Rapid Customization of Image Processors Using
Halide

Ville Korhonen, Pekka Jadskeldinen, Matias Koskela, Timo Viitanen, and Jarmo Takala
Department of Pervasive Computing
Tampere University of Technology
Tampere, Finland
Email: {firstname.lastname} @tut.fi

Abstract—Image processing applications typically involve
data-oriented kernels with limited control divergence. In order
to efficiently exploit the data level parallelism, image processors
include SIMD instructions and other parallel computation re-
sources. Generic processors that can be purchased off-the-shelf
are adequate for most of the use scenarios of image processing.
However, especially with embedded mobile devices, they might
not be optimal for the algorithm, the environment, or the energy
budget at hand. Such cases call for programmable customized
architectures with just enough hardware resources to ensure the
high priority applications reach their real time goals with minimal
overheads.

In order to maintain high engineer productivity, implementing
image algorithms for customized processors should be as easy as
with standard processors. This is emphasized at the processor co-
design time; because the program is used to drive the processor
design space exploration towards an optimized architecture,
assembly programming is not feasible due to the required porting
effort whenever the architecture is modified.

In this paper we propose an image processor customization
flow that exploits the domain-specific Halide language as an input
to a processor co-design environment. In addition to efficiently
exploiting standard resources in the customized processors, the
flow provides an easy way to invoke special instructions from
Halide programs. We validate the performance benefits of cus-
tom operations using example filters described with the Halide
language.

I. INTRODUCTION

Applications from the image processing domain typically
involve data-oriented kernels with limited control divergence.
In order to efficiently exploit the abundant data level paral-
lelism, typical commercial image processors include SIMD
instructions and other forms of parallel computation resources.
Due to high demand for processors with this style of computa-
tion capabilities, generic image processors that can be bought
off-the-shelf are adequate for most of the image processor use
scenarios. However, especially with embedded mobile devices,
they might not be optimal for the algorithm, the environment or
the energy budget at hand. Such cases call for programmable
customized processors. Customized processors bring in the
benefits of customized hardware, but without the inflexibility
of “fixed-function” hardware pipeline implementations that can
execute only a fixed set of functions and do not support on the
field functionality updates.

Hardware-software co-design attempts to utilize character-
istics of a single interesting application or an application do-
main to optimize the hardware together with the software [1].

Specialization allows optimizing the hardware to match better
the known more limited application set. In case of processor
co-design, customization points often include the type and
number of function units with basic arithmetic operations,
register storage, memory hierarchies, core counts and special
instructions. These enable the engineer to tune the processor
to match closely the requirements of the application without
excessive resources that consume power and chip area.

In order to maintain good engineer productivity, imple-
menting image algorithms for customized processors should be
as easy as with standard processors. This need is emphasized
at the processor co-design time which is usually an iterative
process of modifying the architecture and the software, and
evaluating the result. During processor co-design, the program
is used to drive the processor design space exploration towards
an optimized architecture, thus assembly programming is not
feasible due to the required porting effort whenever the archi-
tecture is modified. In addition, the input program language
should be descriptive enough to not lose important algorithm
implementation information, such as parallel constructs to
utilize parallel processor resources efficiently.

In this paper we propose an image processor customization
flow that exploits the image domain-specific Halide [2] lan-
guage as an input to a processor co-design environment. Halide
is a functional language implemented on top of C++ classes.
It has compiler backends to utilize data parallel computation
resources such as SIMD instructions and GPUs efficiently.
Its separation of the algorithm from the schedule/hardware
mapping makes it especially interesting for a co-design flow.
The ability to tune the schedule parameters (affected by the
processor variation currently at hand) without touching the
algorithm part allows a clean separation of target-specific parts
from generic algorithm descriptions, making the co-design
process less error-prone.

The proposed flow provides, in addition to an automated
way to exploit standard datapath resources in the customized
processors, a straightforward mechanism to invoke special
instructions from Halide programs to benefit from custom
hardware embedded to the designed processors. We demon-
strate this capability with example cases.

The paper is organized as follows. Section II starts with
explaining the design flow, focusing on the compilation flow
and the custom operation usage. Section III presents example
customization cases. Section IV reviews the related work, and
Section V concludes the paper.



> pocl

O

Halide
source code
(C++)

WG functions with
parallel WI loops
(LLVM BC)

i

C++ compiler

generates *

OpenCL host app +
device kernels
(LLVM BC)

i

Execute =

Fig. 1. The proposed customization flow utilizes three main components:
Halide for generating OpenCL descriptions, pocl as an OpenCL implemen-
tation for the customized TCE cores and a retargetable compiler (tcecc) to
generate efficient code for each designed TCE architecture.

II. FrROM HALIDE TO CUSTOMIZED PROCESSORS

The proposed co-design design flow (illustrated in Fig. 1)
for mapping Halide programs to customized processors in-
volves three main components: The Halide itself to support the
input language, Portable Computing Language (pocl [3]) as an
OpenCL [4] implementation, and tcecc, a retargetable compiler
from the TTA-Based Co-design Environment (TCE [5], [6])
toolset. The rest of the processor generation process follows
the standard flow of TCE as described in [7].

A. Compilation Flow

The compilation flow uses the (unmodified) OpenCL back-
end of Halide to produce parallel program input to the later
phases. Another obvious option would have been to exploit
the LLVM [8] bitcode backend of Halide to input kernel
descriptions to the customized cores. However, LLVM IR is a
sequential representation with only limited support for paral-
lelism, which would have risked losing information about the
abundant parallelism available in Halide programs. Although
LLVM now has some support for describing parallel loops,
it lacks a standard way for describing task level parallelism,
which can be represented in OpenCL by using work-groups
and launching multiple kernels simultaneously. Most impor-
tantly, heterogeneous offloading of kernels to multiple different
devices is not supported when producing LLVM bitcodes
directly.

Halide programs are described using Halide C++ classes.
The C++11 programs are compiled to a native binary, which,
when executed, produces the Halide image pipeline. In this
case the image pipeline is generated as an OpenCL application
which consists of the OpenCL host program (built to an LLVM
bitcode) including the OpenCL C kernels embedded as global
strings.

The bitcode can be executed using the LLVM JIT compiler,
or built offline, and then executed. The executed OpenCL

host program accessess OpenCL APIs for controlling the
application, which in this case ends up calling pocl, an OpenCL
implementation with support for customized cores designed by
the integrated processor co-design suite.

When executing the OpenCL program, pocl’s OpenCL C
kernel compiler (as described in [3]) produces a so called
Work-Group (WG) function for each kernel. It contains Work-
Item (WI) loops, which are parallel loops executing all the WIs
in the WG. Loops communicate the data parallel processing of
multiple pixels to the compiler code generation in a scalable
way. The parallel loop information is utilized by the LLVM
vectorizer to produce SIMD instructions automatically, in case
the target at hand supports them.

The WG functions with parallel WI code are scheduled to
the fine grained parallel resources (scalar and vector function
units) of the architecture at hand by a retargetable compiler
from the TCE suite (tcecc). The end result is a parallel
binary which can be uploaded to the customized processor
for execution.

B. Custom Operations

Special instructions are typically application-specific func-
tionality integrated to the processor datapath that accelerate the
software in comparison to when only utilizing “basic opera-
tions” which are easily produced from operators in common
programming languages (multiplications, divisions, additions,
etc.).

Complex special instructions that cannot be exploited au-
tomatically by the instruction selector of the compiler backend
are commonly invoked from high-level language sources using
some sort of intrinsics. The intrinsics are usually implemented
either as compiler-specific builtin functions or inline assembly
snippets. In order to integrate complex custom operation calls
to Halide programs with as little execution and engineering
time overhead as possible, we developed a mechanism which
instantiates a Halide::Internal::Call object that contains only
a call to a specially named external function. These external
function calls are converted to OpenCL C standard conformant
vendor extension calls by the Halide OpenCL backend, which
are finally expanded to inline assembly that invoke the target-
specific custom operation in question.

// Return value type, operation name with

// a _tce_ prefix, function input types

HalideExtern_3 (uint8_t, _tce_wavg3,
uint8_t, uint8_t, uint8_t);

Fig. 2. Halide statement declaration for introducing a custom operation called
wavg3 with a uint8_t result and three uint8_t inputs to Halide.

In order to call TCE custom operations in Halide programs,
the programmer has to first declare the custom operation
statement in the Halide source file. It can be done as shown in
the snippet of Fig. 2. Only this call interface is specific to the
Halide-based design flow; the operation simulation behavior
and other properties are defined using the standard OSEd tool
of TCE as described in [7].

After introducing the Halide statement declaration for
the TCE custom operation of interest, the programmer can
integrate the call to the Halide program as shown in Fig. 3.



Image<uint8_t> input = load<uint8_t>("rgb.png");

// Blur horizontally
Func blur_x (x, y, c) =

_tce_wavg3 (input (x-1, vy, c),
input (x, y, c),
input (x+1, vy, c));
// Blur vertically
Func blur_y (x, y, c) =
_tce_wavg3 (blur_x (x, y-1, c),
blur_x (x, y, c¢),
blur_x (x, y+1, c));

Fig. 3. Calling the example custom operation in a Halide program.

The compilation flow treats the custom operation calls as
follows. The custom operation call is generated by Halide to
OpenCL C vendor extension function calls. Pocl’s OpenCL
C kernel compiler defines OpenCL C vendor extensions for
the custom operations as macros. The macros expand to TCE
specific inline assembly snippets which are finally converted
to machine code operation calls for the processor at hand by
tcecc.

C. Iterative Processor Co-Design Using TCE

TCE is a design and programming toolset for statically
scheduled customized processors which is used for the pro-
cessor customization phase. The processor co-design process
is iterative in nature; variations to the architecture are ex-
perimented with based on the feedback from the compiler
and instruction set simulator. In order to make this process
feasible, the input programming language description must
require minimal modifications for each tested alternative. This
is enabled by the clean custom operation interface and the
schedule separation in the Halide-based design flow.

In the design flow, after the parallel program has been
compiled for the architecture variation at hand, the TCE driver
of pocl calls the instruction set simulator to evaluate the
performance in terms of instruction cycle count. This phase
produces profiling data which directs the designer’s focus to
the Halide functions that consume the most instruction cycles.

The hot spots can be accelerated by adding more re-
sources to the architecture at hand. In addition to enabling
customization of basic resources such as parallel function
units (vector or scalar), register files and connectivity, TCE’s
support for defining custom operations [9] can be used for
adding specialized hardware. Often a good choice, especially
with smaller processor designs, is to accelerate the software
by adding one or more custom operations which perform
a chain of custom wide arithmetic basic operations as a
single processor instruction, which often results in a reduced
execution latency in terms of clock cycles.

The standard TCE customization flow produces VHDL
or Verilog register transfer level descriptions of the designed
architecture. The descriptions can be implemented as ASICs
or FPGA soft cores.

III. EVALUATION

In order to evaluate and validate the flow, we used it to
design customized processors for two application cases, Blur
and Bilateral grid.

A. Blur

For a baseline Blur processor design we created a small
scalar architecture with only basic operations. The architecture
design consists of an integer ALU, a load-store-unit, scalar and
boolean register files and a Real Time Clock (RTC) unit for
execution time measurement. We specifically avoided adding
parallel resources to the machine to isolate the benefits from
custom operations.

This architecture was extended with a special instruction
that calculates a weighted average of three input values and
is used in basic blurring of the images. The formula of the
algorithm implemented by the special instruction can be seen
in Equation 1.

T:p0+2pl +p2 )
4

where pg, p; and py are the parameter values and 7 is
the result of the special instruction. All the values are 8-
bit integers, which are commonly used to store image data.
This is because the result of the average cannot overflow. It
is sufficient to handle intermediate overflows correctly in the
hardware implementing the special instruction. The instruction
may seem to be limited to blur window of just 3 x 3, but it
can be applied multiple times to achieve greater blur window
sizes.

The special instruction demonstrates TCE’s ability to han-
dle instructions with more than two inputs. This is handy
in image processing where multiple low precision values are
often used for the computations. Thanks to the customized
arithmetics and the ability to use hard wired shifting to
implement the division by two, the operation can be performed
in one clock cycle in hardware.

The benchmark computes a 3 x 3 pixel blur for a 512 x
512 resolution image. The first application uses a clampless
algorithm and produces an image of size 510 x 510 because
border pixels are not computed. The other benchmark uses
Halide’s inbuilt clamp-to-edge feature which allows an uniform
method to be used for border and inner pixels, thus resulting
in an output image that is the same size as the input image.

In both benchmarks Halide divides the blur computation by
serially launching the same kernel for each color channel in
the image (Halide stores images in color-planes for easier vec-
torization). The Halide application’s schedule was organized in
a way that the produced an OpenCL kernel launch consists of
one workgroup with an OpenCL local size of 510 x 510 x 1
for clampless, and 512 x 512 x 1 for clamped. Kernel source
code produced by Halide describes the procedure for a single
channel component of a pixel.

The performances of the applications were determined by
measuring the execution time of the kernels in instruction cy-
cles by utilizing the RTC operation in the processor instruction



set. The system clock frequency assumed for the machine was
100 MHz.

Results from blur test are shown in Fig. 4. The clampless
variation without custom operation took 80 ms per kernel
(color channel). The custom operation accelerated version took
50 ms per kernel yielding 30 ms reduced execution time and
1.63x speedup. The clamped variation without the custom
operation took 173 ms and the custom operation accelerated
version 147 ms. The custom operation version was 26 ms faster
with 1.18x speedup.

Although the used blur application is computationally very
light, which emphasizes the memory operations and address
computation overhead in the execution time, the measurement
shows that the simple weighted average custom operation
brings a considerable speedup. Introducing the clamp-to-edge
to the computation diminishes the relative gains achieved with
the custom operation by adding roughly a 100ms overhead to
both variations.

B. Bilateral Grid

The second evaluated application is Bilateral Grid algo-
rithm that can be found in the example codes of the Halide
project. The idea of the Bilateral Grid is to apply edge pre-
serving blur to the input image. This means that smooth areas
of the input image are blurred, while edges stay intact. [10]

The test application was executed with similar machine to
the blur example, but enhanced with a floating point unit, since
the application uses floating point arithmetics. This baseline
machine was compared to a machine with custom operations.
The first custom operation is for speeding up the blurring. The
operation is a floating point, five data point “semi” weighted
average operation, which multiplies the inputs with weights
and sums them, but does not divide the result. The latency of
this operation is five cycles. The second custom operation is
3D lerp, or 3D linear interpolation between 8 voxels. The lerp
operation takes 8 intensity and 3 weight input arguments and
produces a single output value. The latency for this operation
is 15 cycles. The input image used for evaluation was a gray
scale image of resolution 256 x 256.

The results are in Fig. 4. Total execution time of all the
kernels without custom operations was 221 ms, and with only
the blur acceleration, the execution time was 207 ms. With
added 3D lerp accelerated version execution time dropped to
181 ms. A total of 40 ms faster execution (1.22x speedup)
was achieved.

The speedups of the individual kernels varied from 1z
to 1.62x. The first two kernels did not use any custom
operations, thus no speedup. The kernels that were using
the semi weighted average gained 1.33x, 1.63x and 1.69x
speedups. The one kernel using the 3D lerp gained a 1.37x
speedup.

IV. RELATED WORK

HIPAcc is a flow from an image processing DSL to
GPU-style processors [11]. Its OpenCL/CUDA application
generation component resembles the one our flow uses from
the upstream Halide project. HIPAcc is extended to target
customized FPGA-based hardware designs in [12]. It relates

Clampless blur

With custom weighted average

Clamped blur

With custom weighted average

Bilateral grid

‘With custom blur

With custom blur + 3D lerp

speedup

Fig. 4. Results from Blur and Bilateral tests (higher is better). The impact
of the custom operations presented as a speedup against the unaccelerated
version.

to ours in its goal of utilizing customized hardware from a
DSL. The actual hardware generation component utilizes a
commercial High-Level Synthesis (HLS) tool from Xilinx to
perform the actual hardware synthesis after generating Vivado
HSL optimized C++ for the kernels.

Darkroom is another DSL for image processing [13]. The
authors mention that their language is different to Halide in
the way it restricts the image processing to stencils, static
fixed sized windows, which eases the implementation of
hardware based on the language. Like HIPAcc, Darkroom
aims at generating fixed function hardware pipelines. Our
focus is on programmable application-specific processors. The
custom processors designed using the proposed flow can be
implemented as softcores in FPGAs, but preferably as ASICs
for better performance and programmed on the field.

V. CONCLUSION

In this paper we described an image processor customiza-
tion flow utilizing Halide as a parallel program input. A key
point in programming customized processors is to present a
fluent way to invoke user defined custom operations in the
processor hardware from the higher level language. For this we
proposed an easy to use mechanism embedded in the Halide
language. The evaluation results show that Halide can serve as
an efficient input to drive customization of image processors
with custom instructions having significant potential impact to
the execution performance.

This paper concentrated on the design flow of individual
customized processors, while Halide is an interesting candidate
for programming entire customized parallel image processing
pipelines built of multiple, heterogeneous programmable de-
vices. In the future we look into extending the design flow to
produce platforms of multiple different customized processors
implementing image pipelines.

ACKNOWLEDGMENT

The authors would like to thank their funding sources:
Academy of Finland (funding decision 253087), Finnish Fund-
ing Agency for Technology and Innovation (project “Parallel
Acceleration 2”, funding decision 40081/14), and ARTEMIS
JU under grant agreement no 621439 (ALMARVI).



[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

A. Sampson, J. Bornholt, and L. Ceze, “Hardware-Software Co-Design:
Not Just a Cliché,” in Summit on Advances in Programming Languages,
Asilomar, CA, May 3-6 2015, pp. 262-273.

J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4,
pp. 32:1-32:12, Jul. 2012.

P. Jadskeldinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable OpenCL implementation,”
Int. J. Parallel Programming, vol. 43, no. 5, pp. 1-34, 2014.

The OpenCL Specification, v1.2r19 ed., Khronos Group, Beaverton, OR,
Nov. 14 2011.

TCE, “TTA-based co-design environment,” 2015. [Online]. Available:
http://tce.cs.tut.fi

P. Jadskeldinen, C. de La Lama, P. Huerta, and J. Takala, “OpenCL-
based design methodology for application-specific processors,” Trans.
HiPEAC, vol. 5, no. 4, 2011.

O. Esko, P. Jaiskeldinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. I. Martinez, “Customized exposed datapath soft-core design flow with

compiler support,” in Proc. Int. Conf. Field Programmable Logic Appl.,
Milan, Italy, Aug. 31 — Sept. 2 2010, pp. 217-222.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. IEEE/ACM Int. Symp.
Code Generation Optimization, San Jose, CA, Mar. 20-24 2004, pp.
75-87.

H. Kultala, P. Jadskeldinen, and J. Takala, “Operation set customization
in retargetable compilers,” in Conf. Record Asilomar Conf. Signals Syst.
Comput., Pacific Grove, CA, Nov. 6-9 2011, pp. 761-765.

J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image pro-
cessing with the bilateral grid,” ACM Trans. Graph., vol. 26, no. 3, Jul.
2007.

R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Korner, and W. Eckert,
“HIPAcc: A domain-specific language and compiler for image process-
ing,” IEEE Trans. Par. Distr. Syst., 2015, to appear.

O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich, “Code
generation from a domain-specific language for C-based HLS of hard-
ware accelerators,” in Proc. Int. Conf. Hardware/Software Codesign and
System Synthesis, New Delhi, India, Oct. 12-17 2014, pp. 17:1-17:10.
J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., vol. 33, no. 4, pp. 144:1-144:11, Jul. 2014.



