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Abstract The problem discussed in this paper is detecting the shape of an unknown
object in a 2-dimensional static electric field. For simplicity, the problem is defined
in a partially rectangular domain, where on a part of the boundary the potential
and/or its normal derivative are known. On the other part of the boundary the bound-
ary curve is unknown, and this curve is to be determined. The unknown part of the
boundary curve describes the shape of the unknown object.

The problem is defined in the complex plane by an analytic function w = f(z) =
u(x,y) + iv(x,y) with the potential u as its real part. Then the inverse function is
given as f~!(w) = x(u,v) + iy(u,v), where the functions x and y are harmonic in a
rectangle with an unknown boundary condition on one boundary. The alternating-
field technique is used to solve the unknown boundary condition.

1 Introduction

The problem discussed in this paper is detecting the shape of an unknown object
in a 2-dimensional static electric field. For simplicity, the problem is defined in a
partially rectangular domain, where on a part of the boundary the potential and its
normal derivative are known, on the second part of the boundary homogeneous Neu-
mann boundary conditions are used. On the third part of the boundary the potential
is known, but the boundary curve is unknown, and this curve is to be reconstructed.
The unknown part of the boundary curve describes the shape of the unknown object.
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There are quite a number of different approaches for solving such boundary re-
construction problems, e.g., the method of fundamental solutions [1], the bound-
ary element method [4] or using an indicator function derived from Green’s iden-
tities [3]. However, our efforts to apply these methods to the problem at hand have
been rather unsuccessful. A more suitable method for our problem was found out to
be the alternating-field technique on the inverted plane [5], where the region of the
problem is conformally mapped to a rectangle in the inverted plane. In the inverted
plane all the boundaries of the region are fixed, instead we have an unknown bound-
ary condition on the boundary corresponding the free boundary in the original prob-
lem. The missing boundary condition is determined using the iterative alternating-
field technique. We will adjust the technique presented in [5] to our problem and
demonstrate its functionality on a few test cases.

2 Problem Formulation

Leta,b € Rsuchthata < bandleth: [a,b] — R such that i € C([a,b]). Now, define
domain R by
R={(x,y) €eR?|x € [a, b],y €0, h(x)]}. (1)

Let the lines x = a and x = b be perfectly insulated and the line y = 0 be perfectly
conducting. If a constant voltage potential ug = 1 is applied to the curve y = h(x),
then ug generates the electric field e = —Vu, where the electrical potential u satisfies
the following mixed boundary value problem:

VZu=0 iR,

du=0 onx=aandx=>,
u=0 ony=0,
u=1 ony=h(x).

(@)

When £ is known and sufficiently regular, it is well-known that the mixed bound-
ary value problem given in Equation (2) has a unique solution. However, if & is
unknown, but instead we are given an additional boundary condition —du, = g(x)
on the line y = 0 with g : [a,b] — R, the inverse problem of finding / is nonlinear
and ill-posed. Additionally, in practice we do not actually know the entire function g
but only its values at some discrete points x; € [a,b]. The geometry for the problem
is displayed in Fig. 1.

3 Problem on the Inverted Plane

Since the region R is simply connected, the harmonic potential # has a harmonic
conjugate v in R such that the complex potential w = u + iv is analytic there. The
component functions u# and v are known to be connected by the Cauchy-Riemann
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Fig. 1 The problem on the region R.

equations dyu = dyv and dyu = —d,v, and thus, it is possible to determine the bound-
ary conditions for v from the boundary conditions of u. [2]

It can be seen directly from the Cauchy-Riemann equations that the equipotential
lines of u are the lines where d,v = 0 and conversely, the lines where d,u = 0 are the
equipotential lines of v. It yet remains to determine the values of v on the equipoten-
tial lines x = a and x = b. From the boundary condition d,u = g(x) on the line y =0
we obtain g(x) = —dyu = d,v and thus, the change in the value of v between the lines
x=a and x = b is given by ff g(x)dx which can be evaluated, e.g., using Simpson’s
rule. Since the values of v can be determined up to an additive constant, we may
assign v(x =a) = — jfg(x)dx =V and v(x = b) = 0. Furthermore, we may obtain
the value of v anywhere on the line y = 0 from v(x) = — fxb g(s)ds, which becomes
necessary when we determine the boundary conditions for the inverted problem.

Now we have harmonic conjugates u and v which are real and imaginary parts
of the analytic function w = f(z) = u+ iv. If the function f is invertible in R and if
f(z0) # 0 at each point zg € R, then f has an analytic inverse f~!(w) = x(u,v) +
iy(u,v) such that f~!'[f(z)] = z [2]. Since the inverse of f is analytic in f(R), its
component functions x and y are harmonic conjugates there, i.e.,

auux + avvx =0 and auuy + avvy =0 (3)

and
dx=20,y and Jx=—0d,y %)

The region in the inverted plane is a rectangle u € [0,1],v € [0,V] as shown in
Fig. 2, where also the boundary conditions for the inverted problems are given. The
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boundary conditions y = 0, x = a and x = b are obtained directly from the geometry
of the original problem, and the corresponding homogeneous Neumann boundary
conditions are obtained from the Cauchy-Riemann equations (4). Furthermore, there
is an additional boundary condition x = x(v) on the line u = 0, which is the inverse
of v=v(x)=— jfg(s)ds. In practice the values of x(v) are only required at some
discrete points v;, which can be interpolated from v = v(x), e.g., by using splines.

The unknown boundary conditions x = X(v) and y = Y(v) on the line u = 1
represent the unknown boundary curve which is now mapped to a fixed line. With
different values of v we will obtain points (x,y) on the z-plane, which construct the
curve y = h(x). The unknown boundary conditions are to be determined using the
alternating-field technique which is described next.
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Fig. 2 The inverted problems for x and y on the region Q.

4 Alternating-Field Technique

The alternating-field technique is described in [5] by Nilson and Tsuei. The pro-
cedure given in the following is schematically similar to the one in [5], but some
steps are altered due to differences in the geometries of the problems. In outline,
the alternating-field technique is an iterative procedure, where we find convergent
estimates for X (v) and Y (v) by solving Laplace’s equation, by turns, for x and y. The
convergence of X (v) and Y (v) is measured by the change in the arc length parameter
s given by
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si= Y \JAX(n)? + AY ()2, )
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i.e., s is the arc length parameter of the unknown boundary curve y = h(x).

For the procedure, the region Q is covered by an M x N rectangular mesh of
size Au=1/(N—1) and Av=V /(M — 1). The mesh points are denoted by (u;,v;)
such that u; =0, uy = 1, vi =V and vy = 0, and the value of x (resp. y) at a point
(uj,v;) is denoted by x;; (resp. y;;). Laplace’s equation is solved as a system of linear
equations, where the coefficient matrix is in RYVN*MN byt it has only five nonzero
diagonals. Solutions can be computed effectively by using sparse LU decomposition
which needs to be computed only once for the coefficient matrices of x and y.

The steps for the iterative procedure are as follows:

0. Make an initial guess for X (v). Note that X (v;) € [a,b] forevery i € {1,2,...,M}
and that X(v;) = a and X (vy) = b. Then perform steps 1-6 to obtain the first
iterates for X (v) and Y (v) and an initial estimate for the arc length parameter s.

1. Assign boundary conditions for x(u,v) field, i.e., set

xj=a¥Vje{l,2,...,N}, xuj=b,¥je{1,2,....,N},
xip=x(vi), Vi€ {1,2,....M} xp=x;,Yi€{1,2,.... M}, 6)
xiv =X(v),vie{l,2,...,M}.

2. Solve Laplace’s equation for x in Q.
3. Calculate new Y (v) by the formula

1
Y(vi) = —favxijdu, i€{2,3,...,M—1},
0

@)
Y(vi) =Y (v2), Y(vu) =Y (vu-1),
where
Oy~ ~HL ®)
and the integral can be evaluated, e.g., using Simpson’s rule.
4. Assign boundary conditions for y(u,v) field, i.e., set
Yij :y2jav.] S {172,"'aN}a YMj :y(M,I)Nv‘] € {1727"'aN}a (9)
ya=0,vie{1,2,....M}, yin=Y(;),Vie{l,2,...,.M},
where Y (v;) is given by Equation (7).
5. Solve Laplace’s equation for y in Q.
6. Calculate new X (v) by the formula
1
X(V,‘) = X +f8vyijdu, i€ {2,3,...,M— 1},
0 (10)

X(vi) =a, X(vy) =b,

where
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Y(i-1)j — Y(i+1)j
_— 11
2Av (0

and the integral can be evaluated, e.g., using Simpson’s rule. Then calculate a new
arc length parameter s* from the newly obtained X (v) and Y (v) using Equation
(5).

7. Check convergence for s, i.e., calculate ||s* — s||?. If necessary, set s = s* and
return to step 1. A new estimate for X (v) is given by Equation (10).

Ay j~

The usual criterion for the procedure to stop is to see, whether ||s* — s||? is suf-
ficiently small. Other possibility would be, e.g., to inspect the convergence rate of s
and determine a suitable stopping criterion based on its changes.

5 Numerical Test Cases

The procedure described in the previous section is tested on four different boundary
curves y = h(x). The curves, as well as the approximations obtained from the pro-
cedure, are presented in Fig 3. In each of the cases, we have ¢ = 0 and b = 1, and
the value of g(x) is computed at 21 evenly spaced points on the interval [0, 1]. Thus,
the uv-plane is covered by a 21 x 21 rectangular mesh. Initial guess for X (v) in all
the cases is x(v) and the stopping criterion for the procedure is ||s* — s||> < 10710
Data on error norms, absolute and relative maximum errors and the number of iter-
ations required for ||s* —s||?> < 1071 is displayed in Table 1 for each test case. The
numbering of the cases corresponds to the order of the images in Fig 3.

Table 1 Results for the numerical test cases

Case [|Y —h(X)|2 [IY —h(X)||l  max { LY ~A(X)] } iterations

h(X)
1 0.0285 0.0161 0.0424 29
2 0.0458 0.0211 0.2110 18
3 0.0320 0.0256 0.0641 21
4 0.0434 0.0379 0.0866 33

Based on Table 1 and Fig. 3 we see that for the most part the approximated
boundary points Y agree with the actual boundary curve 4(X). However, a few no-
ticeable errors occur as well. These errors are mostly caused by the conformal map-
ping from the xy-plane to the uv-plane. Namely, if 4'(0) # 0, #'(1) # 0 or the curve
y = h(x) contains non-smooth points, those points are non-analytical points for the
function f(z) = u+ iv and thus, the mapping f(z) is not conformal at those points,
which will cause errors. Most probably some errors arise from the alternating-field
technique as well. However, there are no existing stability or error estimates for the
technique, so these errors are virtually unknown. Regardless, it would seem that the
errors caused by sources other than the conformal mapping are rather insignificant
in comparison.
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Fig. 3 The boundary curves y = h(x) for the test cases 1 —4 and the approximated boundary points

obtained using the alternating-field technique.
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