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Abstract—WiFi localization problem is basically a multi-
sensor data fusion. This paper investigates the use of Bayesian 
and non-Bayesian Dempster Shafer (DS) data fusion in the 
context of WiFi-based indoor positioning via fingerprinting. Two 
novel DS mass choices are discussed. The positioning results are 
based on real-field measurement data from nine distinct multi-
floor buildings in two countries. It is shown that a proper mass 
choice is crucial in DS processing and that, in spite of taking into 
account the data uncertainty, the DS data fusion is not offering 
significant advantage in terms of positioning performance over 
the Bayesian data fusion. 

Keywords—3D localization; Bayesian data fusion; Dempster 
Shafer (DS) theory; Received Signal Strength (RSS)  

I.  INTRODUCTION AND MOTIVATION 
Received Signal Strength (RSS)-based indoor localization 

has been gaining more and more attention in the research and 
commercial arenas in the last few years. WiFi-based indoor 
positioning is one of the most promising technologies, because 
of three main factors: 1) WiFi-s are widely deployed in indoor 
scenarios, 2) a mobile device in an indoor scenario can usually 
hear a large number of WiFi transmitters or Access Points 
(APs), 3) every mobile device is able to measure the RSS from 
various APs in range without the need of additional hardware. 
Moreover, it can offer satisfactory coverage because of the 
typical high density of APs in various buildings of interest, and 
it is a preferred candidate for future mass-market global indoor 
localization solutions [8][11].  

RSS-based fingerprinting typically consists of two stages: a 
training stage (done offline, either in a manual or in a 
crowdsourced mode) and an estimation stage [9][11]. In the 
training stage, RSS values from all APs in a building are 
collected at various grid points and they are stored in a 
database, forming the so-called fingerprints. The database is 
stored on the server of the Location Service Provider (LSP). In 
the estimation phase, the mobile sends its request to be 
positioned to the LSP server. In mobile-centric approaches, 
which are the focus of this paper, the mobile receives a part of 
the training database (e.g., corresponding to a certain area 
where the mobile was identified), and it makes its own 
measurements to the APs in its range. Based on the heard APs 
and on the comparison with the information stored in the 
database, the mobile then estimates its position. Fingerprinting 
is indeed one of the most widespread location solutions 
[6][13][14][15]. We focus on the fingerprinting methods in 
here, because with the advent of crowdsourced data gathering 
and simultaneous localization and mapping (SLAM) 
algorithms [18], WiFi fingerprinting is becoming more and 
more a realistic solution to indoor positioning.  

The problem of combining the information coming from all 
the APs in the mobile range is basically a data fusion problem, 
thus the Bayesian theory is well suited and highly widespread 
in tackling the estimation phase of WiFi positioning [6][13]. 
The Bayesian data fusion is however not the only data fusion 
option, and several papers focusing on sensor or robotic data 
fusion also applied the alternative Dempster-Shafer (DS) 
framework in many contexts, ranging from security attack 
detection [16] to WiFi-based positioning [5][12]. 

The state-of-the-art solutions relying on stand-alone WiFi-
based indoor positioning are not yet able to reach sub meter-
level accuracy [3][5][12][14][15]. Additional filtering stages 
using past trajectory information [13] and hybrid solutions 
(e.g., sensors plus WiFi) [17] can increase the accuracy of 
stand-alone WiFi positioning, but there is still significant place 
to improve the stand-alone WiFi-based indoor location 
methods and there is need to look for alternative ways of 
fusing the information coming from the WiFi APs.  

In addition, currently, there are not many published studies 
of indoor localization in multi-floor scenarios and there are 
very few measurements available in open source that can be 
used as benchmark data to test the accuracy of RSS-based 
algorithms. At the end of this paper, we provide also a link 
where parts of our measurement data, i.e. the data collected in 
university buildings in Tampere, are made available to the 
research community, in order to provide a benchmark database 
for indoor positioning in multi-storey buildings.  

The aim in this paper is to compare the non-Bayesian DS 
data fusion with the Bayesian data fusion in WiFi 
fingerprinting. DS masses are defined in various ways based 
on data priors from the training stage. DS theory belongs to the 
category of alternative solutions to the Bayesian data fusion, 
and it has been very little investigated so far in the context of 
WiFi localization [5][12]. Previous studies [5][12] are focusing 
on a limited analysis of DS data fusion, with only one possible 
DS mass choice each. Also, the results in [5] are based on a 
small-scale heuristics, namely one floor only and one building. 
The large-scale analysis of DS data fusion with various mass 
choices for WiFi-based positioning is thus still missing in the 
current literature. Here, we introduce two novel DS mass 
choices, better suited to WiFi fingerprinting than previous 
approaches reported in the literature [5][12] and we compare 
the Bayesian and DS approaches based on real-field data 
collected from nine different multi-floor buildings in two 
European cities: Tampere, Finland (FIN) and Berlin, Germany 
(DE). We show that, the DS approach with a 2-state frame of 
discernment provides a slight improvement in terms of the 



positioning accuracy over the Bayesian combining. We also 
show that such accuracy improvement is also highly dependent 
on the mass choice, and that, with an inadequate mass choice, 
one can lose in the accuracy compared to Bayesian data fusion.   

II. FINGERPRINTING ALGORITHMS 
   Fingerprinting algorithms are typically based on two stages: 
training off-line stage and estimation phase [8][9][10][11]. In 
the training phase, the LSP collects on a server the 
measurements in the buildings of interest, in the form of 

,( , , , )i i i i apx y z T   where , ,i i ix y z   are the 3D coordinates of 
the measurement point i with respect to a local reference 
coordinate system, 1,..., gridi N , gridN is the total number of 

measurements or grid points, and ,i apT  is the RSS in the 
training phase, in logarithmic scale (dBm), coming from the  
ap -th AP, in the i -th grid point. Here, ,1,..., T i

hap N ,  

with ,T i
hN being the number of heard APs in the training phase 

at the i-th point. We denote by APN  the total number of APs in 
the building of interest (each AP means an individual MAC 
address, but several APs can be at the same physical location). 
During the measurement process, several RSS measurements 
are taken in the same grid point, at different time instants, and 
with different orientations of the mobile device. In the 
database, we store only an average value over all times and 
orientations (e.g., the mean over all the RSS values in linear 
scale in the same point). To reduce the size of the server 
database, the grid points can be saved only with a certain grid 
step in x and y directions. For example, a 5 m grid is an 
adequate trade-off between the number of stored parameters 
and expected positioning accuracy based on our studies. An 
example of the histogram of the residual RSS with respect to 
the mean value stored in the database is shown in Fig. 1, for a 
university building in Tampere. The best distribution match 
for the joint residuals, according to Kullback Leibler 
divergence criterion and 11 tested possible distributions is the 
Gaussian fit to the RSS residuals in dB scale (also shown in 
dashed lines in Fig. 1), but this is still not a perfect fit. 
In the estimation phase, the mobile measures the RSS from all 
the heard APs.  We denote as apO  the observed RSS value (in 

dBm) at the mobile from the ap-th AP, with 1,..., hap N , 

where hN is the number of heard APs. The fingerprinting 
problem can be stated as: given the observations apO   and the 

information stored in the database ,( , , , )i i i i apx y z T , determine 

the most likely coordinate ( , , )x y z of the mobile. This 
problem is solved by combining the evidence (or the 
information) coming from different APs. In order to do this, a 
likelihood or probability function needs to be defined for each 
grid point i. The typically used distribution in WiFi 
fingerprinting is the Gaussian one [8][10][11], which 
quantifies the probability ,i app that the mobile is placed in the 

i-th grid point, being given the fact that it measured the set of 
values   1,..., hap ap NO 

as: 
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where 2 2 2
, ,ap ap meas ap shad     is a noise variance that lumps 

together the measurement 2
,ap meas  (see Fig. 1) and shadowing   

errors 2
,ap shad effects.  

 
 

Fig. 1. Example of the distribution of RSS residuals in forming the training 
database. Statistics over all AP in the building.  

 
The probability above is in fact the likelihood 

( | )p location observation  that the mobile is located at grid 
point i, being given the observation data from ap-th AP. If we 
apply the Bayesian rule, we can write: 

( | ) ( )( | )
( )

p observation location p locationp location observation
p observation

 , where 

( )p location is the prior or the initial belief in the mobile 
location. In the absence of prior knowledge, maximizing 

( | )p location observation  is the same as maximizing 

, ( | )i app p observation location . 
   In the Bayesian linear combining [7], the evidence from 
various sources is combined linearly. The probability ip  that 
the mobile is situated in the i-th grid point is: 
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and the ( , , )x y z coordinates of the mobile are estimated as 

those corresponding to the grid point i which maximizes ip  
over the whole search space.  
The search space is defined as a parallelepiped with edges 
between some minimum and maximum values in each 
direction (i.e., x, y, and z, respectively). The x-y minimum and 
maximum edges are based on the minima and maxima of the 
measured coordinate from the training phase in each building 
plus a small margin (here -/+10 m) to account for the 
variations over time, mobile orientation, and presence of body 
losses. The z edges are based on the minimum and maximum 
floor heights.  
In the Bayesian log-likelihood combining [2][7], the evidence 
is combined via the product of individual (linear) probabilities 
or sum of log likelihoods: 
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Again, the mobile location is taken at the grid point i which 
maximizes log ip .The log-likelihood combining is the most 
widely used combining method in WiFi-based positioning via 
fingerprinting [6][10]. The cost function iJ  to be maximized 
(after the fingerprint index i) in the Bayesian approaches is  

, if linear Bayesian combining
log( ),if log Bayesian combining
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p
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                  (4) 

The mobile estimated
^
 coordinate is found in the i-th grid 

point which maximizes the cost function, or as an average of 
the positions of nnN  ‘nearest neighbors’, which have the 

nnN highest values of the cost function: 

 
^

,
( )

1 , | ,

nn

i i k
inn
card N

i J J k
N

 


 

       (5) 

III. DEMPSTER-SHAFER MODELING WITH BINARY FRAME OF 
DISCERNMENT 

In DS theory, the decision space is divided into mutually 
exclusive propositions or the so-called DS states, and all the 
DS states form a frame of discernment. The frame of 
discernment  in DS modelling consists of all hypotheses for 
which the information sources can provide evidence. This set 
  is finite and it consists of mutually exclusive propositions 
that span the hypotheses or decision space. If we denote by 

iA the i-th DS state (see Section III.A for examples of 
choosing iA ), then   1,...,i i N

A


  , with N being the number 

of mutually exclusive states. If 2N  , then we have a binary 
frame of discernment. The power set is the set 2 of all 
possible combinations within the frame of discernment, 
including the empty set  . For example, for a binary frame of 
discernment, the power set has 4 elements: 

   1 2 1 2 1,...,4
2 , , , , i i

A A A A B


   , for a tertiary frame of 

discernment, the power set has 8 elements: 
   1 2 3 1 2 2 3 1 3 1 2 3 1,...,82 , , , , , , , , , , , , i iA A A A A A A A A A A A B


   , 

etc. The power set basically includes evidences that support 
sub-sets of the frame of the discernment. Each element inside 
a power set is assigned a positive and sub-unitary 
mass    0 :1s im B  , corresponding to the s-th source of 
evidence. These masses carry in fact the information about the 
degree of belief in certain evidence from the power set and 
they have to fulfill the following conditions: 

2

( ) 1, ( ) 0, 0 ( ) 1
i

s i s s i
B

m B m m B
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                     
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 In order to combine the evidence coming from two sources 
and supporting a conclusion C, Dempster and Shafer 
suggested to following combination rule [1][4]: 

1 2
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(7)  

where 1( )im A  is the mass associated to source 1 and 

supporting the conclusion iA , 2 ( )jm A  is the mass associated 

to source 2 and supporting the conclusion jA ,  and iA  and 

jA  both support the conclusion C . For combining more than 
two sources of evidence, an iterative process can be used. DS 
theory seems therefore well suited to WiFi localization 
problem because it does not require prior probabilities and it 
allows for some ‘nebulous’ or uncertain states, for example 
 1 2,A A , which means that any of the states 1A  and 2A  may 
be true. DS theory requires that the mass functions are to be 
assigned in a meaningful way to various sources of evidence 
and this choice of the mass functions is difficult and a crucial 
step in DS analysis.  

The DS mass choice in the context of WiFi fingerprinting is 
not well documented in the existing literature. In the next sub-
sections, we will detail the investigated mass choices. 

A. Dempster-Shafer model for WiFi-based positioning 
In WiFi localization, the most straightforward approach is 

to divide the hypotheses space into two mutually exclusive 
hypotheses: either the mobile is at a certain location (I state) 
or it is not at that location (N state). This means that the frame 
of discernement is: 

 { , }I N                 (8) 
More complex models, such as a model where each state 

corresponds to the mobile location at a certain floor f: 

1,...{ , }
floorsf f f NI N    can also be envisaged, but they are 

out the scope of our paper.  In our case, the power set 
becomes: 2 { , , , , }I N I N   . The state ,U I N  is the 
uncertain or U state, which tells us that we might not have 
sufficient evidence to decide whether the mobile is or not at a 
certain location. 

B. Dempster-Shafer masses 
  If, based on the evidence coming from the ap-th AP, we 
divide first the hypotheses space into two regions: the certain 
region (where the mobile is either in or not in a certain grid 
point) and the uncertain region (where we cannot say whether 
the mobile is or not in a certain grid point), then we can 
allocate an uncertainty factor .i apu to the mass of the 

uncertain U state in the i-th grid point. It follows that the 
mass of the ‘certain’ state, that is the sum of I and N  states, 
will be .1 i apu . The distinction between I and N  states can 

be further done based on the probability ,i app of the mobile to 
be at a certain grid point based on the evidence of the ap-th 



AP (equation (1)).  The ,i app probability has been defined in 
eq. (1). 
The DS masses can be thus defined as follows: 
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Clearly, if  .i apu  is chosen between 0 and 1, then the masses 
above are positive and less than 1, because the probabilities 

.i app  given by (1) are sub-unitary. With the above definition, 
we also have that the condition (8) on masses is satisfied: 

, , , , ,
2

( ) ( ) ( ) ( ) ( ) 1i ap i ap i ap i ap i ap
A

m A m I m N m U m


      . 

The remaining major issue is how to choose the uncertainty 
factor .i apu , a fact that will be discussed in Section III.C. 

C. Dempster-Shafer uncertainty factor choices 
The data sources of the pieces of independence (in our case 
the APs) can be either independent of each other or correlated 
with each other. In the first case, the certainty associated with 
a piece of evidence should be dependent only on the source of 
that evidence, not on other pieces of evidence. The AP 
evidence is likely to be a combination of correlated and 
uncorrelated information.  
    For example, some APs can transmit from exactly the same 
location (the cases with multiple BSSID support in WiFi), and 
thus the channel fluctuations experienced between the 
transmitter and the mobile will likely be correlated in this 
case. However, if the APs are distant from one another, the 
RSSs are likely to be uncorrelated. These assumptions about 
the correlated profiles when we have same positions APs and 
uncorrelated profiles when we have different positions APs 
have also been verified on the measurement data. A snapshot 
with the power maps of four APs, two correlated (upper part) 
and two uncorrelated (lower part), is shown in Fig. 2 together 
with the 2D correlation coefficients, namely 0.97 for the 
correlated case and 0.03 for the uncorrelated case. The choice 
of the uncertainty factor in [5] and [12] is based on the 
assumption that all APs are correlated between them, thus the 
uncertainty of one AP also depends on the evidence coming 
from the other APs. 
In [5], the authors considered that the uncertainty has to be 
proportional to the fraction of the ap-th AP heard by the 
mobile, reasoning that  “the stronger the RSS is, the bigger 
belief we give to the evidence” and interpreting the U state as 
the “the  uncertainty about  the  evidence”: 
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(10) 

 
Fig. 2. Example of the RSS power maps from four access points, at one floor, 

in a 4-floor building. Upper plots: correlated APs (placed at the same 
physical location); lower plots: uncorrelated APs (APs are at different floors).  
     The criticism to the above choice of the uncertainty factor 
is that it decreases the masses associated to I state when RSS 
increases, which is counter-intuitive. In [12] the uncertainty 
factor was defined by associating a lower uncertainty to 
stronger heard APs, such that a stronger heard RSS will point 
out towards a higher mass for the I state: 
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  If intuitively we consider that all APs have initially the same 
credibility or trust and a lower number of heard APs should 
mean more uncertainty, we can also use the following mass 
allocation: 
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  The main problems with the choice of the uncertainty factors 
in [5][12] (i.e., eqs. (10) and (11)) are that the masses 
associated to a certain source of evidence are also dependent 
on the evidence coming from the other sources, thus they 
implicitly assume that all APs are correlated. However, as 
illustrated in Fig. 2 and tested with the available measurement 
data, the power maps corresponding to APs at different 
locations have very low correlations between them, thus the 
assumption of fully correlated APs is not a valid assumption. 
  Moreover, the uncertainties in (10) and (11) may incorrectly 
give un-balanced weights to the different heard APs based on 
the instantaneous RSS values which are highly affected by 
shadowing and measurement mapping, as shown in the 
histograms of Fig. 1. It follows that the uncertainty factors per 
AP should be independent on the evidence coming from the 
other APs. At the same time, the uncertainty factor should be 
positive and sub-unitary, and it has to be defined solely based 
on the information arriving at the mobile from a single source, 
i.e., the MAC address, the instantaneous RSS from the 
selected AP, and, if known, the variance of the RSS residual 
values per AP.  With this reasoning in mind and using the 



prior information we have from the training phase about the 
standard deviation ap of the shadowing and measurement 

noises for each AP and about the mean residual value ap of 
the mapped RSS into a single grid point, we also define the 
uncertainty factor of (13): 
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As the investigations of the measurement data showed that 

ap values were very small for all the buildings (of the order 
of 1e-6 or below), we can use the approximation of the right-
hand side of (13) for the uncertainties, based only on the 
standard deviation of the shadowing and measurement noises.  

D. Dempster-Shafer decision process 
In order to find the mobile location, the cost function to be 
maximized in DS data fusion is equal to the belief function 

( )i iJ m I [1] defined in (13). Each new AP will contribute to 
the joint masses via the following iterative process [2]: 
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The steps of the DS-based fingerprinting are thus: 

1. Obtain the fingerprint database on the mobile from the LSP 
or from user measurement database.  
2. Define the search space as a parallelepiped containing the 
whole building (see the discussion in Section2) 
3. Define the   probabilities based on eq. (1), with ap  equal 
to an estimated shadowing variance (measurement plus 
shadowing parts) value based on the training data, see e.g.,[3] 
and our examples in Fig. 1. 
4. Define the   uncertainty factors based on eqs. (10), (11), 
(12), or (13) according to the used algorithm. 
5. Define the masses based on eq. (8), with uncertainty factors 
from Step 5. 
6. Combine the evidence coming from the heard AP, 
according to the iterative process of eq. (14). 
7. Find the position which maximizes the belief function 

( )i iJ m I , with  ( )im I given in eq. (14) at the end of all 
iterations. 
8. Optionally, also an average over the nnN nearest neighbors. 
The nearest neighbors are the first

nnN  which maximize the 
cost function from Step 7. 

IV. MEASUREMENT-BASED RESULTS 
The data gathering was done manually either with a Windows 
tablet (Acer Iconia Tab W500 tablet PC with Windows 7 OS) 
or with a Nexus tablet (Asus Nexus 7 with Android 4.3.1 OS). 

Both tablets included the detailed building maps, based on 
HERE Maps. The type of device used in each building is 
shown in Table 1. The field data was gathered in 9 different 
building in Tampere (FIN) and Berlin (DE), for three types of 
buildings: university (Uni), shopping centers (Center) and 
office buildings (Office). The position inside the building was 
chosen manually, based on the maps at the measured floors. 
We expect horizontal errors below 0.5 m in the data collection 
stage (and no errors in the vertical direction). The number of 
floors (Nf), the number of collected initially collected 
fingerprints (Nfp), the number of heard APs (NAP), and the 
average standard deviation of measurement and shadowing 
errors are shown in Table IV-1. 

Table IV-1. Characteristics of the measured buildings 
Buil-

ding 

Meas. 

device 

Nf Nfp NAP
1 Average meas. 

std 

,ap meas [dB] 

Average 

shadowing std 

,ap shad [dB] 

Uni 1, 

FIN 

Windows  6 1591 309 4.08 7.39 

Uni 1 

(new) 

Nexus 4 607 339 3.17 6.54 

Uni 2, 

FIN 

Windows  3 594 354 3.29 5.51 

Center 

1, FIN 

Windows  3 282 69 2.47 5.41 

Center 

2, FIN 

Windows 6 2320 326 4.13 5.49 

Office 

1, FIN 

Nexus 

 
7 859 995 3.49 5.21 

Center 

4, FIN 

Nexus 4 2239 162 3.03 4.27 

Office 

2, DE 

Nexus 

 
10 24045 727 6.96 8.34 

Center 

3, DE 

Nexus 4 2352 631 2.93 4.59 

Center 

5, DE 

Nexus 7 16298 878 2.95 4.8 

1One AP refers to one MAC address. It is possible (and very likely) that several MAC addresses are 
coming from the same physical location of a WiFi emitter (e.g., multiple BSSID), thus some 
measurements will be highly correlated between them, coming from the same physical channel. In our 
data analysis, we employed all the available measurements. 

The measurement based results are shown in Table IV-2. The 
best values among all tested approaches are shown in bold-
faced letters. Clearly, there are no significant differences 
between Bayesian and three of the DS approaches. The DS 
approaches with masses given in eqs. (10-12) are offering 
better floor detection probability than the Bayesian approaches 
in the majority of cases, but the average improvement is below 
2%. The newly proposed DS weights are slightly better on 
average than the old DS approach of [12] and much better than 
the old DS approach of [5]. The mass choice of [5] is clearly 
sub-optimal, and this case is the only one which gives 
consistently worse results than the others. This points out to 
the fact that the mass choice in DS approaches is a crucial step 
for a good functioning of the algorithm. 

Table IV-2. Mean 3D positioning distance error [m] and the floor detection 
probability Pd [%]. 

Building Perf. 

criter. 

Bayesian, 

lin, eq. (3) 

Bayesian, 

log, eq. 

(7) 

Old DS 

masses 

[5] 

Old DS 

masses 

[12] 

New ct 

DS 

masses  

New var 

DS 

masses  

Uni 1, 

FIN 

 

Mean pos. 

error [m] 
5.4 6.0 20.5 8.9 5.3 5.4 

Pd [%] 92.45 86.73 45.92 88.36 95.71 95.71 
Uni 1 

(new), 

Mean pos. 

error [m] 
7.4 7.3 20.3 9.0 7.3 7.3 



FIN Pd [%] 93.36 92.47 55.30 90.48 95.13 95.45 
Uni 2, 

FIN 

Mean pos. 

error [m] 
10.5 11.5 31.4 9.6 10.0 10.6 

Pd [%] 85.79 80.58 37.5 91.48 89.20 86.93 
Center 1, 

FIN 

Mean pos. 

error [m] 
16.9 18.0 27.9 18.7 16.2 16.8 

Pd [%] 94.88 94.88 86.04 93.02 91.63 91.62 
Center 2, 

FIN 

Mean pos. 

error [m] 
9.8 11.2 20.0 13.5 9.8 9.8 

Pd [%] 89.75 80.97 56.58 90.73 92.19 92.68 
Office 1, 

FIN 

Mean pos. 

error [m] 
4.2 4.0 10.9 4.0 4.2 4.2 

Pd [%] 81.11 72.02 40.55 81.81 86.01 83.91 
Center 4, 

FIN 

Mean pos. 

error [m] 
7.3 8.4 17.8 9.5 7.7 7.7 

Pd [%] 87.79 82.67 53.54 75.19 87.00 87.00 
Office 2, 

DE 

Mean pos. 

error [m] 
5.7 5.8 12.6 7.4 5.7 5.7 

Pd [%] 72.18 64.08 33.09 62.67 71.83 71.83 
Center 3, 

DE 

Mean pos. 

error [m] 
7.9 8.8 23.3 9.5 7.8 7.9 

Pd [%] 90.33  84.14       65.85 93.94  92.78  93.17  
Center 5, 

DE 

Mean pos. 

error [m] 
12.1 11.7 22.5 12.7 12.1 12.1 

Pd [%] 82.89   79.39       57.85 77.29   79.43 80.07 

Our analysis thus shows the following important points 
regarding DS analysis: 
- DS analysis allows the designer to incorporate the 

uncertainty due to measurements and shadowing errors.  
- The choice of masses in DS analysis is a crucial step and 

the newly proposed DS masses  
- The benefit of DS approaches over Bayesian approaches, 

in terms of position error, is mostly seen in buildings 
without many open spaces between floors (e.g., typical 
office building).  

- The floor detection probabilities of all studied approaches 
in Table IV-2, except the DS algorithms of [12], is very 
good (typically close to 85-90%), even in the multi-floor 
buildings with open-spaces, such as the shopping centres.    

V. CONCLUSIONS 
  In this paper, we have investigated the potential of DS data 
fusion on the context of WiFi indoor positioning via 
fingerprinting and we compared various data fusion 
approaches, based on Bayesian and non-Bayesian DS theory. 
The DS framework relaxes the Bayesian assumption of 
mutually exclusive hypotheses, allowing thus for more 
flexibility through the introduction of an uncertain state. We 
have introduced two new ways of defining the DS masses, 
based on variable and constant uncertainty factors and prior 
information collected from the training data, in order to fit 
with the multi-floor localization problem. The two new ways 
are able to take into account both cases of correlated and 
uncorrelated sources of evidence, but their performance gain 
over Bayesian approaches is still not high, pointing out 
towards the fact that an extra uncertainty dimension in WiFi 
modeling is not able to counter-balance the large shadowing 
and measurement variances. We have also shown that DS–
based results are highly dependent on the mass function 
choice, and that sub-optimal mass choices may deteriorate 
significantly the results with respect to the Bayesian 

approaches. One can conclude that a DS model with binary 
frame of discernment is not enough to outperform the existing 
Bayesian approaches.  On the other hand, the DS framework 
and mass choices presented here can offer new insights into 
better modeling the data quality and into quantifying the data 
conflict measures based on DS joint masses.  
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