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Abstract—WLAN Access Point network is typically optimized
for communication scope, and not for localization. It is thus
important to understand the positioning accuracy limits under a
certain given Access Point topology and to be able to make design
recommendations if the Access Point topology can be adapted
better for the navigation needs. This paper calculates a Cramér-
Rao Lower Bound -based criterion for Received Signal Strength
-based positioning. Two study cases are presented about how
the proposed criterion can be used to choose the optimal Access
Point density and the optimal Access Point topology in a network
designed for positioning purposes. In addition, our Cramér-Rao
Lower Bound -based criterion can also be used to estimate the
expected accuracy bound in an existing network, based on its
underlying Access Point density or topology. Measurement -based
results are used to verify our proposed approach.

I. INTRODUCTION

Location-based Services (LBS) rely on accurate and avail-
able position information on Mobile Stations (MS). Since
the Global Navigation Satellite Systems (GNSS) cannot offer
user localization inside buildings due to multipaths, Non-
Line-of-Sight (NLOS) and signal attenuation, [1], [2], other
possible solutions are continuously searched. One widely
researched approach, especially for indoor localization, is
based on IEEE 802.11 standard [3] of Wireless Local Area
Networks (WLAN/WiFi). The big advantage of WLAN-based
positioning is economic efficiency, enabled by the availability
in almost every device and the possibility to utilize the existing
WLAN infrastructures.

Many WLAN-based positioning technologies are based on
Received Signal Strength (RSS) measurements from Access
Points (AP), see e.g. [4], [5]. One possible technique is
database correlation, where the measured RSSs are tried
to match with RSSs in a radiomap (fingerprinting method,
FP). Another possibility is triangulation or trilateration based
approach, where some path loss models are created and used
to signal-to-distance mapping (path-loss estimation, PL). Since
AP infrastructure is optimized for communication and not for
localization, the number of APs in a building may be huge,
but the existing infrastructure may still not be suitable for
positioning. Several APs carrying redundant information for
positioning purposes can be placed in the vicinity of each
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other, while in some other parts of the building there may
be lack of APs. Therefore, it is important for the positioning
accuracy point of view to figure out the sufficient AP density
and the best possible AP configuration.

Our paper focuses on the investigation of the AP topol-
ogy in the context of indoor positioning, based on a newly
derived Cramér-Rao Lower Bound (CRLB)-based criterion.
AP deployment for positioning purposes has previously been
studied, e.g., in [6]-[10]. In [6], the impact of AP placement
and number of APs for the location accuracy is studied based
on experiments in two buildings. The conclusions are however
drawn based on configurations with very small number of APs.
A novel approach to place the APs is presented in [7]. The
results are based on one floor in one particular building and
demand 200 measurements for each FP, that can be unpractical
and expensive for larger buildings. In [8], the idea is to place
the APs in a way, where at least three APs are always heard
while keeping the number of deployed APs as low as possible.
The results presented in [8] are based on simulations only,
as well as in [9], where another optimization method for
AP placement is proposed. In [10], both AP coverage for
communication purposes and FP differences are taken into
account in a network design, but again the results are validated
with very few APs and using simulations only.

The questions raised for the AP density and configuration
set-up based on the CRLB are very rarely studied in the
literature to the best of the Authors’ knowledge. CRLB has
previously been characterized for the RSS-based PL position-
ing approach in [11]. In [12], the CRLB has been derived for
received signal strength difference (RSSD) based FP. Indeed,
the CRLB has been derived for the RSS-based positioning
in sensor networks in [13] and further used to optimize the
placement of anchor nodes in [14], without comparisons with
real measurement data. In [15], the influence of geometry
and quantity of APs is studied shortly based on the derived
CRLB for RSS measurements in WLAN network, but again,
the studies are based on simulations and limited number of
APs only.

The main difference between our paper and the publications
[6]-[15] is that our purpose is to define and prove a theoretical



limit, that can be used both as a tool to understand the limits
of an existing AP deployment and to provide specifications for
AP placement if a WLAN network can be built for positioning
purposes. With the presented criterion it can be seen what is
the best possible positioning accuracy, with the current AP
topology, and also to predict what it can be if the number of
APs is increased. In our paper, the proposed CRLB-based limit
is verified based on real-field data gathering, that consist of
indoor measurements in eight different multi-floor buildings
in two countries. Both FP and PL positioning methods are
addressed.

II. POSITIONING ALGORITHMS

There are two well-known approaches in RSS-based posi-
tioning: FP [4], [5] and PL approaches [16], [17].

A. Fingerprint (FP) approach

The FP approach is a map matching technique, where a
radiomap database (i.e., fingerprints, FPs) is created in the
training phase, and in the estimation phase only the informa-
tion in FPs is used together with the real-time observed RSSs
to estimate the user position [1]. The radiomap FPs are in our
research formed as (x;, ¥s, 2;, Pi ap), Where P; o, denotes the
observed RSS (in dBm) of apth AP in the ¢th FP and x;, y;, 2;
are the 3D coordinates for ¢th FP. Here, ¢ = 1, ..., Ny, where
Ny, denotes the total number of FPs in the radiomap. In our
study, the radiomap consists of square box FPs. This means
that the grid resolution is fixed (e.g., 1 m x 1 m) and all data
samples that occur in this area are mapped to the same FP.

When comparing observed RSS levels (Ogp) by the MS
with the RSS levels in the FPs, user location is calculated
using Bayesian estimation with Gaussian likelihood £; [4]:

(Oup*Pi,ap)2
(%%p)) (1)
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Here, 03 represents a noise variance, that contains both
shadowing effect and measurement error effect and N denotes
the number of APs that are detected both in the current
measurement and in the FP. If no prior knowledge about agp
is known, then a same fixed value can be used for all APs.
Some examples of typical indoor values for AP variances can
be found for example in [18], [19]. The use of nearest neighbor
(NN) averaging is also possible: N,, FPs i, with maximum
Gaussian likelihoods E;n are chosen, and the user location is
calculated as a mean over [V,, nearest neighbor positions.

B. Path-Loss (PL) approach

Alternatively to the FP, a PL model can be used. The most
common PL model is the one-slope model P; ., = Pr,, —
10 ngp logio ds,ap +Ni.ap [20], where ng,;, is the PL coefficient
and Pr,, the transmit power for the apth AP. Indeed, d; qp
denotes the range between the apth AP and the ¢th FP (i.e.,
diap = ||1Xi — Xapl|)- Miap is @ Gaussian distributed noise
factor, that has standard deviation (std) o, and zero mean.

The one-slope PL. model in matrix form is [21]
Pap = Hap G‘)Ep + n, (2)

where n represents a Gaussian distributed noise vector of size
N x1, ©4, includes the unknown PL parameters for apth AP
(i.e., Oup = [Nap Pr,,]), Pap contains RSSs for apth AP (i.e.,

Pap = [Piap Poap - - PNy ap))s T i transpose operator, and
1 —1010910(11,(”)
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Eq. 3 is possible to be solved by using classical deconvolution
approaches, for example Least Squares [21]. The AP location
estimate Ty, Yap, Zap is obtained through brute-force approach
[22].

The training stage in PL approaches provides estimates of
the AP positions and the PL parameters n,, and PTW, based
on the same radiomap than in FP approach. In the estimation
phase, the MS location is computed using the PL parameters
and the observed RSS by the MS. The main motivation of PL
method is the amount of stored parameters and their ability to
offer statistical solutions for large areas. With PL approaches,
we can save up to 11 times in the database size [21].

III. PROPOSED CRLB-BASED ANALYSIS

The CRLB derives a lower bound on the variance of any
unbiased estimator of an unknown parameter [23]. CRLB
has been derived to RSS-based measurements in [13], [15].
Similarly, if the estimate of the user location is ¢ = (& § )7,
its covariance matrix is
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We know that Covg(¢) > {I(¢)} " [23], where I(¢) is the
Fisher matrix:

o= (259)] - (P20

Here, the likelihood function p(z;¢) denotes the probability
density function (pdf) of observations ;¢ and expectation
operation F is taken with respect to p(x;¢). Further on, by
using Eqgs. 4 and 5, the Fisher information matrix I(¢) can be
denoted as
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The used pdf in this paper, taking into account the joint power
(i.e., sum over all hearable APs), is

Nap 1 (710"‘“’ log10 (ﬁ))2
plaid) =Li= Y ———e , (D
ap=1 1/ 2m02,
where d is the distance between the unknown MS location
(x,y,2z) and apth AP location. Using Eq. 7 into Eq. 6,




TABLE I
MEASUREMENT SCENARIOS.

Building Floor Number of | Ngp Nuyser N fp Location Measurement
area [m?] floors device
A | University, building 1 9500 4 309 158 1476 | Tampere (Finland) ‘Windows
B | University, building 2 14000 3 353 176 584 | Tampere (Finland) ‘Windows
C Office, building 1 4900 9 333 850 624 Berlin (Germany) Nexus
D Office, building 2 3600 7 994 143 844 | Tampere (Finland) Nexus
E Shopping mall 1 48000 6 405 520 1633 | Berlin (Germany) Nexus
F Shopping mall 2 22000 6 326 205 1789 | Tampere (Finland) Windows
G Shopping mall 3 28000 3 503 776 306 Berlin (Germany) Nexus
H Shopping mall 4 19000 3 69 215 274 | Tampere (Finland) ‘Windows
TABLE 11 based positioning accuracy according to the AP density and
MEASUREMENT RESULTS. AP topology in a building. Both FP and PL approaches are
Building | CRLB P PL AP density included. We assume that the PL coefficient n,;, is constant
[m] (std) [m] | (std) [m] per m2 for the apth AP. The noise std o,, for each AP can be
A 1.18 7.94 15.78 0.0082 obtained from the measurements. The measurement samples
B 1.49 17.04 1741 0.0083 were gathered in four shopping malls, two office buildings
C 1.45 7.22 10.37 0.0131 d . itv buildi . 1 h ioh 1tifl
D 0.66 6.49 E7E 0.0395 an' t'wo uplversny uildings, 1.e., a. together ei1g 't multifloor
E 1.86 12.36 17.47 0.0016 buildings in Berlin, Germany and in Tampere, Finland. Two
F 2.32 18.08 28.17 0.0024 different tablets (an Android Nexus tablet and a Windows
G 2.83 15.30 29.65 0.0068 . . ..
i 10,03 3193 3503 0.0012 tablet) were used in the data gathering for both training and

the diagonal elements of Eq. 6 (¢ being one of the z,y,z
coordinates) are

02 In p(&;¢) NZ’“’ (€ = Eap)?
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where p = (01273110)2

A. Network topology optimization for positioning purposes

Further on, the CRLB can be utilized to compute an optimal
AP density in a building, when the building AP topology is
flexible. The proposed steps to this process are following:

1) Generate randomly allocated APs inside a 3D building,
according to certain rules (e.g., circular, rectangular,
uniform, or according to known topology).

2) Generate the training data with randomly allocated mea-
surement points and their associated RSS according to
the PL model in Eq. 2

3) Generate random user tracks within the considered 3D
building, e.g., via random walk model.

4) Based on the training data generated at Steps 1-3, and
Eq. 8, compute the CRLB achievable in each generated
scenario.

5) Choose the configuration (e.g., number of APs per
building area) that gives the lowest average CRLB, under
a sufficient number of Monte Carlo simulations (here,
10000).

B. Measurement-based Verification of the proposed CRLB-
based criterion

In this Section, we verify through measurement-based re-
sults that the CRLB can be used to estimate the expected RSS-

estimation phases. The collection was done manually utilizing
HERE indoor maps, which were included in the tablets. The
data samples, that formed the user tracks, were collected
separately. All user tracks include measurements from several
floors in each building. In one building, only one device
was used, i.e., the training data and estimation data were
always collected with same tablet. All buildings and their
main characteristics are detailed in Table 1. Since an AP stands
for a MAC address, it may happen that more than one APs
are located at the same position (e.g., as it is the case with
transmitters supporting multiple BSSID).

Table II shows the CRLB and std of the positioning error
(calculated in 3D) for both FP and PL method for all buildings.
Also the AP density is included. When examining the Table
II, it can be seen that the FP performs slightly better than
the PL method and is closer to the CRLB in most cases, as
expected. The only exception is for building D, where also
the AP density is clearly higher than in the other buildings.
In buildings A-D, the CRLB is at most 1.5 meters and the
positioning results for FP are between 6-8 meters, except for
building B. The reason for the lower results in building B may
be in the AP configuration or in more challenging environment
with inner courts. The smaller AP density for buildings E-H
clearly increases both the CRLB and the positioning errors.
Especially with building H, where the AP density is very
small and most of the APs are located in one floor only,
even the CRLB is 10 m. Based on the results shown in Table
IL, it can be concluded that the state-of-the-art approaches
that reach sub 3 m positioning accuracy may be in limited
conditions with fully gathered data, not truly in multi-floor
environment. In a building with several floors and especially
with incomplete data (e.g., building H), even the CRLB with
unfiltered data rarely reaches sub 3 m accuracy. Additional
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Fig. 1. CRLB vs. AP density both for a simulated building and real
measurements (all buildings included). For simulated building, 10000 random
points and 100 user measurements with random building size.

filtering and sensor integration may indeed decrease the error.
Also, according to [24], it is possible that an algorithm obtains
better results than CRLB in the case of a biased estimator.

IV. SIMULATIONS AND MEASUREMENT-BASED RESULTS
A. Measurements-based results

In this Section, we will give an example of the use of CRLB
for finding out a sufficient AP density for the best possible
positioning results, using a 2D simulation model (one floor
only). The building size is a m x b m, where both a and b are
varied randomly between 50-150. Also both AP locations and
user locations are randomly chosen inside the building (i.e.,
uniform distribution), but the AP density is fixed. Fig. 1 shows
the CRLB vs. AP density for both a simulated building and
for the measurements. Because of the randomizing, the results
for simulated building are calculated over 10000 iterations and
100 random user measurements. For the real measurements,
the AP density is calculated as an average over all floors. As it
can be seen in Fig. 1, the curves for CRLB vs. AP density for
the simulated case and for the measurements are very close
to each other. It can be also seen in Fig. 1 that exactly two
meter accuracy is achieved with AP density 0.018/m? (i.e., by
placing an AP for about every 7.5 m). Indeed, we can achieve
sub-meter accuracy by placing an AP for every /10 ~ 3 m,
but placing them closer than this won’t bring much benefit.
This is also intuitively clear.

B. AP density choice in flexible network topologies

Naturally not only the AP density but also the AP place-
ments are important from the positioning accuracy point
of view. Therefore, we calculated an average Voronoi area
between the estimated AP locations to illustrate the effect of
AP deployment. One example showing the Voronoi polygons
for building C at 4th floor can be seen in 2. The polygons
are drawn only within the building limits, i.e., the polygons
outside the building area are not taken into account. Red circles

Example of Voronoi polygons. Building C, floor 4.
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Fig. 2. Illustration of the Voronoi polygon areas between the estimated AP
locations. Building C, floor 4.
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Fig. 3. CRLB vs. average Voronoi area over all floors both for a simulated
building and real measurements (all buildings included). For simulated build-
ing, 10000 random points and 100 user measurements with random building
size.

represent the AP locations, black dots Voronoi vertices, and
blue lines determine the area of the polygon specified by the
Voronoi vertices. The average Voronoi area is the average area
of blue polygons.

Fig. 3 presents an average Voronoi area between the esti-
mated AP locations for both simulated building and for the real
measurements, within the building limits. As it can be seen,
both theoretical (simulated) and real measurements follow the
same trend: small Voronoi area corresponds to small CRLB,
and higher Voronoi area to higher CRLB. The results in Fig.
3 verify that the CRLB-based criterion takes into account
also the AP placements, not only AP density, and it is a
powerful tool to predict the best possible positioning results
for a particular AP deployment.



V. CONCLUSION

In this paper, we shown how a CRLB-based criterion can
be used to estimate the expected accuracy bound in WLAN-
networks with predefined topology or to find out the best
AP density for a certain target of positioning accuracy, in a
network designed for positioning purposes. We have proved
the suitability of the CRLB criterion with measurement-based
results, with both FP and PL approaches. We have explained
how to use the CRLB and we have shown that that the CRLB-
based criterion takes into account also the AP placements,
not only AP density. The results we have presented here
provide more insight for designing an efficient WLAN-based
positioning environment and for evaluating existing WLAN
AP topologies in the context of positioning accuracy.
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