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Abstract—A skew-t variational Bayes filter (STVBF) is ap-
plied to indoor positioning with time-of-arrival (TOA) based
distance measurements and pedestrian dead reckoning (PDR).
The proposed filter accommodates large positive outliers caused
by occasional non-line-of-sight (NLOS) conditions by using a
skew-t model of measurement errors. Real-data tests using the
fusion of inertial sensors based PDR and ultra-wideband based
TOA ranging show that the STVBF clearly outperforms the
extended Kalman filter (EKF) in positioning accuracy with the
computational complexity about three times that of the EKF.

Keywords—indoor positioning, TOA, UWB, NLOS, robust fil-
tering, skewness, skew t, variational Bayes

I. INTRODUCTION

In line-of-sight (LOS) conditions ultra-wideband (UWB)
radio’s time-of-arrival (TOA) measurements provide ranging
accuracy of tens of centimeters. However, non-line-of-sight
(NLOS) can reduce the estimation accuracy drastically by
introducing a positive measurement bias whose magnitude
can be several meters [1]. This is a serious problem in
UWB-based indoor positioning because indoor environments
typically contain various obstacles that cause NLOS situations
whose modeling is challenging.

The conventional extended Kalman filter (EKF) algorithm
for TOA positioning gives large location estimation errors
in the NLOS condition [1]. Therefore, several works have
proposed using NLOS identification and mitigation procedures
that attempt to recognize NLOS from the shape of the received
UWB pulse [2]–[4]. However, these methods use more than
just the TOA information; they process various features of
the underlying UWB pulse at an extra computational cost.
Furthermore, NLOS identification always has uncertainties due
to complexity of the propagation environments. Monitoring the
variance of the ranging error within a sliding time window
gives information on changes in the LOS condition [5], but
these methods are not recursive. The NLOS condition can also
be augmented to the filter state and estimated only through
the TOA measurements using e.g. particle filters [6]–[9], or
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interacting multiple model filters [10], [11]. However, the
computational costs of these methods increase rapidly as the
number of UWB beacons increases.

The sensitivity of the EKF to large measurement errors
is due to the underlying assumption of normally distributed
measurement errors. The normal distribution is light-tailed,
that is, errors of several sigmas are very improbable. Therefore,
when an outlier measurement is encountered, it overwhelms
the motion model’s state prediction, which causes large esti-
mation errors. One approach for robustifying TOA positioning
against NLOS is to assume a heavy-tailed measurement noise
distribution [12].

This article proposes applying the recursive skew-t varia-
tional Bayes filter (STVBF) [13] to TOA positioning in mixed
LOS/NLOS condition fused with inertial measurement based
pedestrian dead reckoning (PDR). To our knowledge this is
the first work to implement time-series TOA positioning and
sensor fusion with PDR using the skew-t model and real-world
data. The skew t-distribution is also applied to range-based
positioning in [14], but that work considers static estimation
with the expectation–maximization algorithm. Neither [13] nor
[14] validate the models and methods with real-data tests.

The proposed filter assumes that the measurement noise
follows the skew t-distribution, and approximates the posterior
distribution using a variational Bayes (VB) approximation
[15, Ch. 10]. The skew t-distribution produces occasional
large outliers and is skewed, allowing asymmetric distribution
of errors around the mean value. Furthermore, the skew t-
distribution allows some negative outliers too, thus accounting
also for outliers due to e.g. false pulse detections. The STVBF
does not require a separate NLOS identification method, but
relies only on comparison with the other measurements and
the filter prior distribution.

The structure of this paper is the following: First, the
skew t-distribution and the STVBF algorithm are explained
in detail. Second, it is explained how the STVBF can be used
for positioning with UWB and inertial measurements. Finally,
the proposed method is tested in indoor environments with real
UWB data that are fused with an inertial measurement based
motion model. The proposed algorithm is shown to outperform
the conventional EKF algorithm at the cost of a moderately
increased computational burden.

II. SKEW t-DISTRIBUTION FOR TOA MEASUREMENT

This paper assumes that the TOA measurements from dif-
ferent beacons are independently univariate skew-t-distributed.
This definition of the univariate skew t-distribution was origi-
nally proposed in multivariate forms by [16]–[18]. The uni-
variate skew t-distribution is parametrized by its location
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parameter µ ∈ R, spread parameter σ ∈ R+, shape parameter
δ ∈ R and degrees of freedom ν ∈ R+, and has a probability
density function (PDF)

ST(z;µ, σ2, δ, ν) = 2 t(z;µ, δ2 + σ2, ν) T(z̃; 0, 1, ν + 1),
(1)

where
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is the PDF of Student’s t-distribution, Γ(·) is the gamma
function, z̃ is defined by
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, (3)

and T(·; 0, 1, ν) is the cumulative distribution function (CDF)
of Student’s t-distribution with degrees of freedom ν and scale
1.

In Fig. 1 the PDF of ST(z; 0, 1, δ, 4) is plotted for three
values of δ, and in Fig. 2 the PDF of ST(z; 0, 1, 1, ν) is plotted
for three values of ν. Figures 1 and 2 also show the mean
values of the skew t-distributions to demonstrate the fact that
the mean is not smaller than than the mode that is again not
smaller than the location parameter µ. With ν ≤ 1 the mean
does not exist. The expressions for the first two moments of the
univariate skew t-distribution with the parametrization (1) can
be found in [19], [20]. The sign of δ is the sign of skewness,
and the skew t-distribution becomes the normal distribution
when ν →∞ and δ → 0,

A useful representation of the skew t-distribution is the
hierarchical representation [21]

z|u, λ ∼ N (µ+ δu, λ−1σ2), (4a)
u|λ ∼ N+(0, λ−1), (4b)

λ ∼ G
(ν

2
,
ν

2

)
, (4c)

where u and λ are scalar random variables and N+(m, s2)
denotes the truncated normal distribution with closed positive
orthant as support, location parameter m, and scale-parameter
s. Furthermore, G(α, β) denotes the gamma distribution with
shape parameter α and rate parameter β.

The hierarchical representation (4) introduces two latent
variables, u and λ. The representation shows that a skew-
t-distributed random variable is a sum of a conditionally
normal random variable and an independent conditionally
truncated-normal random variable where the conditioning is
on the gamma-distributed factor λ. Roughly speaking, u being
always positive produces the asymmetric deviation, and small
λ realisations generate outliers that may be several standard
deviations away from the mean, which produces the heavy-
tailedness.

III. VARIATIONAL BAYES FOR SKEW-t
MEASUREMENT NOISE

The formulas of a filter based on a VB approximation for
state-space models with skew-t-distributed measurement noise
are presented in [13], and the derivations are given in [22]. The
filter computes an approximation of the posterior distribution
of xk for the dynamical model

xk+1 = Akxk + wk, wk
iid∼ N (0, Q), (5a)

yk = Ckxk + ek, [ek]i
iid∼ ST(µi, σ

2, δ, ν) (5b)
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Figure 1. The PDF of ST(z; 0, 1, δ, 4) for different values of δ. Dashed lines
show the mean values. δ = 0 gives Student’s t-distribution, and increasing
the absolute value of δ increases skewness.
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Figure 2. The PDF of ST(z; 0, 1, 1, ν) for different values of ν. Dashed lines
show the mean values for ν > 1. ν =∞ gives the skew normal distribution,
and decreasing ν increases heavy-tailedness. As for the Student’s t-distribution
the mean does not exist for ν ≤ 1.

where Ak ∈ Rnx×nx is the state transition matrix; xk ∈ Rnx
is the state to be estimated with the prior distribution

p(x1) = N (x1;x1|0, P1|0), (6)

where the subscript “a|b” means “at time a using measure-
ments up to time b” and N (·;m,S) denotes a (multivariate)
normal PDF with mean m and covariance matrix S; yk ∈ Rny
are the measurements, and the elements of the measurement
noise vector ek ∈ Rny are independently skew-t-distributed;
µ ∈ Rny is the vector of location parameters of the measure-
ment noise distribution; σ ∈ R+ is the spread parameter; δ ∈ R
is the shape parameter; ν ∈ R+ is the degrees of freedom; and
Ck ∈ Rny×nx is the measurement model matrix.

The filtering posterior p(xk|y1:k) is not analytically
tractable. However, when the predicted filtering density
p(xk|y1:k−1) is normal, the hierarchical representation of the
likelihood in (4) enables the VB approximation of the full
filtering posterior given by

p(xk, uk,Λk|y1:k) ∝ p(xk|y1:k−1)p(yk|xk, uk,Λk)

× p(uk|Λk)p(Λk). (7)

In (7), uk ∈ Rny is a vector and Λk ∈ Rny×ny is a diago-
nal matrix whose diagonal elements [Λk]ii have independent
gamma-priors of (4c). The VB method [15, Ch. 10] finds the
approximation for the joint posterior in the form

p(xk,uk,Λk|y1:k) ≈ qx(xk)qu(uk)qΛ(Λk) (8)

from which an approximation of the marginal p(xk|y1:k) can
be obtained. The approximate distributions qx(xk), qu(uk) and
qΛ(Λk) are chosen such that they minimize the Kullback-
Leibler divergence (KLD) [23] of the true posterior from the
factorized approximation on the right hand side of (8):

q̂x, q̂u, q̂Λ = argmin
qx,qu,qΛ

DKL(qx(xk)qu(uk)qΛ(Λk)||p(xk, uk,Λk|y1:k)) (9)

where DKL(q(·)||p(·)) ,
∫
q(x) log q(x)

p(x) dx is the KLD.
The VB method results in an iterative algorithm presented in
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Table I. SKEW-t VARIATIONAL BAYES FILTER

1: Inputs: Ak , Ck , Q, µ, σ2, δ, ν, x1|0, P1|0, y1:K and NVB
2: for k = 1 to K do

initialization
3: Λk ← Iny×ny
4: uk ← 0ny×1

5: Υ← 0ny×ny
6: Ku ← δ(δ2 + σ2)−1 · Iny×ny
7: for j = 1 to NVB do

update qx(xk) = N (xk; xk|k, Pk|k) given qu(uk) and qΛ(Λk)

8: Kx ← Pk|k−1C
T
k (CkPk|k−1C

T
k + σ2Λk

−1
)−1

9: xk|k ← xk|k−1 +Kx(yk − µ− Ckxk|k−1 − δuk)
10: Pk|k ← (I −KxCk)Pk|k−1

update qu(uk) = N+(uk;uk|k, Uk|k) given qx(xk) and qΛ(Λk)
11: ũk ← yk − µ− Ckxk|k
12: uk|k ← Kuũk

13: Uk|k ← (I − δKu)Λk
−1

14: for i = 1 to ny do
15: ξ ←

[uk|k]i

[Uk|k]ii

16: ε← φ(ξ)
Φ(ξ)

, φ is the PDF and Φ the CDF of N (0, 1)

17: If Φ(ξ) underflows to zero, set [uk]i ← 0 and Υii ← 0

18: [uk]i ← [uk|k]i + ε
√

[Uk|k]ii

19: Υii ← [Uk|k]ii · (1− ξε− ε2) + [uk]2i
20: end for

update qΛ(Λk) =
∏ny
i=1 G

(
[Λk]ii;

ν
2 + 1,

ν+[Ψk]ii
2

)
given qu(uk) and qx(xk)

21: Ψ← 1
σ2 (ũkũ

T
k + CkPk|kC

T
k ) + ( δ

2

σ2 + 1)Υ

− δ2

σ2 (ukũ
T
k + ũkuk

T)

22: [Λk]ii ← ν+2
ν+Ψii

23: end for
predict qx(xk+1)

24: xk+1|k ← Akxk|k
25: Pk+1|k ← AkPk|kA

T
k +Q

26: end for
27: Outputs: xk|k and Pk|k for k = 1 · · ·K

Table I. With the skew-t measurement noise the approximative
marginal posterior of xk is a normal distribution with the
parametrization qx(xk) = N (xk;xk|k, Pk|k), where the pa-
rameters xk|k and Pk|k are the output of the STVBF algorithm
of Table I. Because the algorithm uses a normal prior and
results in a normal posterior approximation, it provides a
Kalman filter -type recursive solution to the inference problem
outlined in (5).

IV. FUSION OF UWB RANGING AND PDR

This section explains how the measurements of UWB
ranging and inertial measurement based PDR can be used in
the general filtering framework of Table I to produce a fused
estimate for the user’s position. Inertial measurement based
PDR produces a continuous and relatively accurate estimate
of the change in the user’s position. However, due to the need
of initial position estimate and the sensor drift it has to be
complemented by some absolute position information such as
UWB. Correspondingly, the UWB ranging has high absolute
accuracy, but the precise motion model provided by the PDR
helps in detecting NLOS outliers.

A. Motion model from PDR

The proposed positioning system uses a PDR solution
based on inertial sensors, i.e. three-axis accelerometers and
gyroscopes. The used PDR solution’s output is footstep detec-
tion and measurements of the horizontal-plane heading change
ψk.

The footsteps are detected using the accelerometer out-
put’s norm [24]. The accelerometers also show the direction
of gravity which gives the horizontal plane, and the user’s

heading change during a footstep is then estimated from the
gyroscope’s angular velocity measurements projected to the
horizontal plane [25].

The sensor fusion algorithm uses a linear motion model
based on this PDR solution. The method is proposed for 2-
dimensional positioning in [26], and in this paper the altitude
of the user equipment is also in the state. The state vector
is xk = [ lksk ], where lk ∈ R3 is the user equipment’s 3-
dimensional position and sk ∈ R2 is the horizontal footstep
vector. At a time update, the step vector is rotated by the
heading change ψk and affected by process noise, and the x
and y coordinates are updated by the step vector. The altitude
process is modeled as a random walk. The state transition
matrix and the process noise covariance matrix in (5a) are
thus

Ak =


1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 cosψk − sinψk
0 0 0 sinψk cosψk

 , (10)

Q = Diag(0, 0, σ2
h, σ

2
s , σ

2
s), (11)

respectively [26]. Here ψk is the heading change estimate given
by the PDR solution, σ2

s is a variance parameter that models
the uncertainty of the PDR measurements and the step length’s
process noise, and σ2

h is the altitude’s process noise variance.
Because this motion model is linear, it is free from linearization
errors that occur when the velocity is unknown, but the model
cannot model the uncertainties of the PDR as flexibly as some
conventional non-linear models [26].

If PDR is not used, positioning can be done with UWB
alone by adopting a less informative motion model. This can be
a white noise based kinematic model [27, Ch. 6], for example.

B. Measurement model from UWB ranging

A TOA measurement gives the distance traveled by the
radio wave between the UWB beacon and the user. To ac-
count for occasional large positive measurement errors due
to non-line-of-sight conditions, the measurement noise of all
sensors is assumed to be identically and independently skew-
t-distributed:

[yk]i = ‖lk − bi‖+ [ek]i, [ek]i
iid∼ ST(µ, σ2, δ, ν), (12)

where yk ∈ Rny is the TOA-based distance vector, lk is the
user position, bi ∈ R3 is the 3-dimensional position of the ith
UWB beacon, and ek is measurement noise.

The model (5) and the STVBF assume a linear mea-
surement model, while (12) is nonlinear. This limitation can
be overcome by linearizing the model at the prior mean
xk|k−1 = [ lk|k−1

sk|k−1
], giving

yk = Ckxk + ek, (13)

where the ith row of Ck is

[Ck]i =

[
(lk|k−1−bi)T

‖lk|k−1−bi‖ O1×2

]
, (14)

and

[ek]i ∼ ST
(
µ+

∥∥lk|k−1 − bi
∥∥− [Ck]ixk|k−1, σ

2, δ, ν
)
.
(15)

Hence, the approximative measurement equations (13) and
(15) are in the form of (5b).
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Figure 4. Layout of the testing area. NLOS condition is created by the whiteboard at the center of the testing area.

Figure 3. A SpoonPhone and a BeSpoon UWB tag.

V. REAL-DATA TESTS

Real UWB measurements were collected to evaluate the
proposed method’s performance. The measurement equipment
was a Spoonphone smartphone [28] with Android 4.2 oper-
ating system and UWB channel 2 pulse radio (3993.6 MHz,
500 MHz bandwidth), and six BeSpoon UWB tags. Fig. 3
shows a picture of the equipment. The system uses two-way
TOA ranging, and so it does not depend on clock synchroniza-
tion. The used inertial sensors were the Spoonphone’s built-
in sensors. The UWB measurement update was done with
2 Hz frequency, and the error computation for obtaining the
error statistics was also done with 2 Hz frequency. Five test
tracks were collected in a laboratory environment and three
test tracks in a real indoor environment of a university campus.
The algorithms were computed with MATLAB.

The estimation algorithm for the skew-t noise is the
STVBF in Table I. The parameters of the skew-t noise distri-
bution, {µ, σ2, δ, ν}, were optimized to minimize the average
root-mean-square error (RMSE) of the 2-dimensional position-
ing error for all the test tracks. The parameter optimization was
done using 30 VB iterations (NVB=30), which should ensure

convergence [13]. The optimized parameter values are in Table
II. The same data were used for both parameter calibration and
positioning tests to obtain a fair comparison of the optimal set-
ups of each filtering algorithm. This eliminates the effect of
possible differences in calibration and positioning data.

The used motion model parameter values for 2 Hz updating
frequency are σh = 5 · 10−4 m and σs = 3 · 10−2 m. Due to
the small value of σh floor changes need a separate model, but
this is out of the scope of this paper.

The STVBF is compared with the EKF that is based on
the normal measurement noise model

[yk]i = ‖lk − bi‖+ ek, [ek]i
iid∼ N (τ, ρ2). (16)

The noise parameters τ and ρ2 were also optimized for the
test track set, and the optimized parameter values are in Table
II.

Fig. 5 shows the average RMSE of the STVBF as a
function of the number of VB iterations, and its comparison
with the EKF’s RMSE. Note that the methods use different
noise parameter values according to Table II. The figure shows
that 2 VB iterations already outperforms the best possible
EKF estimate, and 4 VB iterations is enough to achieve the
converged state’s average RMSE in this scenario.

Table II. THE USED PARAMETER VALUES OBTAINED BY OPTIMIZING
WITH RESPECT TO THE TEST TRACKS’ AVERAGE RMSE

Filter STVBF EKF
Param. µ (m) σ (m) δ (m) ν τ (m) ρ (m)
Value -0.1 0.3 0.6 4 1.3 1.6

Table III. THE ERROR STATISTICS IN THE LABORATORY ENVIRONMENT
WITH OPTIMIZED NOISE PARAMETERS

Filter RMSE mean median 95 % quant. 95 % cons. running
(m) (m) (m) (m) (%) time

EKF 1.36 1.16 1.02 2.58 94 1
STVBF 0.56 0.46 0.38 1.16 91 3
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Figure 5. STVBF’s average RMSE for all the test tracks as a function of
the number of VB iterations compared with the EKF’s average RMSE. 4 VB
iterations is enough for the STVBF in the PDR & UWB-TOA positioning.
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Figure 6. Distance measurement of one laboratory track for one UWB beacon
compared with the true distance.

A. Laboratory measurements with high-accuracy reference

One data set was measured in a laboratory environment
to obtain high-accuracy reference position1. To acquire a
realistic simulation of an office-like indoor environment, a
whiteboard was placed in the middle of the testing area, and
lab personnel moved about in the area to simulate passersby.
These obstacles caused occasional NLOS conditions for some
UWB beacons. Fig. 4 depicts the testing area and the used
test tracks. Fig. 6 compares the distance measurements of one
track for one UWB beacon with the reference distance given
by the laboratory equipment, and shows that occasional NLOS
measurements are visible as positive peaks in the measurement
error. Fig. 7 shows that the histogram distribution of these
errors is positively skewed.

The error statistics of the STVBF with 4 VB iterations
and the EKF are in Table III. The shown accuracy measures
are the average RMSE of the five tracks, mean error, median
error, empirical 95 % quantile of errors, 95 % consistency,
and relative running time averaged over the five test tracks.
Consistency is the percentage of time instants when the filter
was consistent with respect to the Gaussian NEES (normalized
estimation error squared) consistency test [27, Ch. 5.4.2]; the
closer the consistency is to 95 %, the more accurately the filter

1High accuracy reference measurements are provided through the use
of the Vicon real-time tracking system courtesy of the UAS Technolo-
gies Lab, Artificial Intelligence and Integrated Computer Systems Division
(AIICS) at the Department of Computer and Information Science (IDA).
http://www.ida.liu.se/divisions/aiics/aiicssite/index.en.shtml
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Figure 7. Error histogram of the measurements depicted by Fig. 6.

Table IV. THE ERROR STATISTICS IN THE CAMPUS ENVIRONMENT
WITH OPTIMIZED NOISE PARAMETERS

Track Filter RMSE mean median 95 % quant. 95 % cons.
(m) (m) (m) (m) (%)

1 EKF 1.91 1.57 1.20 4.02 83
STVBF 1.23 1.11 1.04 1.94 41

2 EKF 1.41 1.24 1.21 2.79 95
STVBF 0.81 0.70 0.63 1.45 59

3 EKF 0.83 0.72 0.67 1.43 98
STVBF 0.74 0.68 0.73 1.07 55

reports the estimate’s uncertainty. The results show that both
the filters are fairly consistent, but the STVBF has significantly
better accuracy; the STVBF’s errors are less than 50 % of
the EKF’s errors. The computational burden of our STVBF
implementation is only three times that of the EKF’s, which
we consider reasonable for the improvement in performance.

B. Measurements in campus environment

Three test tracks were measured in real indoor environment
in a campus building of Tampere University of Technology to
ensure that the conclusions based on the laboratory measure-
ments also hold in realistic indoor environment. In these tests
the reference position of the user was obtained by matching
certain reference points of the track with an indoor map and
interpolating the positions between these reference points. Five
UWB beacons were used, and the beacon positions were also
obtained by matching with a map. These reference positions
are not as accurate as those in section V-A, but the accuracy
is in the order of tens of centimeters, which is more accurate
than the expected positioning accuracy. The maps of the test
areas are shown in Figures 8, 9, and 10 for tracks 1, 2, and 3,
respectively.

The beacon positions at the tracks 1 and 2 were chosen
such that NLOS conditions occur every now and then. Track
1 consists of walking in corridors and turning at two corridor
junctions. Track 2 consists of walking in a corridor and visiting
an office room. Track 3 contains only walking in a straight
corridor, and the time under NLOS condition was minimized
in this track to evaluate the algorithms’ performance also in
pure LOS condition.

The error statistics of the positioning tests in the campus
environment are shown in Table IV. In tracks 1 and 2 the
STVBF clearly outperforms the EKF in positioning accuracy.
In track 3 the performances of the STVBF and EKF are much
closer, which is expectable because track 3 mainly contains
LOS measurements. However, the STVBF is still slightly more
accurate that the EKF in track 3, which might partly be ex-
plained by occasional NLOS caused by the body of the person
conducting the experiments. The test results indicate that the
STVBF outperforms the EKF in mixed LOS/NLOS condition,
and performs equally well or better in LOS condition.
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Figure 8. Campus test track 1 consists of corridors and turns at corridor
junctions.
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Figure 9. Campus test track 2 consists of a visit in an office room.
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Figure 10. In campus test track 3 the tags are in LOS condition most of the
time.

VI. CONCLUSIONS

The use of the skew-t variational Bayes filter (STVBF) in
indoor positioning with inertial sensors and UWB ranging in
mixed LOS/NLOS conditions is proposed. The proposed filter
is more robust against outliers than the conventional EKF that
is based on assumed normality of the measurement noise. Due
to the assumption of positively skewed measurement noise,
the proposed algorithm is also capable of accounting for the
fact that the NLOS phenomena typically cause positive outlier
measurements more frequently than negative ones. Real-data
tests showed that STVBF enables dramatic improvement in
positioning accuracy compared to the EKF with the computa-
tional burden of about three EKFs.
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[7] J. González, J. Blanco, C. Galindo, A. Ortiz-de Galisteo, J. Fernández-
Madrigal, F. Moreno, and J. Martı́nez, “Mobile robot localization based
on ultra-wide-band ranging: A particle filter approach,” Robotics and
Autonomous Systems, vol. 57, no. 5, pp. 496–507, May 2009.
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[14] P. Müller and R. Piché, “Statistical trilateration with skew-t errors,” in
International Conference on Localization and GNSS (ICL-GNSS 2015),
June 2015.

[15] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2007.



2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 13-16 October 2015, Banff, Alberta, Canada

[16] M. D. Branco and D. K. Dey, “A general class of multivariate skew-
elliptical distributions,” Journal of Multivariate Analysis, vol. 79, no. 1,
pp. 99–113, October 2001.

[17] A. Azzalini and A. Capitanio, “Distributions generated by perturbation
of symmetry with emphasis on a multivariate skew t-distribution,” Jour-
nal of the Royal Statistical Society. Series B (Statistical Methodology),
vol. 65, no. 2, pp. 367–389, 2003.

[18] A. K. Gupta, “Multivariate skew t-distribution,” Statistics, vol. 37, no. 4,
pp. 359–363, 2003.

[19] S. K. Sahu, D. K. Dey, and M. D. Branco, “A new class of multivariate
skew distributions with applications to Bayesian regression models,”
Canadian Journal of Statistics, vol. 31, no. 2, pp. 129–150, 2003.

[20] ——, “Erratum: A new class of multivariate skew distributions with
applications to Bayesian regression models,” Canadian Journal of
Statistics, vol. 37, no. 2, pp. 301–302, 2009.

[21] T.-I. Lin, “Robust mixture modeling using multivariate skew t distribu-
tions,” Statistics and Computing, vol. 20, pp. 343–356, 2010.

[22] T. Ardeshiri, H. Nurminen, R. Piché, and F. Gustafsson, “Variational
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[24] H. Leppäkoski, J. Collin, and J. Takala, “Pedestrian navigation based
on inertial sensors, indoor map, and WLAN signals,” Journal of Signal
Processing Systems, vol. 71, no. 3, pp. 287–296, June 2013.

[25] J. Collin, O. Mezentsev, and G. Lachapelle, “Indoor positioning system
using accelerometry and high accuracy heading sensors,” in GPS/GNSS
2003 Conference (Session C3), Portland, OR, September 2003.

[26] M. Raitoharju, H. Nurminen, and R. Piché, “Kalman filter with a linear
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