problem occurs with the original RUF [16] and SPRUF [17].
Thus, more study is needed to develop a filter that does not
exhibit such behavior.
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