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Abstract. For decades, elliptic curves over binary fields appear in nu-
merous standards including those mandated by NIST, SECG, and ANSI
X9.62. Many popular security protocols such as TLS explicitly support
these named curves, along with implementations of those protocols such
as OpenSSL and NSS. Over the past few years, research in improving the
performance and/or security of these named curve implementations has
pushed forward the state-of-the-art: e.g. projective lambda coordinates
(Oliveira et al.) and commodity microprocessors featuring carryless mul-
tiplication instructions for native polynomial arithmetic (Intel, ARM,
Qualcomm). This work aggregates some of these new techniques as well
as classical ones to bring an existing library closer to the state-of-the
art. Using OpenSSL as a case study to establish the practical impact of
these techniques on real systems, results show significant performance
improvements while at the same time adhering to the existing software
architecture.

Keywords: applied cryptography, public key cryptography, elliptic curve
cryptography, OpenSSL

1 Introduction

Of the many types of public key cryptography available, elliptic curve cryptogra-
phy (ECC) offers many attractive advantages – the main being the small size of
private and public keys. Furthermore, since the introduction in the 1990s ECC
has undergone extensive standardization – including NIST [20, D.1.3], SECG,
and ANSI X9.62. Generally, these standardized curves come in two flavors:

– Elliptic curves over prime fields IFp;
– Elliptic curves over binary fields IF2m .

For elliptic curves in software, elliptic curves over IFp are a more popular choice
for performance reasons because the finite field arithmetic is easier to imple-
ment efficiently since most microprocessors feature native integer multiplication
instructions as a building block for multi-precision arithmetic. Recognizing this
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practical limitation, academic efforts for high speed ECC placed more research
efforts on elliptic curves over IFp.

For elliptic curves over IF2m , historically software needed to revert to primi-
tive table lookup methods for finite field arithmetic since it was uncommon (to
say the least) to feature a native polynomial multiplication instruction. How-
ever, this trend shifted roughly five years ago when chip makers such as Intel,
ARM, and Qualcomm started introducing such instructions into the Instruction
Set Architecture (ISA) for commodity microprocessors. This left a gap in re-
search for high speed ECC software for elliptic curves over IF2m – for example,
there were really no major innovations in projective coordinate systems since
López and Dahab in 1999 [17]. Oliveira et al. changed that recently in 2014 with
λ-projective coordinates [21].

This gap in academic research also left a gap in practical elliptic curve soft-
ware libraries. The best example of this is OpenSSL, which – since introducing
ECC support in 2005 – has seen no new optimizations for elliptic curves over
IF2m , despite heavy optimizations for elliptic curves over IFp.

The goal of this paper is to fill that gap and measure the real world impact
of these new optimizations for elliptic curves over IF2m . The resulting OpenSSL
source code patches yield performance improvements that remarkably approach
6-fold in some cases. Section 2 gives background on binary elliptic curves and
discusses various coordinate systems. Section 3 gives an overview of the ECC
software architecture within OpenSSL. Section 4 discusses the optimizations
implemented in this paper, and gives benchmarking results. Section 5 draws
conclusions.

2 Binary Elliptic Curves

For a finite field IF2m , fix curve coefficients a2, a6 ∈ IF2m and all of the (x, y)
solutions to the equation

E : y2 + xy = x3 + a2x
2 + a6

over IF2m for x, y ∈ IF2m along with the identity element (∞, point at infinity)
form a finite Abelian group relevant to applied cryptography. The majority of
standardized curves of this form further restrict the values that curve coefficients
a2 and a6 can take for efficiency reasons. Generally, there are two major types.

Pseudo-random curves. These curves fix a2 = 1 and a6 ∈ IF2m derived pseudo-
randomly. Curves of this type include, but are not limited to: B-163, B-233,
B-283, B-409, and B-571.

Koblitz curves. These curves [15] fix a2 ∈ IF2 and a6 = 1. Curves of this type in-
clude, but are not limited to: K-163, K-233, K-283, K-409, K-571, and sect239k1.
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2.1 Scalar Multiplication

Take `-bit scalar k ∈ ZZ where ki denotes bit i of k and a point P ∈ E. Then
the scalar multiplication result kP satisfies the following formula.

kP =

`−1∑
i=0

ki2
iP

This is the classical way to compute scalar multiplication, scanning the bits of
k from MSB to LSB (or vice-versa): double-and-add, where the cost – defined
w.r.t. elliptic curve operations – is ` − 1 point doublings and the number of
point additions is equal to the weight of k. That is, one point addition for each
non-zero digit of k.

Scalar multiplication is the performance benchmark for ECC. Its speed de-
termines the efficiency of cryptosystems like ECDSA and ECDH. Since perfor-
mance is such a driving force in applied cryptography, there is no shortage of
research on improving the efficiency of scalar multiplication. While the majority
of these methods are beyond the scope of this paper, a few specific methods that
OpenSSL employs will be discussed later (otherwise, see e.g. [11, 3.3] for a good
survey).

2.2 Coordinate Systems

Since scalar multiplication breaks down into a sequence of elliptic curve point
doublings and additions, the cost of these operations is critical for performance.
One way to improve the efficiency of these operations is by considering different
coordinate systems – the aim being to reduce the number of expensive finite field
inversions. A discussion on relevant coordinate systems for elliptic curves over
IF2m follows.

Affine coordinates. The textbook method to perform addition and doubling
of points on elliptic curves over IF2m – defining the group law – is using affine
coordinates [8, 13.3.1.a]. Here the inverse of P = (x1, y1) is −P = (x1, x1 + y1).

Addition. Let P = (x1, y1), Q = (x2, y2) such that P 6= ±Q. Then P + Q =
(x3, y3) is given by

x3 = λ2 + λ+ x1 + x2 + a2

y3 = λ(x1 + x3) + x3 + y1

λ =
y1 + y2
x1 + x2

Doubling. Let P = (x1, y1) then 2P = (x3, y3), where

x3 = λ2 + λ+ a2

y3 = λ(x1 + x3) + x3 + y1

λ = x1 +
y1
x1



4 Billy Bob Brumley

López-Dahab coordinates. Elliptic curve operations using affine coordinates
require finite field inversions (to compute λ), often an expensive operation. To
eliminate these inversions, projective coordinates introduce an additional coor-
dinate to represent points on a projective equation. While projective coordinates
come in many different flavors, López and Dahab introduce a popular one for
elliptic curves over IF2m [17]. Consider the projective equation

Y 2 +XY Z = X3Z + a2X
2Z2 + a6Z

4.

The LD-projective point (X1 : Y1 : Z1) corresponds to the affine point (X1/Z1, Y1/Z
2
1 )

when Z1 6= 0 and the point at infinity otherwise. Here the inverse of (X1 : Y1 : Z1)
is (X1 : X1Z1 + Y1 : Z1).

Mixed addition. A sum P +Q is often more efficient to compute if one operand
is in affine and the other in projective – mixed addition, colloquially. The reason
this makes sense algorithmically is that for scalar multiplication, the accumulator
point will undergo projective doublings and additions, but the second operand for
additions remains static in affine coordinates. For LD coordinates, Al-Daoud give
a slightly more efficient formula for mixed addition [1]. Let P = (X1 : Y1 : Z1),
Q = (x2, y2) such that P 6= ±Q. Then P +Q = (X3 : Y3 : Z3) is given by

A = Y1 + y2Z
2
1 , B = X1 + x2Z1, C = BZ1,

Z3 = C2, D = x2Z3, X3 = A2 + C(A+B2 + a2C),

Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z2
3

Doubling. Let P = (X1 : Y1 : Z1) then 2P = (X3 : Y3 : Z3), where

A = Z2
1 , B = a6A

2, C = X2
1 , Z3 = AC,X3 = C2 +B,

Y3 = (Y 2
1 + a2Z3 +B)X3 + Z3B

Lambda coordinates. The λ-affine representation [14, Sec. 2] of a short affine
point P = (x, y) is (x, λ) where λ = x + y/x – note that indeed, λ is the slope
from the affine doubling formula. Historically, λ-affine coordinates saw little use
due to being out-performed by LD coordinates in most cases. Recently, Oliveira
et al. introduce a λ-projective system [21], the performance of which remarkably
eclipses LD coordinates. Consider the projective equation

(L2 + LZ + a2Z
2)X2 = X4 + a6Z

4.

The λ-projective point (X1 : L1 : Z1) corresponds to the λ-affine point (X1/Z1, L1/Z1)
when Z1 6= 0 and the point at infinity otherwise. Here the inverse of (X1 : L1 :
Z1) is (X1 : L1 + Z1 : Z1).

Mixed addition. Let P = (X1 : L1 : Z1), Q = (x2, λ2) such that P 6= ±Q. In
this case the formula for P + Q = (X3 : L3 : Z3) is given in [21], but from the
implementation perspective the restriction P 6= ±Q is problematic – what is
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actually needed for implementation is an algorithmic solution, depicted in Fig. 2
(Appx. A). Indeed, this algorithm handles these corner cases to ensure correct
computation for all inputs. The algorithm expects P and Q in λ-projective and
λ-affine coordinates, respectively – i.e. P would be the accumulator in a scalar
multiplication routine.

Doubling. Let P = (X1 : L1 : Z1) then Fig. 3 (Appx. A) depicts the algorithm
to compute 2P = (X3 : L3 : Z3). The input and output are both in λ-projective
coordinates.

General addition. From the ECC implementation perspective, sometimes the
sum of two projective points is required – e.g. in the (online or offline) precom-
putation step for scalar multiplication. Since that will be the case later in this
paper, Fig. 4 (Appx. A) depicts the algorithm to compute P+Q = (X3 : L3 : Z3)
where P = (X1 : L1 : Z1) and Q = (X2 : L2 : Z2) – again, compensating for the
cases when Q = P or Q = −P .

Computational costs. To conclude this section, the goal is to select the coordi-
nate system that has the lowest computational cost w.r.t. finite field operations –
inversions, multiplications, and squarings. The cost of inversions is usually very
high (e.g. at least eight times that of a multiplication), so affine coordinates
are not immediately useful in that respect. Table 1 summarizes the costs for
the previously discussed coordinate systems, assuming a2 ∈ IF2. Based on these
numbers, clearly λ-projective coordinates have an efficiency advantage.

Table 1. Computational costs of elliptic curve operations in various coordinate systems
w.r.t. finite field inversions (I), multiplications (M), and squarings (S)

Coordinates double add negate

affine 1I + 2M + 1S 1I + 2M + 1S –
LD-projective (mixed) 4M + 5S 8M + 5S 1M
λ-projective (mixed) 4M + 4S 8M + 2S –
λ-projective 4M + 4S 11M + 2S –

3 ECC in OpenSSL

OpenSSL integrated support for elliptic curves in 2005. At a high level, the ECC
portion of OpenSSL generically supports elliptic curves in short Weierstrass form
over IFp and IF2m , only the latter being immediately relevant to this paper. What
follows is a discussion on the ECC portion of OpenSSL, from the architecture
level and later to the concrete methods used for binary curve arithmetic.
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3.1 Generic Curve Support

When an application or the library instantiates a curve, an EC_GROUP struc-
ture holds the curve parameters (e.g. finite field, curve coefficients, curve order,
generator point, etc.) and an EC_METHOD structure controls computations and
operations on the particular curve. The latter structure is critical to this paper
– a description follows.

The EC_METHOD structure (overview in Fig. 1) contains a set of function point-
ers to carry out elliptic curve operations (e.g. double, add) as well as various in-
terface and conversion operations (e.g. extracting points to strings). The reason
this structure exists is modularity – it allows elliptic curves to be treated mostly
generically from the interface perspective, but abstracts away implementation
aspects of a particular curve. The simplest example of this is the library sup-
porting both curves over IFp and IF2m – the group law for these types of curves
is entirely different, but both can be supported with their own EC_METHOD by
setting function pointers such as add and dbl to distinct functions for their cor-
responding curve types. Conceptually, one way to view this is analogous with
object-oriented programming where the function pointers correspond to class
methods.

What follows is a brief discussion of function pointers that are relevant to
this work, to help understand implementation considerations in later sections.
Method point_set_affine_coordinates sets the coordinates of the EC_POINT

given the short affine coordinates x and y. The get method is the inverse, re-
turning the short affine coordinates of the point. Methods add and dbl com-
pute elliptic curve additions and doublings, respectively, while invert sets P
to −P . Method is_on_curve checks if the point satisfies the curve equation;
make_affine converts a single point from projective to affine coordinates, while
points_make_affine does the same but for an arbitrary number of points.
Scalar multiplication method mul computes

aG+

n∑
i=0

biPi

hence a fully generic multi-scalar multiplication supporting an arbitrary num-
ber of scalars and corresponding points. Since G is fixed for each EC_GROUP,
some scalar multiplication techniques precompute various multiples of points
to speed up scalar multiplication; precompute_mult carries out such precom-
putation and have_precompute_mult checks if said precomputation is present.
Finally, field_mul, field_sqr, and field_div compute finite field multiplica-
tions, squarings, and divisions for the particular field in EC_GROUP – finite field
parameters often have a special form that allow e.g. fast modular reduction, so
having dedicated function pointers offers the implementer a convenient way to
integrate such optimizations.
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struct ec_method_st {
...

int (*point_set_affine_coordinates) (const EC_GROUP *, EC_POINT *,
const BIGNUM *x, const BIGNUM *y,
BN_CTX *);

int (*point_get_affine_coordinates) (const EC_GROUP *, const EC_POINT *,
BIGNUM *x, BIGNUM *y, BN_CTX *);

...
int (*add) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a,

const EC_POINT *b, BN_CTX *);
int (*dbl) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
int (*invert) (const EC_GROUP *, EC_POINT *, BN_CTX *);

...
int (*is_on_curve) (const EC_GROUP *, const EC_POINT *, BN_CTX *);

...
int (*make_affine) (const EC_GROUP *, EC_POINT *, BN_CTX *);
int (*points_make_affine) (const EC_GROUP *, size_t num, EC_POINT *[],

BN_CTX *);
...

int (*mul) (const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
BN_CTX *);

int (*precompute_mult) (EC_GROUP *group, BN_CTX *);
int (*have_precompute_mult) (const EC_GROUP *group);
int (*field_mul) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,

const BIGNUM *b, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
int (*field_div) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a,

const BIGNUM *b, BN_CTX *);
...
} /* EC_METHOD */ ;

Fig. 1. OpenSSL’s method structure for elliptic curves
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3.2 Binary Curve Support

Since ECC integration in 2005, various EC_METHOD implementations started ap-
pearing in the OpenSSL code base for curves over IFp to optimize performance
and/or security. For example, fast modular reduction routines for NIST curves
P-192, P-224, P-256, P-384, and P-521; also fast and side-channel secure P-
224 [13] and P-256 [10]. In contrast, for elliptic curves over IF2m there remains
only a single default EC_METHOD – an implementation of IEEE P1363 [12, A.10.2]
that uses affine coordinates for elliptic curve point additions and doublings. To
summarize, there is comparatively little to no optimization (such as projective
coordinates) of binary curve operations in OpenSSL.

3.3 Finite Field Arithmetic

Software performance wise, elliptic curves over IF2m historically lag behind those
over IFp since most microprocessors feature integer word multiplication instruc-
tions, making the finite field multiplications more efficient in IFp. Over the past
few years, however, that trend is shifting as chips start to feature polynomial
multiplication instructions – carryless multiplication, colloquially – suitable for
IF2m finite field multiplications. Some examples include:

– Intel’s pclmulqdq instruction for 64-bit multiplication (2010);

– ARM’s vmull.p64 instruction on ARMv8 for 64-bit multiplication (2013);

– Qualcomm’s pmpyw instruction [2, Sec. 4.1] on Hexagon DSP for 32-bit mul-
tiplication (2010).

OpenSSL integrated support for pclmulqdq in 2011. The implementation of
polynomial multiplication is the Karatsuba method, and for chips featuring
pclmulqdq the last level of recursion computes the product of two 128-bit poly-
nomials – with three 64-bit multiplications, also using Karatsuba. In summary,
OpenSSL has the potential for fast binary ECC since there is some accelera-
tion of finite field operations, but currently lacks optimization of elliptic curve
operations.

3.4 Scalar Multiplication

In OpenSSL, two scalar multiplication implementations are relevant for elliptic
curves over IF2m .

Montgomery’s Ladder. Building on their projective coordinate system result,
López and Dahab combine their result with Montgomery’s Ladder to yield an
efficient scalar multiplication routine [17, Sec. 4.2]. OpenSSL has a fairly direct
translation of their algorithm in function ec_GF2m_montgomery_point_multiply,
taking remarkably six finite field multiplications and five squarings per scalar bit.
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Interleaving. By default, if the mul scalar multiplication function pointer is
not set OpenSSL uses Möller’s interleaving with NAF splitting [18,19] in func-
tion ec_wNAF_mul. If precomputation exists, this implementation dramatically
decreases the number of point doublings by precomputing small multiples of
2iG (e.g. i = 0, 8, 16, 24, . . .). If instead no precomputation is available, the NAF
splitting goes away and the algorithm is then a fairly standard multi-scalar mul-
tiplication method with signed digits (NAF).

Code path. As previously discussed, the sole EC_METHOD for elliptic curves
over IF2m uses short affine coordinates to implement the add and dbl function
pointers – the scalar multiplication function pointer mul is different, however.
The implementation is a short wrapper that looks at the number of scalar argu-
ments:

– If the total number of scalars involved is more than two, or a single scalar
multiple of the generator with precomputation, the wrapper calls ec_wNAF_mul.

– Otherwise, the wrapper iterates ec_GF2m_montgomery_point_multiply.

4 Improvements

This section discusses the implemented changes to the OpenSSL code base to
achieve significantly better performance for scalar multiplication with elliptic
curves over IF2m . This improved efficiency is then reflected in the timings for
ECDH and ECDSA cryptosystems within OpenSSL.

4.1 Lambda Method

The goal of this new EC_METHOD is to provide λ-projective coordinate support
but at the same time utilize the existing ec_wNAF_mul multi-scalar multiplication
function. Some of the implementation considerations are as follows.

– For offline or online precomputation, ec_wNAF_mul calls function pointer add
where both operands are potentially in projective form. So the new method
implements add as a small wrapper that calls to either an implementation
of Fig. 2 or Fig. 4 – i.e. the wrapper uses the more efficient formula when it
can. Function pointer dbl is a direct translation of Fig. 3.

– After the precomputation stage, ec_wNAF_mul calls points_make_affine

function pointer so as the scalar multiplication routine executes it can use
more efficient mixed coordinate point additions. But in this case, the imple-
mentation converts from λ-projective to λ-affine.

– To handle negative scalar digits, ec_wNAF_mul tracks the sign of the ac-
cumulator point with a flag and inverts both the accumulator and flag as
necessary. So in fact λ-projective coordinates are beneficial over LD coordi-
nates in this regard, on average saving half a finite field multiplication per
digit when implementing the invert function pointer.
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– Function pointers point_set_affine_coordinates (and get) are critical
to maintain interoperability – when a cryptosystem extracts the result of
scalar multiplication, it needs to be in short affine coordinates. So for set

this implementation converts from short affine to λ-affine, and get converts
from λ-projective to short affine to maintain compatibility.

The resulting patch to the OpenSSL code base for this method is fairly indepen-
dent and non-intrusive.

4.2 Finite Field Squaring

While OpenSSL has more efficient finite field multiplications with pclmulqdq,
squarings are still done with legacy table lookups. This modification inserts
the assembly instructions to perform squaring more efficiently using pclmulqdq,
requiring one instruction per word since squaring is an IF2-linear operation.

4.3 Side-Channel Countermeasures

Historically, OpenSSL is a popular target for side-channel attacks that target
implementation and execution aspects that leak critical secret state through e.g.
latency measurements. A brief discussion on side-channel considerations follows.

Timing attacks. Previous timing attacks against OpenSSL’s ECC implemen-
tation target traditional, insecure table lookups and irregular scalar encodings
[7]. Although countermeasures and patches are publicly available [5], they have
not been integrated into the OpenSSL codebase as of this writing.

Bug attacks. Introduced by Biham et al. [3], bug attacks target intentional
backdoors in implementations of cryptographic hardware that trigger with low
enough probability to go undetected by random test vectors. They give appli-
cations to public key cryptography, using a hypothetical malicious integer word
multiplication instruction as an example and show how to recover a private key
with cleverly chosen inputs. In [6], the first practical bug attack targets instead
a real world software defect in OpenSSL and uses it to recover private keys.

Originally proposed as a Differential Power Analysis (DPA) countermeasure,
Coron’s randomized projective coordinates [9, Sec. 5.3] is an extremely effective
and efficient countermeasure against bug attacks. At a high level, the idea is
to select a random representative from the set of projective points that map to
the same affine point. While outlined for canonical projective coordinates, the
exact steps to select this representative depend on the relationship between the
projective and affine point.

For λ-projective coordinates, the λ-projective point (X : L : Z) is in fact
equivalent to (βX : βL : βZ) for all β ∈ IF2m \ {0}. This is easy to see since the
λ-affine point corresponding to (X : L : Z) is (X/Z,L/Z), so (βX : βL : βZ) 7→
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((βX)/(βZ), (βL)/(βZ)) = (X/Z,L/Z) for all β ∈ IF2m \ {0} – i.e. yielding the
same λ-affine point.

This randomization essentially makes the state of the scalar multiplication
algorithm unpredictable, hence the iterative approach needed for bug attacks is
no longer feasible. For this work, we implement this with a random β chosen at
the start of the ec_wNAF_mul main loop, when the accumulator is initialized –
i.e. randomize once per scalar multiplication.

4.4 Timings

The benchmarking environment in this section is an Intel Celeron 2955U 1.40GHz
(ft. pclmulqdq) running 64-bit Ubuntu 14.04 with 2GB of memory. Timings are
with OpenSSL’s own benchmarking utility, openssl speed with options ecdh

and ecdsa. The OpenSSL version is 1.1.0-dev, git branch OpenSSL-master

tip1.

ECDH results. For ECDH, Tbl. 2 shows there is no significant change after
the modifications. This is rather predictable since the code path for ECDH on
stock OpenSSL executes the LD version of Montgomery’s Ladder that is already
fairly efficient. On the bright side, deprecating the stock code and introducing
λ-projective coordinates does not hurt the average performance over all curves.

Table 2. ECDH operations per second

curve stock modified gain

nistk163 2107.7 2022.6 -4.0%
nistk233 1675.2 1670.2 -0.3%
nistk283 929.3 921.0 -0.9%
nistk409 589.5 563.8 -4.4%
nistk571 248.7 244.9 -1.5%
nistb163 2043.9 2011.4 -1.6%
nistb233 1600.9 1640.6 2.5%
nistb283 891.6 903.9 1.4%
nistb409 551.9 559.4 1.4%
nistb571 229.1 243.5 6.3%

ECDSA results. The ECDSA numbers tell quite a different story, shown in
Tbl. 3. The gains are fairly staggering – from roughly a 3 to 6 fold performance
improvement for ECDSA signature generation, and roughly 1.6 to 1.8 for ECDSA
signature verification.

1 Commit 5fced2395ddfb603a50fd1bd87411e603a59dc6f as of this writing.
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Table 3. ECDSA operations per second

curve stock modified gain stock modified gain
(sign) (sign) (sign) (verify) (verify) (verify)

nistk163 2304.1 6723.4 191.8% 1022.9 1617.6 58.1%
nistk233 1146.2 5147.5 349.1% 791.8 1313.5 65.9%
nistk283 770.6 3136.7 307.0% 442.6 744.2 68.1%
nistk409 341.0 1969.2 477.5% 280.2 456.4 62.9%
nistk571 158.2 896.0 466.4% 120.2 199.0 65.6%
nistb163 2300.3 6684.2 190.6% 983.1 1635.9 66.4%
nistb233 1174.2 5227.7 345.2% 765.0 1280.2 67.3%
nistb283 771.3 3142.4 307.4% 420.1 735.1 75.0%
nistb409 339.8 1952.7 474.7% 262.4 446.5 70.2%
nistb571 157.6 858.8 444.9% 111.1 197.7 77.9%

5 Conclusion

Leaning on recent academic results on more efficient elliptic curve operations
for elliptic curves over IF2m , this work takes OpenSSL as a case study to bring
the ECC portion of the library closer to state-of-the-art. This allows to measure
the real world impact of these research results. For ECDH, the performance
remains roughly the same but for ECDSA the performance approaches roughly
an astounding 6-fold improvement. See Tbl. 4 in the appendix to get an idea
of the comparative ECC performance for standardized curves over prime fields.
Lastly, it is worth noting that these results can be used in tandem with curve-
specific binary field arithmetic patches to compound the performance numbers
– see e.g. [4].

The source code patches – available in OpenSSL’s issue tracker (RT 4103)
and on the openssl-dev mailing list2 – are fairly non-intrusive, adhering to
OpenSSL’s existing software architecture and leveraging much of the code long
present in the library, in particular the multi-scalar multiplication function. In
conclusion, this work validates recent advances in efficient binary curve arith-
metic and brings these research results to practice where they can have direct
impact.
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Input: λ-projective P = (X1 : L1 : Z1), λ-affine Q = (x2, λ2)
Output: λ-projective P +Q = (X3 : L3 : Z3)
if Q =∞ then return P
if P =∞ then return (x2 : λ2 : 1)
t1 ← λ2 · Z1

t2 ← t1 + L1

t1 ← x2 · Z1

t0 ← t1 +X1

if t0 = 0 then
if t2 = 0 then return 2P
else return ∞

t1 ← t1 · t2
t3 ← X1 · t2
t0 ← t20
X3 ← t1 · t3
t3 ← Z1 + L1

t2 ← t0 · t2
t0 ← t0 + t1
t3 ← t3 · t2
t0 ← t20
Z3 ← Z1 · t2
L3 ← t3 + t0
return (X3 : L3 : Z3)

Fig. 2. Mixed addition of λ-projective and λ-affine points

Input: λ-projective P = (X1 : L1 : Z1)
Output: λ-projective 2P = (X3 : L3 : Z3)
if P =∞ then return ∞
t0 ← L2

1

t3 ← Z1 · L1

t1 ← Z2
1

t2 ← X1 · Z1

t0 ← t3 + t0
if a2 = 1 then t0 ← t0 + t1
X3 ← t20
Z3 ← t1 · t0
t0 ← t3 · t0
t2 ← t22
t0 ← Z3 + t0
t0 ← t0 +X3

L3 ← t0 + t2
return (X3 : L3 : Z3)

Fig. 3. doubling a point in λ-projective coordinates
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Input: λ-projective P = (X1 : L1 : Z1), λ-projective Q = (X2 : L2 : Z2)
Output: λ-projective P +Q = (X3 : L3 : Z3)
if Q =∞ then return P
if P =∞ then return Q
t3 ← X1 · Z2

t2 ← X2 · Z1

t0 ← L2 · Z1

t1 ← Z2 · L1

t0 ← t0 + t1
t1 ← t2 + t3
if t1 = 0 then

if t0 = 0 then return 2P
else return ∞

t4 ← Z1 + L1

t2 ← t2 · t0
t5 ← t21
t3 ← t3 · t0
t1 ← t5 · t0
X3 ← t2 · t3
t0 ← Z2 · t1
t1 ← t5 + t2
t4 ← t4 · t0
t1 ← t21
Z3 ← Z1 · t0
L3 ← t4 + t1
return (X3 : L3 : Z3)

Fig. 4. Adding λ-projective points
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