
Parallel Processing Intensive Digital Front-End
for IEEE 802.11ac Receiver

Mona AghababaeeTafreshi, Juha Yli-Kaakinen, Toni Levanen, Ville Korhonen, Pekka Jääskeläinen,
Markku Renfors, Mikko Valkama, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FI-33720 Tampere, Finland
email: mona.aghababaeetafreshi@tut.fi

Abstract—Modern computing platforms offer increasing levels
of parallelism for fast execution of different signal processing
tasks. In this paper, we develop and elaborate on a digital
front-end concept for an IEEE 802.11ac receiver with 80 MHz
bandwidth where parallel processing is adopted in multiple ways.
First, the inherent structure of the 802.11ac waveform is utilized
such that it is divided, through time-domain digital filtering
and decimation, to two parallel 40 MHz signals that can be
processed further in parallel using smaller-size FFTs and, e.g,
legacy 802.11n digital receiver chains. This filtering task is very
challenging, as the latency and the cyclic prefix budget of the
receiver cannot be compromised, and because the number of
unused subcarriers in the middle of the 80 MHz signal is only
three, thus necessitating very narrow transition bandwidth in the
deployed filters. Both linear and circular filtering based multirate
channelization architectures are developed and reported, together
with the corresponding filter coefficient optimization. Also, full
radio link performance simulations with commonly adopted
indoor WiFi channel profiles are provided, verifying that the
channelization does not degrade the overall link performance.
Then, both C and OpenCL software implementations of the
processing are developed and simulated for comparison purposes
on an Intel CPU, to demonstrate that the parallelism provided
by the OpenCL will result in substantially faster realization. Fur-
thermore, we provide complete software implementation results
in terms of time, number of clock cycles, power, and energy
consumption on the ARM Mali GPU with half precision floating-
point arithmetic along with the ARM Cortex A7 CPU.

Keywords—WLAN, IEEE 802.11ac, Multirate Filtering, Digital
Front-End, Graphics Processing Units, Open Computing Language,
Parallel Processing.

I. INTRODUCTION

Software-based implementations of radio transceiver digital
front-end (DFE) and baseband (BB) processing stages are
receiving increasing interest, due to substantially enhanced
re-configurability and reduced time-to-market cycles, when
compared to classical fixed-function digital hardware imple-
mentations [1][2]. Modern platforms have increased paral-
lel computation capabilities due to the limits of improving
performance by means of increasing the clock frequency.
Multi-core processors and graphics processing units (GPU)
along with programming standards such as OpenCL enable
software developers to explicitly utilize the parallelism for
faster processing [3].

In this paper, we address the DFE processing of the flag-
ship WLAN/WiFi technology, namely IEEE 802.11ac [4],
where the basic radio access is based on 80 MHz instanta-
neous bandwidth. Interestingly, this 80 MHz access waveform

is composed by essentially aggregating two 40 MHz sub-
signals [4], stemming from the legacy IEEE 802.11n access
bandwidth, with three null subcarriers (approximately 1 MHz)
inbetween. In the digital front-end concept proposed in this
paper, this overall 80 MHz signal is divided to two 40 MHz
sub-signals, through carefully optimized time-domain filtering,
which in turn can then be processed forward in parallel,
with two smaller-size FFTs and corresponding frequency-
domain processing. This overall receiver principle, assuming
also wideband I/Q downconversion from RF to baseband,
is depicted at conceptual level in Fig. 1. This can be also
extended to a 160 MHz signal being divided into four 40
MHz sub-signals from which each can be received by a
modified 40 MHz 802.11n receiver. However, this filtering
task is far from trivial, as the cyclic prefix (CP) budget of
the overall wireless link, including filtering in the devices,
should not be compromised, since the latency requirements
of the 802.11ac receiver are very tight [4], and because the
small spectral gap of around 1 MHz calls for very narrow
transition bandwidth in the filter optimization. Hence, in this
paper, we first address this channelization filter optimization
task, and report both linear digital filtering and circular digital
filtering based multirate solutions with different characteristics
and tradeoffs related to latency, filtering performance, and CP
budget. Essentially, the circular filtering based solution slightly
increases the latency but does not compromise the CP budget
at all, being implemented after the CP removal, just prior to the
parallel FFT units. We also provide full radio link simulation
results, with commonly adopted WiFi indoor channel models,
to verify that the overall channelization filtering does not
degrade the link performance.

Then, related to the actual software-based processing im-
plementations, we have developed both C and OpenCL-based
solutions on the Intel R© CoreTM i7-4800MQ CPU [5] to demon-
strate that the explicit parallelism provided by the OpenCL
framework will result in substantially faster execution. We
also provide complete software implementation results using
the Odroid XU3 [6]. The Odroid XU3 is based on the Sam-
sung Exynos 5 Octa, powered by ARM CortexTM-A15 quad
core and CortexTM-A7 quad core CPUs, which employs the
ARM R© big.LITTLETM technology [7][8][9]. This technology
creates a multicore processor which couples relatively slower
processor cores with more powerful ones. The XU3 also
features the ARM R© MaliTM-T628 MP6 GPU [10] with half
precision floating-point arithmetic. Different filter designs are
implemented and assessed in terms of execution time, number
of clock cycles, power, and energy consumption.

RF LNA

AGC

LPF

LPF

AGC

I/Q LO

I

Q

D
IG

IT
A

L
C

H
A

N
N

E
L

IZ
A

T
IO

N

A/D

A/D

1
2

8
F

F
T

1
2

8
F

F
T

f
0 40 MHz-40 MHz

f
0

f
0

Fig. 1. The overall receiver principle with digital channelization filtering yielding two 40 MHz sub-signals.

The rest of the paper is structured as follows. First, in Sec-
tion II, the channelization filtering architectures based on linear
and cyclic half-band multirate filters, together with correspond-
ing filter optimization, are described. Then, in Section III, we
provide comprehensive link performance evaluations, with and
without channelization filtering, to verify and demonstrate that
the optimized filtering solutions reported in Section II do not
essentially degrade the link performance in any way. In Section
IV, the software implementation and OpenCL kernel designs
are described. Finally, the results from the GPU and the two
CPUs are reported in Section V, and Section VI concludes the
work.

II. CHANNELIZATION FILTER ARCHITECTURES FOR IEEE
802.11AC

In this work, 80 MHz access bandwidth in IEEE 802.11ac
system consisting of 256 subcarriers is considered. 242 sub-
carriers out of the total 256 are active (234 for data and 8
for pilots). Three subcarriers around DC (subcarriers −1, 0, 1)
are zero and both the negative and positive frequency com-
ponents contain 121 transmission subcarriers (subcarriers ±k
for k = 2, 3, . . . , 122) [4]. In the IEEE 802.11 standards
[11], the total multicarrier symbol duration is defined as 4
µs; 20 percent of this duration (800 ns) is the guard interval
which carries the cyclic prefix of the signal. For FFT size of
L = 256 this corresponds to the cyclic prefix of 64 samples. As
described already in the Introduction, the goal is to divide the
80 MHz IEEE 802.11ac signal sampled at the Nyquist rate into
two 40 MHz-wide signals using linear filtering such that the
positive frequency components are separated into one signal
and negative frequency components into a second. These are
then processed further, in parallel, with two 128 point FFTs
and subsequent subcarrier level processing.

A. Polyphase Halfband Filters

The problem stated above can be solved either using finite-
impulse response (FIR) or infinite-impulse response (IIR)
analytical filters [12], [13]. For FIR case, the analytical filter
requiring minimum number of multiplier values can be derived
with the aid of halfband filters. The transfer function of
the halfband lowpass-highpass FIR filter pair can be realized
efficiently as a parallel connection of Type II (odd-order
symmetric) FIR transfer function H(z2) and a delay of M

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

Lowpass/highpass halfband filter pair

M
a

g
n

it
u

d
e

 in
 d

B
Normalized frequency ω

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

Lowpass/highpass analytical filter pair

M
a

g
n

it
u

d
e

 in
 d

B

Normalized frequency ω

(b)

Fig. 2. Magnitude responses of the (a) halfband and (b) analytical filter
pairs. In (a), the gray areas indicate the transition bands of the prototype filter
pair. In (b), the gray areas indicate the 40 MHz sub-bands containing active
subcarriers.

as expressed in [14].

G(z) = H(z2)± 1/2z−M . (1)

Here, M is an odd integer such that the order of the overall
transfer function G(z) is N = 2M . The lowpass (highpass)
filter is realized using the above transfer function with the plus
(minus) sign.

The analytical filter is obtained from H(z) by multiplying
the impulse response values h(n) by j−n. This corresponds
to shifting the frequency response of the filter by π/2. The
parallel connection of the resulting Hilbert transformer (more
precisely, the approximation of it) and a delay can be used for
forming analytical signals, that is, for separating the positive
and negative frequency components as desired. Fig. 2(a) and
Fig. 2(b) show the magnitude response of the lowpass-highpass
halfband and analytical filter pairs, respectively. The active
subcarriers in Fig. 2(b) are denoted by the gray area. The
resulting output signals can be decimated by two, if desired,
by sharing the input samples into these two branch filters such
that odd samples go to one branch and even samples to another.
In this case, the branch filters [H(z) and 1/2z−M/2] work at
the output sample rate, that is, at the half of the input rate.

0.5

yhp(m)

x(n)

z–M/2

h0

z–1z–1

z–1

z–1

z–1 h2

hM–1 fs/2

fs

Analytical Hilbert transformer H(z)

ylp(m)

fs/2

filter G(z)

j

Fig. 3. Efficient processing structure of the decimating analytical filter real-
izing both the lowpass and highpass outputs ylp(m) and yhp(m), respectively.

A more detailed structure of this analytical filter is shown in
Fig. 3. A pair of these filters is required for filtering both the
real and imaginary parts of the input signal.

When decimating the resulting lowpass and highpass fil-
tered signals, the residue of the active negative (positive)
subcarriers alias above positive (negative) subcarriers, i.e.,
subcarriers −k for k = 2, 3, . . . , 122 alias above subcarriers
128 − k for k = 2, 3, . . . , 122. Consequently, the stopband
edge of the lowpass analytical filter has to be ωs = (128 −
122)/128π = 0.046875π to prevent aliasing into positive
active subcarriers. Correspondingly, the passband and stopband
edges of the prototype halfband filter are ωp = 1/2π− (128−
122)/128π = 0.453125π and ωp = π − 0.53125π as the
passband and stopband edges of the prototype halfband filter
are located symmetrically around π/2 as ωs = π − ωp for
ωp < π/2 [12]. The gray areas in Fig. 2(a) denote the transition
bands of the prototype filter pair.

The magnitude of the aliasing components is defined by
the stopband attenuation of the prototype filter. Due to the
properties of the prototype halfband filters, the order of the
transfer function is restricted to be N = 2+4k, where k is an
integer [12]. The performance of the analytical filter (parallel
connection of Hilbert transformer and delay) is evaluated by
measuring the root-mean-square (RMS) error of the received
channelized signals as a function of the passband edge and
filter length. In this simulation, the frequency response of the
channelization filter is equalized per channel and 16-QAM
subcarrier modulation with 1000 symbols are used. As can be
seen from Fig. 4, the best RMS error performance is obtained
using the filter of order N = 70 for which the passband edge is
located at ωp = 0.4505π. The difference between the derived
passband edge (ωp = 0.453125π) and the value obtained by
simulation can be explained by the distribution of the zeros
at the stopband. By optimizing the locations of the zeros in
z-domain, their contribution to the attenuation at the exact
carrier frequencies can maximized if desired. However, in real
environment the difference would be negligible due to, e.g.,
the possible carrier-frequency offset.

B. Cyclic Polyphase Halfband Filters

The previous linear digital filtering based channelization
increases the effective time dispersion of the received signal,
and thus partially compromises the CP budget of the receiver.
A straightforward way to tackle the increase in the overall

0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46
10

−3

10
−2

10
−1

Normalized passband edge of the prototype filter

R
M

S
 e

rr
o

r

 N = 42 (A
s
 = 40 dB)

 N = 58 (A
s
 = 50 dB)

 N = 70 (A
s
 = 60 dB)

 N = 86 (A
s
 = 70 dB)

Fig. 4. RMS error between the received and the transmitted symbols as a
function of passband edge for halfband FIR filters of order 42, 58, 70, and
86.

impulse response length is to perform the channelization pro-
cessing using cyclic convolution instead of linear convolution
(conventional FIR filter). The basic idea is to carry out the
linear convolution block-wise for the received data and then
cyclically add the last N samples from the resulting N+L
samples long sequence to the beginning of the block as
depicted in Fig. 5. As a consequence, due to duality of cyclic
convolution in time-domain and multiplication in frequency-
domain, the effect of the channelization filter can be exactly
equalized. Furthermore, as the cyclic convolution processing
can be carried out after removing the CP, this solution does
not contribute in any way to the effective time dispersion in
the signal.

In this case, only the FFT size and the computational
complexity restrict the length of the channelization filter. The
computational complexity of cyclic realization is approxi-
mately 25 percent lower for the same filter order since the
CP can excluded before channelization. It should be pointed
out that the same polyphase filter channelization architecture
can be used for both the linear and cyclic convolution.

III. 802.11AC LINK PERFORMANCE EVALUATIONS

In order to verify that the overall channelization filtering
does not degrade the 802.11ac link performance, extensive link
simulations are carried out. Standardized WLAN/WiFi channel
models D and F [15], [16], are used to simulate the link
performance of the two proposed channelization architectures
in the case of frequency selective fading channel. Table I
shows the delay spread and cluster parameter values of these
channel models. These two channel models can be considered
to represent the environments with little-to-moderate frequency
selectivity, as it is typically the case in indoor offices and
houses (channel model D), and moderate-to-large frequency
selectivity, common in large indoor spaces such as airport
and conference centers (channel model F). The symbol error
rate (SER) and error vector magnitude (EVM) performance
of the channelization architectures are evaluated in two cases.
In the first case, the performance is evaluated as a function
of signal-to-noise ratio (SNR) whereas in the second case
as a function of co-channel signal-to-interference ratio (SIR).
For SNR simulation, the SER and EVM evaluation is carried
out with both the perfect timing synchronization as well

0 15 30 45 60

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Wrapping the tail

0 20 40 60 80 100

−1

−0.5

0

0.5

1

Linear convolution

M
a

g
n

it
u

d
e

n in samples

0 10 20 30 40

0

0.2

0.4

M
a

g
n

it
u

d
e

n in samples

Filter impulse response

0 16 32 48

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Input data

0 16 32 48

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Resulting cyclic convolution

Fig. 5. Illustration of cyclic convolution using linear halfband filter.

as an example timing synchronization error of 8 samples.
Three different prototype filters are used for the linear filter
channelization case. The stopband attenuations of these filters
are 40 dB, 50 dB, and 60 dB. For circular filter case, only
one prototype filter is used with the stopband attenuation of
40 dB. In addition, SER and EVM performance is evaluated
in the case with no channelization for reference purposes.

In the case of SIR simulations, the co-channel interference
is a complex exponential having a random frequency inside the
negative frequency band and the error functions are evaluated
over the positive active subcarriers. In this case, only the per-
fect time-synchronization case is simulated. In all simulations,
the number of random channel instances is 1000 whereas the
number of 16-QAM modulated OFDM symbols is equal to
100.

The simulated SER and EVM as a function of SNR are
shown in Fig. 6 whereas the corresponding SIR results are
shown in 7. As can be seen from these figures, in the case of
SNR simulation, the performance of the circular filter architec-
ture is approximately the same as with no channelization. In
the case of SIR simulation, the linear filter architecture slightly
outperforms the circular filter with Channel model D, whereas
in the case of Channel F, the circular architecture results in
considerably better SER and EVM values. This is because
the circular filtering based channelization architecture does not
reduce the CP budget of the receiver in any way. However, as
the adjacent channel rejection in IEEE 802.11 RF front-ends
should be at least 40 dB, the SIR performance of the circular
filter also with little-to-moderate frequency selectivity of the
Channel D can be considered to clearly meet the requirements.

TABLE I. DELAY SPREADS AND CLUSTER PARAMETERS OF INDOOR
TGN AND TGAC SPATIAL CHANNEL MODELS [15], [16]

Model Scenario RMS delay
spread

Number of
clusters

Taps/cluster

D Indoor typical office 50 ns 3 16,7,4
F Large indoor space 150 ns 6 15,12,7,3,2,2

IV. SOFTWARE IMPLEMENTATION

Three different platforms were employed for the implemen-
tation of the channelization task described in the previous sec-
tions. Firstly, C and OpenCL implementations were carried out
on the Intel R© CoreTM i7-4800MQ CPU which has 4 cores and
runs at base frequency of 2.7GHz and turbo frequency up to
3.7GHz. This step was done with the purpose of demonstrating
the speedup achieved as a result of using OpenCL compared
to C. Then, to take advantage of the parallel computing ability
of GPUs, the implementation was additionally carried out on
the ARM R© MaliTM-T628 MP6 GPU [10]. Mali-T628 is a
part of the Samsung Exynos 5 Octa (Exynos 5422) mobile
System on Chip (SoC). Mali-T628 offers scalability from one
to eight cores and runs at a frequency of 600 MHz. This
GPU also provides support for half precision floating point
arithmetic. Half-precision floating numbers are defined by the
IEEE 754 standard to have 16 bits consisting of five bits
for the exponent, 10 bits for the fraction and one bit for
the sign [17]. The usage of half floats could possibly reduce
the execution time, power, and energy consumption to some
extent. Exynos 5422 is also equipped with two CPUs using
the big.LITTLE heterogeneous computing architecture [9]. The
two CPUs are ARM R© Cortex R©- A15TM and A7TM [7][8]. A15
and A7 are quad core CPUs and can run at up to 2.1GHz
and 1.5GHz, respectively. The ARM big.LITTLE architecture
aims at achieving high performance while improving the power
efficiency by coupling a performance driven ”big” core with
a power efficiency driven ”LITTLE” core. Thus, these CPUs
were also taken into consideration for the implementation.
In this work, we have used ODROID-XU3 [6] to utilize the
Samsung Exynos 5422 SoC for the implementation.

Various approaches were considered to implement the
channelization filter in OpenCL, designed carefully to utilize
the available parallelism. Two of the approaches which proved
to be most efficient are described in the following. Different
filter designs and software implementations are considered
in each solution. The first solution focuses on a halfband
filter design with higher length and lower number of required
arithmetic operations, due to the zero coefficients, compared
to the second solution. The second one, however, uses a non-
halfband filter design with shorter length and utilizes vector
operations. These implementations are carried out for both
linear and cyclic filter designs.

A. Halfband Filter Without Vectorization

First approach implements the linear and cyclic halfband
filters described in Section II. This implementation takes
advantage of the fact that every other coefficient in the filter de-
sign is zero (as illustrated in Fig. 5), thus reducing the number
of required multiplications by a factor of two. Moreover, hav-
ing symmetric coefficients helps simplify the implementation
further by first subtracting the pair of samples having the same
coefficient values and then multiplying the resulting difference

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SNR [dB]

S
E
R

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

10
1

CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SNR [dB]

E
V

M

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SNR [dB]

S
E
R

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

10
1

CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SNR [dB]

E
V

M

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

Fig. 6. SER and EVM as a function of SNR for conventional and circular halfband filters with channel models D and F.

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−4

10
−3

10
−2

10
−1

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SIR [dB]

S
E
R

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SIR [dB]

E
V

M

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SIR [dB]

S
E
R

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SIR [dB]

E
V

M

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

Fig. 7. SER and EVM as a function of SIR for conventional and circular halfband filters with channel models D and F.

Work Group
L/2-1

Work Group
L/2

Work Group
1

Work Group
0

hN-1 hN...h1h0

x0 xL-N-1 xL-Nx1 ... xL-1 xL0...00

Fig. 8. The structure for the implemented halfband kernel, x denotes input
samples, h denotes filter coeficients, L is the number of input samples, and
N is filter order.

only once. Also both the lowpass and highpass filters can be
realized at the same cost. In this implementation, it is assumed
that all the input samples of one OFDM symbol and the
filter coefficients are fed to the kernels input buffers. Fig. 8
illustrates the distribution of the computations among work
groups, having L and N representing the number of subcarriers
in one OFDM symbol and the filter order, respectively. To start
the parallel computations, it is assumed that N+L−1 samples
are stored in the input buffer, N −1 of which are zeros, added
at the beginning of the input stream. As shown in Fig. 8, in
this implementation, L/2 work groups work simultaneously to
multiply the vector coefficients with the input samples and do
the summations. Consequently, each work group produces one
lowpass and one highpass output at the same time with other
work groups.

B. Non-halfband Filter with Vectorization

In software based solutions, an important aspect to consider
aside from the number of arithmetic operations is the memory
accesses. In case of a halfband filter implementation, having
zero coefficients, every other sample is skipped, which reduces
the number of required multiplications. However, having these
erratic memory accesses in the halfband filter could be less ef-
ficient than executing all multiplications instead of half. Thus,
in the second approach, a non-halfband filter is considered
for the channelization. As the cores support Single Instruction
Multiple Data (SIMD) operations, an efficient implementation
for the filter could be carried out using the OpenCL vector
operations. The highest number of allowed vector components
in OpenCL is 16. For this reason, the optimum designed filter
should have a length that is multiple of 16. In general, the
realization of odd-order (even length) two-channel FIR filter
bank is not desirable. This is due to the reason that the resulting
polyphase branch filters are non-symmetric filters, resulting in
a quadruple complexity compared with the original half-band
design. Therefore, the filter length is chosen to be 16n − 1.
Then the length has been increased to 16n by padding one
zero at the end of the impulse response.

In this kernel design, input samples and filter coefficients
should be in the form of vectors of length 16. Fig. 9 depicts
the arrangement of work groups and work items in this
implementation. S is the number of subcarriers in one OFDM
symbol plus N zeros added for filtering. x0, x1, . . . , xS/16 are
vectors of length 16 containing S samples altogether. As it is
illustrated in Fig. 9, each work group operates on a number
of vectors. Then inside each work group, each work item,
according to its work item number, carries out the processing
related to a part of the vectors corresponding to that work
group. This processing includes the multiplication of the data
samples by coefficient values and the final summation.

V. RESULTS AND ANALYSIS

To evaluate the performance enhancement achieved by
exploiting parallelism using OpenCL, we have measured the
execution time and number of clock cycles consumed when ex-
ecuting the filters both using C and OpenCL. This preliminary
step was carried out on the Intel R© CoreTM i7. Then to study the
advantages and disadvantages of different multicore platforms,
the channelization filter was additionally implemented on the
ARM R© MaliTM-T628 and the ARM R© Cortex R©- A7TM CPU.
In addition to time and number of clock cycles, power and en-
ergy consumption were measured on the ARM platforms using
the sensors available on the Odroid XU3. Most importantly, the
performance improvements obtained by the application of half
precision floating point arithmetic on Mali was investigated
and is presented in this section. In all the measurements, the
number of input samples is equal to the FFT size plus the
CP length and the filter order, all multiplied by two as all the
samples are in complex form.

A. Execution Time

Fig. 10 shows the execution times in milliseconds for
running linear and circular filters using halfband and non-
halfband implementations on the different platforms introduced
in Section IV. Firstly, Fig. 10 shows that the halfband filter
is executed approximately 80% faster when using OpenCL
rather than C. Furthermore, it can be seen that among the
OpenCL implementations, the Intel Core i7 consumes the least
time. The second fastest platform is the Mali GPU, and the
slowest is the ARM A7 CPU. This can be explained by the
Intel CPU having the highest clock frequency, up to 3.7GHz
which is six times higher than Mali’s and two times higher than
A7’s. Another important observation from the implementation
results is the amount of speedup gained by using half precision
floats on the Mali GPU. The results show that the application
of half precision floats has lowered the execution time by
at least 55% which exceeds the expected linear speedup of
two. This could be explained by the fact that taking up less
space for the data results in more cache hits and less memory
transfers, thus causing the faster execution. As it can be seen
from Fig. 10, there is less difference between the linear and
circular filtering solutions in non-halfband implementations as
the designed non-halfband linear and circular filters have the
same filter length. However, with the halfband implementation,
the circular design requires a higher filter length, thus resulting
in relatively slower execution.

The latency restrictions for this channelization process
originate from the duration of the defined short interframe
space (SIFS) in the IEEE 802.11ac amendment. As this chan-
nelization task is carried out for 80 and 160 MHz bandwidths
which are only available in 5GHz carrier, the available SIFS
time is equal to 16µs. The lowest possible execution time
realized on the platforms used in this work is 6.02µs. Taking
into consideration the other related required processing, such
as MAC processing, the filtering can fit in the time frame.
However, to have better margins for the rest of the required
processing, it is beneficial to still reduce the execution time
further. Mali is a small mobile GPU and employing a faster,
larger GPU can result in lower execution times for the filtering
that can, more easily, meet the real time requirements. Thus,

x0 x1 x((N+1)/16)+1 xS/16x((S-N-1)/16)-1

Work Group 0

Work Item 0 Work Item 1 Work Item 15

x0_c = x0>> work_item

x1_c = x1>> work_item

x(N+1)/16_c = x(N+1)/16>>
work_item

..
.

ylocal_addr=x0_c*h[N+1/16] +
… + x(N+1)/16_c*h[0]

Work Group ((S-N-1)/16)-1

Work Item 0 Work Item 1 Work Item 15
x0_c = x((S-N-1)/16)-1>>
work_item

x1_c = x((S-N-1)/16)>>
work_item

x(N+1)/16_c = x(s/16)-1>>
work_item

..
.

h[0] h[(N+1)/16]

... ...

ylocal_addr=x0_c*h[(N+1)/16]+
 … + x(N+1)/16_c*h[0]

x((S-N-1)/16)
Work Group 1

out[global_addr] =
sum(ylocal_addr)

...
...

... ...

x0_c = (x0>> work_item) | x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

x0_c = (x0>> work_item) |x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

Fig. 9. The structure for the implemented non-halfband kernel, x denotes input sample vectors, h are the vectors containing filter coefficients, N is the filter
order, and S is the number of input samples plus N zeros.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/ Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Intel/OpenCL

Intel/C

Fig. 10. Execution time in miliseconds consumed by linear and circular digital
filtering using halfband and non-halfband designs on different platfroms.

this could be also considered as a suitable implementation
candidate e.g. in an access point setting using larger GPUs.

B. Number of Clock Cycles

To calculate the number of clock cycles required for each
filter implementation, the nominal frequency of the platforms
was assumed. The clock frequencies considered for the Intel
CPU, ARM CPU, and the Mali GPU were 2.7GHz, 1.4GHz,
and 600 MHz, respectively. The calculated number of clock
cycles are presented in Fig. 11. Similar to the execution
times presented in the previous section, these numbers, most
importantly, verify the great advantage of using half precision
floats over the full precision floats.

C. Power

The Odroid is equipped with four separated current sensors
to measure the power consumption of Big CPU (A15), Little
CPU (A7), GPU and DRAM in real time. In this work, the
measurements are carried out in a way that 200 samples
are taken from the sensors in intervals of 100ms and then
averaged over a 20s time period to assess the average power
consumption. To achieve more precise measurements, the

0

100

200

300

400

500

600

700

800

900

1000

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/ Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Intel/OpenCL

Intel/C

Fig. 11. Number of clock cycles consumed by linear and circular digital
filtering using halfband and non-halfband designs on different platfroms.

kernels were run in high number of iterations to keep the
cores active with kernel executions during the whole 20s.
We did not have any tools available to measure the power
consumption of the Intel CPU. The power consumed by Mali
and A7 in different scenarios are presented in Fig. 12. It can be
seen that the relatively lower power, lower performance Little
CPU, A7, consumes less power than the GPU. Moreover, the
application of half precision floating points has reduced the
power consumption by approximately 33%.

D. Energy

While it is important to evaluate power consumption for
heating matters, energy consumption, specifically in mobile
applications, plays a very important role, as it translates to bat-
tery life. Fig. 13 illustrates the calculated energy consumption
in different implementations by both the GPU and the CPU.
As it is shown in this figure, employing half precision floating
points has resulted in almost 60% reduced energy consumption
in comparison with the case with full precision floating points.
This is due to the reason that kernel execution with half floats
is carried out in more than half of the time and with almost
half power as the full floats. Although A7 is a low power CPU,
the much lower kernel execution times on Mali has resulted

0

0.1

0.2

0.3

0.4

0.5

0.6

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/

Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Fig. 12. Power in watts consumed by linear and circular digital filtering
using halfband and non-halfband designs on different platfroms.

0

20

40

60

80

100

120

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/

Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Fig. 13. Energy in μJ consumed by linear and circular digital filtering using
halfband and non-halfband designs on different platfroms.

in overall lower energy consumption by the GPU.

VI. CONCLUSION

In this paper, we addressed the digital front-end process-
ing of the IEEE 802.11ac receiver, targeting software-based
processing implementation with substantially increased level
of parallelism for fast execution. First, the overall 80 MHz
received waveform is divided to two 40 MHz-wide signals
through time-domain digital filtering so that the two 40 MHz
signals can be then processed in parallel. We have optimized
the channelization filter realizations and reported the results
for both the linear and circular digital filtering. Then, the
overall 802.11ac radio link was simulated, incorporating the
developed channelization filter architectures, with two different
WLAN/WiFi channel models. The SER and EVM performance
of the channelization architectures were evaluated, showing
that the link performance is not degraded by these filtering so-
lutions. Finally, actual software implementations were carried
out for linear and circular digital filtering using both halfband
and non-halfband designs on different platforms, namely the
Intel R© CoreTM i7-4800MQ CPU, ARM R© Cortex R©- A7TM, and
ARM R© MaliTM-T628 MP6 GPU. All filter designs were eval-
uated in terms of execution time and number of clock cycles
on all three platforms, and power and energy consumption
on the Mali GPU and A7 CPU. Comparing the OpenCL and
C implementations revealed that exploiting parallelism using
OpenCL yields a five times faster execution. The results also
demonstrated that the high performance Intel CPU and the

Mali GPU executed the filtering tasks much faster. Moreover,
while the power efficient ARM A7 consumes less power
than Mali, having very short execution times resulted in
Mali consuming much lower energy. Taking advantage of half
precision floating points on Mali reduces the execution time,
number of clock cycles, power, and energy to a great extent.
The measured execution times also showed that the designs
can marginally meet the latency requirements for the IEEE
802.11ac. However, the filtering can more easily satisfy the
restrictions by employing higher performance GPUs or CPUs.

ACKNOWLEDGMENT

This work was supported by the Finnish Funding Agency
for Technology and Innovation (Tekes) under the Parallel
Acceleration (ParallaX) project, Tampere University of Tech-
nology graduate school, and Nokia Foundation.

REFERENCES

[1] W. Tuttlebee (Ed.), Software Defined Radio: Baseband Technologies for
3G Handsets and Basestations. 1sted. West Sussex: Wiley, 2004.

[2] E. Grayver, Implementing Software Defined Radio. New York: Springer,
2013.

[3] The OpenCL specification, The Khronos Group Inc., 2011. [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[4] IEEE Standard for Information Technology Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks Specific Requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications –
Amendment 4: Enhancements for Very High Throughput for Operation
in Bands below 6 GHz, IEEE Standard 802.11ac-2013, Dec. 2013.

[5] Intel R© CoreTM i7 Processor Family for LGA2011 Socket, Intel Corpo-
ration, 2014.

[6] Hardkernel co., Ltd. ODROID-XU3. Available: http://www.hardkernel.
com/main/products/prdt info.php?g code=G140448267127&tab idx=1

[7] Cortex-A15 Technical Reference Manual, ARM, 2011. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/
DDI0438C cortex a15 r2p0 trm.pdf

[8] Cortex-A7 MPCore Technical Reference Manual, ARM, 2011, 2012.
[Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0464d/DDI0464D cortex a7 mpcore r0p3 trm.pdf

[9] big.LITTLE Technology: The Future of Mobile, Making very high
performance available in a mobile envelope without sacrificing energy
efficiency, ARM, 2013.

[10] The ARM R© MaliTM Family of Graphics Processors, ARM, 2013.
[11] IEEE Standard for Information Technology Telecommunications and

Information Exchange Between Systems Local and Metropolitan Area
Networks Specific Requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Standard 802.11-2012, 2012.

[12] H. W. Schüßler and P. Steffen, “Halfband filters and Hilbert transform-
ers,” Circuits, Syst., Signal Process., vol. 17, no. 2, pp. 137–164, 1998.

[13] R. Ansari, “IIR discrete-time Hilbert transformers,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1116–1119, Aug.
1987.

[14] T. Saramäki, “Finite impulse response filter design,” in Handbook for
Digital Signal Processing, S. K. Mitra and J. F. Kaiser, Eds. New
York: John Wiley and Sons, 1993, ch. 4, pp. 155–277.

[15] TGn Channel Models, IEEE Standard 802.11-03/940r4, 2004. [On-
line]. Available at: https://mentor.ieee.org/802.11/dcn/03/11-03-0940-
04-000n-tgn-channel-models.doc

[16] TGac Channel Model Addendum, IEEE Standard
802.11-09/0308r12, Dec. 2010. [Online]. Available at:
https://mentor.ieee.org/802.11/dcn/09/11-09-0308-12-00ac-tgac-
channel-model-addendum-document.doc

[17] IEEE standard for floating-point arithmetic, IEEE standard 754-2008,
Aug.29, 2008.

https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=1
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=1
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464d/DDI0464D_cortex_a7_mpcore_r0p3_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464d/DDI0464D_cortex_a7_mpcore_r0p3_trm.pdf

	Introduction
	Channelization Filter Architectures for IEEE 802.11ac
	Polyphase Halfband Filters
	Cyclic Polyphase Halfband Filters

	802.11ac Link Performance Evaluations
	Software Implementation
	Halfband Filter Without Vectorization
	Non-halfband Filter with Vectorization

	Results and Analysis
	Execution Time
	Number of Clock Cycles
	Power
	Energy

	Conclusion
	References

