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Abstract—In the problem of determining a target’s location
using radio signal time-of-flight to reference nodes with known
locations, measurement errors can be skewed because of
multipath effects. In this paper, range errors are modelled
using the skew-t distribution. An Expectation-Maximisation (EM)
algorithm for computing the unknown location is presented,
and its accuracy is compared with a descending Gauss-Newton
algorithm by simulations. The EM algorithm improves the
positioning accuracy significantly. Furthermore, it is shown how
to fit the parameters of a skew-t distribution to training data
using a Gibbs sampler.

I. INTRODUCTION

Trilateration is the process of determining the position

of a target using measurements of distances (ranges) to

reference nodes with known positions. The target’s position

can be computed as the solution of a nonlinear least squares

(NLS) problem that is equivalent to nonlinear regression

with an elliptical (e.g. normal or t-distributed) error model.

Computational algorithms for NLS problems are well known,

and in trilateration problems they outperform "closed-form"

methods [1].

A drawback of using elliptical distributions is that they

cannot model skewness in the distribution of measurement

errors since they are symmetric. Skewness can arise in time-

of-flight range measurements because of multipath effects.

For example, the non-line-of-sight data from UWB network

in [2] is clearly skewed (Fig. 4). There is therefore interest in

extending trilateration methods to noise models that include

skewness. The skew-t distribution, which is a parametric

distribution family that includes the t-distribution as a special

case, is well-suited for this purpose. There is a considerable

body of research related to this distribution family in the

statistical literature, and an extensive discussion can be

found, for example, in Azzalini’s recent monograph [3].

Much of the literature focuses on fitting the parameters of

a skew-t distribution using methods such as the Expectation-

Maximisation (EM) algorithm to given error data.

The object of this paper is to show how to apply skew-

t statistical theory and methods to the trilateration problem,

where the parameters of the skew-t distribution are known

or have already been fitted to training data. For positioning

the EM algorithm is used, which is an attractive choice

for nonlinear regression because its monotone convergence

ensures numerical stability. In addition, in nonlinear regression

one can use a standard NLS solver inside the EM iteration

loop.

This paper is organised as follows. The trilateration problem

and basic properties of the skew-t distribution are reviewed in

Section II. Section III presents an EM algorithm for solving

the trilateration problem under the assumption of skew-t

distributed measurement errors. The algorithm’s performance

is tested in Section IV and it is compared with a descending

Gauss-Newton method. Section V explains briefly how to fit

the parameters to given error data using a Gibbs sampler, and

presents an example for the fitting. Some concluding remarks

and an outlook are given in Section VI.

Notation : x and x1:d denote column vectors, H denotes a

matrix, and underscores are used to denote random variables

and random vectors in contexts where the distinction from

deterministic variables is useful.

II. MODEL

A. Statistical trilateration

We use the following statistical formulation of the

trilateration problem [4].

Let the unknown target location be represented by the

d-dimensional random vector x1:d = x. The K scalar

measurements are modelled as

y
k
| (x = x) = hk(x) + vk (1)

for k ∈ 1, ..,K, where function hk : R
d → R

models the measurement geometry and v1, .., vK are mutually

independent random variables (additive errors). In addition,

v1:K and x are independent.

The prior probability density function (pdf) of x is denoted

as px, and the pdf of vk as pvk
. The posterior distribution of

x given the K-dimensional measurement vector y1:K has the

pdf

px|y
1:K

(x|y1:K) ∝ px(x)

K
∏

k=1

pvk
(yk − hk(x)) (2)

A value of x that maximises (2) is called a maximum a

posteriori (MAP) estimate. This MAP estimate coincides with

the maximum likelihood (ML) estimate if the prior distribution

is "flat", i.e. if px(x) ∝ 1.

In trilateration, the measurement function is the Euclidean

distance between the target and a reference node at a known

location ck:

hk(x) = ||x− ck||. (3)
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Fig. 1. Standardised skew-t distribution (ν = 3).

The Jacobian of h = h1:K is the K × d matrix H whose kth

row is the transpose of a unit vector pointing from ck to x,

that is,

Hk,1:d = ∇hk(x) =
(x− ck)

T

||x− ck||
. (4)

B. The skew-t distribution

In this subsection some general properties of the skew-t

distribution are collected. For more extensive discussion see,

for example, [3, pp. 101 ff.] and [5].

A random variable z is said to have a skew-t distribution

with location ξ, scale σ2, skewness λ and ν degrees-of-

freedom (dof) if its pdf has the form

pz(z) =
2

σ
tν

(

z − ξ

σ

)

Tν+1

(

λ
z − ξ

σ

√

ν + 1

ν + (z−ξ)2

σ2

)

, (5)

where tν and Tν+1 denote the pdf and the cumulative

distribution function (cdf) of the standardised t-distribution.

The skew-t distribution is denoted z ∼ ST
(

ξ, σ2, λ, ν
)

.

The skew-t reduces to the t-distribution when λ = 0, that is,

ST
(

ξ, σ2, 0, ν
)

= T
(

ξ, σ2, ν
)

, a t-distribution with location

ξ, scale σ2 and ν dof. The skew-t reduces to N
(

ξ, σ2
)

, a

normal distribution with mean ξ and variance σ2, when λ = 0
and ν → ∞. ST (0, 1, λ, ν) is called a standardised skew-t

distribution (Fig. 1) and if u ∼ ST (0, 1, λ, ν) then a + bz ∼
ST
(

a, b2, λ, ν
)

.

For ν > 2 the mean and variance of z ∼ ST
(

ξ, σ2, λ, ν
)

are

E(z) = ξ + σgνδλ , var(z) = σ2

(

ν

ν − 2
− (gνδλ)

2

)

(6)

where gν =
√
νΓ( ν−1

2 )
√
πΓ( ν

2 )
and δλ = λ√

1+λ2
∈ (−1, 1).

The skew-t distribution has the following hierarchical

model. Let τ ∼ Γ
(

ν
2 ,

ν
2

)

and w ∼ N (0, 1), which denote

the Gamma distribution with both shape and scale ν
2 and the

standard normal distribution. Then t = | σ√
τw| is a half-normal

(HN) random variable with pdf

pt(t) ∝ Φ

(

t

√
τ

σ

)

[t > 0], (7)

where [.] is the Iverson bracket and Φ denotes the cdf of the

standard normal distribution. Samples from the distribution

ST
(

ξ, σ2, λ, ν
)

can be drawn from the conditional distribution

z|(t = t, τ = τ) ∼ N

(

ξ +
λt√
1 + λ2

,
1− δ2λ

τ
σ2

)

. (8)

In the hierarchical representation (7 – 8), the conditional

random variable t|(z = z, τ = τ) has the distribution

N
(

δλ(z − ξ),
1−δ2λ
τ σ2

)

and the conditional random variable

τ |(z = z) has the pdf

τ |(z = z) ∝ τ (ν−1)/2exp
(

−τ

2
(η2 + ν)

)

Φ(λη
√
τ), (9)

where η = z−ξ
σ .

III. ESTIMATING THE TARGET POSITION

A. Positioning using Expectation Maximisation

This subsection presents an expectation maximisation (EM)

algorithm to compute the MAP estimate, i.e. the mode of (2),

for additive skew-t measurement errors. In the maximisation

step (M-step) the descending Gauss-Newton (GN) algorithm

is used. A more detailed derivation of the equations used in

the algorithm can be found in Subsection III.B.

The posterior pdf (2) for the measurement model y
k
|(x =

x) ∼ ST
(

ξ + hk(x), σ
2, λ, ν

)

is

px|y
1:K

(x|y1:K)

∝ px(x)

K
∏

k=1

2

σ
tν

( ȳk
σ

)

Tν+1



λ
ȳk
σ

√

ν + 1

ν +
ȳ2
k

σ2



 ,
(10)

where ȳk = yk − hk(x)− ξ. Using (8), a hierarchical version

of the measurement model is

y
k
|(x = x, tk = tk, τk = τk)

∼ N

(

ξ + hk(x) + δλtk,
1− δ2λ
τk

σ2

)

,
(11)

where the hyperparameters are tk = | σ√
τk

wk| with wk ∼
N (0, 1) and τk ∼ Γ

(

ν
2 ,

ν
2

)

.

In the EM algorithm’s expectation step (E-step) the

hyperparameters are updated by setting them to the mean

values of their conditional distribution, i.e.

τ̂k ←
σ2
(

1− δ2λ
)

ν2

(yk − hk(x̂)− ξ − δλtk)
2
+ 4σ2 (1− δ2λ)

(12a)

t̂k ← µk +
φ(−µk/σk)

1− Φ(−µk/σk)
σk (12b)

for k = { 1, ..,K }, where x̂ is the current MAP estimate, and

φ and Φ denote the pdf and the cdf of the standard normal



distribution. In (12b) µk = 1
2δλ

(yk − hk(x̂)− ξ) and σk =
√

σ2(1−δ2
λ)

2τk
.

Assuming a multivariate-normal prior distribution for x with

mean m0 and covariance P0, the M-step is the optimisation

of the conditional posterior

p(x|y1:K , t1:K , τ1:K)

∝ e
− 1

2

(

(x−m0)
′

P
−1
0 (x−m0)+

∑K
k=1 τk(y1:K−h1:K (x)−ξ−δλtk)

2

σ2(1−δ2
λ)

)

(13)

with τk = τ̂k and tk = t̂k, that is

x̂ ← argmin
x

(

(x−m0)
′

P−1
0 (x−m0) (14)

+

∑K
k=1 τ̂k

(

yk − hk(x) − ξ − δλt̂k
)2

σ2 (1− δ2λ)

)

The minimisation in (14) can be computed by any

nonlinear least-squares optimisation method. In this paper the

descending Gauss-Newton algorithm (see e.g. [4]) is used,

which for (14) is the iteration of

H← ∂h1:K

∂x
(x̂) (15a)

x̂← x̂+ α (m0 − x̂+K (ỹ − h(x̂)−Hm0 +Hx̂))
(15b)

with K = P0H
T
(

R+HP0H
T
)−1

, where R = σ2(1 −
δ2λ)diag{1/τ̂1, .., 1/τ̂K}, and modified "data" ỹ = y1:K − ξ −
δλt̂1:K . The scale factor α ensures that the cost function is

decreasing, and is found by line search (see Subsection III.B).

In case of a flat prior, (15b) is replaced by

x̂← x̂− α
(

(

HTR−1H
)−1

HTR−1 (h(x̂)− ỹ)
)

(16)

To summarise, given independent scalar measurements y1:K

with additive ST
(

ξ, σ2, λ, ν
)

noise, and a multivariate normal

prior with mean m0 and covariance P0, the EM algorithm

computes the MAP estimate x̂ as shown in Algorithm 1.

B. Details of the EM algorithm

In this subsection the equations of the EM presented above

are derived and details of the descending Gauss-Newton

algorithm are given. Assuming a multivariate-normal prior

distribution for x with mean m0 and covariance P0 and given

the priors for the hyperparameters, the joint prior distribution

is

p(x, t1:K ,τ1:K) ∝ px(x)pt1:K |τ1:K
(t1:K |τ1:K)pτ1:K

(τ1:K)

= e−
1
2 (x−m0)

′

P
−1
0 (x−m0)

K
∏

k=1

[tk ≥ 0]

e
− 1

2σ2

∑K
k=1 τkt

2
k

K
∏

k=1

τ
ν
2 −1

k e−
2
ν
τk . (17)

Algorithm 1 Computing position estimate by EM

Input: y1:K , m0, P0, nEM (number of EM iterations) and

ndGN (number of descending GN iterations)

Initialise x(0) ←m0, t
(0)
1:K ← −ξ/δλ and τ

(0)
1:K ← 1

for j = 1 to nEM do

Given t
(j−1)
1:K and τ

(j−1)
1:K , initialise x̂← x(j−1), and

compute modified "data" ỹ = y1:K − ξ − δλt
(j−1)
1:K and

R = σ2(1 − δ2λ)diag{1/τ (j−1)
1 , .., 1/τ

(j−1)
K }

for i = 1 to ndGN do

Compute H using (15a)

Compute K = P0H
T
(

R+HP0H
T
)−1

and

dGN = m0 − x̂+K (ỹ − h(x̂)−Hm0 +Hx̂) (or

dGN =
(

HTR−1H
)−1

HTR−1 (h(x̂)− ỹ) if

P−1
0 = 0, i.e. if prior is flat)

Compute f(x̂) using (21) with x← x̂

Set α← 1 and compute f(x̂+ αdGN) using (21)

with x← x̂+ αdGN

while f(x̂+ αdGN) ≥ f(x̂) do

Set α← α/2, and compute f(x̂+ αdGN) using

(21) with x← x̂+ αdGN

end while

Set x̂← x̂+ αdGN

end for

Set x(j) ← x̂

Given x(j), compute t
(j)
1:K and τ

(j)
1:K using (12)

end for

Thus, the joint posterior is

p(x, t1:K , τ1:K |y1:K)

∝ e
− 1

2σ2

∑K
k=1

τk

1−δ2
λ

(ȳk−δλtk)
2

e−
1
2 (x−m0)

′

P
−1
0 (x−m0)

K
∏

k=1

[tk ≥ 0]e−
1

2σ2

∑K
k=1 τkt

2
k

K
∏

k=1

τ
ν
2−1

k e−
2
ν
τk . (18)

Denoting τ−k = {τ1, .., τk−1, τk+1, .., τK} the conditional

distribution of τk is

p(τk|x,y1:K , t1:K ,τ−k)

∝ e
− τk

2σ2(1−δ2
λ)

(ȳk−δλtk)
2

τ
ν
2−1

k e−
2
ν
τk

= τ
ν
2 −1

k e
−τk

(ȳk−δλtk)
2+4σ2(1−δ2

λ)
2σ2(1−δ2

λ)ν , (19)

which is a Gamma distribution with shape parameter ν/2 and

scale parameter
2σ2(1−δ2λ)ν

(ȳk−δλtk)
2+4σ2(1−δ2

λ)
. The mean value of this

Gamma distribution, which is the product of shape and scale,

is used in (12a) to update τk .

Denoting t−k = {t1, .., tk−1, tk+1, .., tK} the conditional



TABLE I
Number of operations from different classes for descending GN and EM

algorithm, dependent on number of measurements K , number of EM
iterations nEM and number of descending GN iterations ndGN.

Class dGN EM

addition O(ndGNK
3) O(nEMndGNK

3)

subtraction O(ndGNK) O(nEMndGNK)

multiplication O(ndGNK
3) O(nEMndGNK

3)

division O(ndGNK) O(nEMndGNK)

other O(ndGNK) O(nEMndGNK)

distribution of tk is

p(tk|x,y1:K , t−k,τ1:K)

∝ e
− τk

2σ2(1−δ2
λ)

(ȳk−δλtk)
2

[tk ≥ 0]e−
τk
2σ2 t2k

= [tk ≥ 0]e
− τk

2σ2(1−δ2
λ)

(

(

ȳk
δλ

−tk

)2
+t2k

)

∝ [tk ≥ 0]e

− 1

2
σ2(1−δ2

λ)
2τk

(

tk− ȳk
2δλ

2
)

, (20)

which is a truncated normal distribution, i.e. values smaller

zero are not allowed (due to [tk ≥ 0]), with center µk =

1
2δλ

(yk − hk(x)− ξ) and scale σk =

√

σ2(1−δ2
λ)

2τk
. The mean

value of this distribution is used in (12b) to update tk.

The α used in (15b) and (16) ensures that the cost function

f(x) =
1

2

(

(x−m0)
′

P−1
0 (x−m0)

+ (h1:K(x) − ỹ)
T
R−1 (h1:K(x)− ỹ)

)

(21)

does not increase, which is possible in the standard GN

algorithm which uses the step dGN = m0 − x̂ +
K (ỹ − h(x̂)−Hm0 +Hx̂). After initialising α ← 1 its

value is repeatedly halved as long as f(x̂+ αdGN) ≥ f(x̂).
Table I shows a detailed complexity analysis of the EM

method and compares it with the complexity of the descending

GN, which will be used in Section IV as reference. The EM

algorithm has for each operation class a nEM times higher

computational complexity. The number of operations in the

E-step, for updating the hyperparameters, is negligible small

in comparison to the number of operations in the M-step (the

descending GN).

IV. SIMULATION EXPERIMENT

In this section the positioning performance of using the

skew-t likelihood model instead of a normal distribution

likelihood model when the measurement errors are skew-t

distributed is analysed. The MAP estimate for the normal

model is computed using the descending GN algorithm.

The source code and the full test suite are available at

https://PMullerTUT@bitbucket.org/PMullerTU

T/trilaterationskewterrors.git.

Here x is a two-dimensional position and is assumed to

have the prior distribution

x ∼ MVN (m0,P0) = MVN
([

0
0

]

, 100 I2×2

)

, (22)

TABLE II
Positioning error statistics for simulations with additive skew-t noises.

Column Time gives the relative computation time using a specific MATLAB

implementation, scaled so that computation time for the descending GN is 1.

Method Time Mean Median 95 perc.

dGN 1 1.53 1.39 2.97

EM 5 1.15 1.05 2.59

where MVN(., .) denotes a bivariate Gaussian distribution with

given mean and covariance matrix. Four reference nodes are

located at the corners of a 40-by-40 square centred at m0.

For the experiment 100 target positions are drawn from

the prior distribution (22). Using (3) for computing the true

distance between the target position and the reference node,

K = 12 independent distance measurements (three to each

reference node) are drawn from

yk|x ∼ ST
(

ξ + hk(x), σ
2, λ, ν

)

= ST
(

2 + hk(x), 3
2, 3, 3

)

.
(23)

The EM algorithm uses the hierarchical version (11) of

the measurement model with initial values τk = 1 and

tk = −ξ/δλ, which ensures that the descending GN finds

the minimiser of the likelihood for Gaussian noise. For the

EM algorithm 4 iterations are performed, and in each M-step

4 iterations of the descending GN algorithm are performed.

For comparison a descending GN that assumes

measurement errors to be distributed as

yk|x ∼ N

(

ξ + σgνδλ + hk(x), σ
2

(

ν

ν − 2
− (gνδλ)

2

))

(24)

with 4 iterations is used. The parameters given in (24) ensure

that the normal distribution has the same mean and variance

as the skew-t distribution used by the EM algorithm.

In both the EM and the descending GN algorithm the

number of repetitions to find a suitable α for (15b) and (16)

is limited to 5 [4].

Table II presents the error statistics for the algorithms.

Mean is the empirical mean, Median is the empirical median

and 95% err is the 95th percentile of all two-dimensional

positioning errors, which are defined as the Euclidean distance

(compare (3)) between the true position x and the position

estimate x̂. Time gives the relative computation time using a

specific MATLAB implementation, scaled so that computation

time for the descending GN is 1. Fig. 1 shows the first 50

simulated positions and the corresponding estimates by EM

and descending GN algorithm.

The EM algorithm clearly outperforms the descending GN

algorithm in all three accuracy measures. That improvement

in precision comes at the cost of an approximately five

times higher computation time, which was expected since

the EM uses four times more descending GN iterations and

uses in addition the E-step for updating the hyperparameters.

However, the computing cost is still reasonable, and could be

brought down by tweaking the algorithm code and parameters.
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Fig. 2. First 50 simulated positions and their corresponding estimates
computed by the EM and the descending GN algorithms.

V. FITTING PARAMETERS OF A SKEW-T DISTRIBUTION

A. Fitting parameters using a Gibbs sampler

In Section IV the error distribution’s parameters are

assumed to be known. For real-world applications it will be

necessary to estimate the parameters by fitting them to a set of

training data. In the trilateration setting (Section IV), training

data are typically obtained in a measurement campaign in

which ranges observed from known locations are collected,

which allows determination of ranging errors. This section

briefly describes the Gibbs sampling algorithm [6], which can

be used to compute statistics of the posterior distributions

for the parameters from n independent ranging errors

vj |ξ, σ2, λ, ν ∼ ST
(

ξ, σ2, λ, ν
)

.

The Gibbs sampling method could also be used to compute

position, but can be expected to be much slower than EM.

The idea of the Gibbs sampler (GS) is to sample

from the conditional posterior distributions for each

parameter separately when sampling from the (multivariate)

posterior is not feasible. For the parameter estimation

problem at hand generating samples from the joint

posterior p
(

ξ, σ2, λ, ν|v1:n
)

is unfeasible, but sampling from

the conditional posterior distributions p
(

ξ|σ2, λ, ν, v1:n
)

,

p
(

σ2|ξ, λ, ν, v1:n
)

, p
(

λ|ξ, σ2, ν, v1:n
)

and p
(

ν|ξ, σ2, λ, v1:n
)

is possible.

The algorithm works as follows. First, initial values

ξ(0), σ
2
(0), λ(0), ν(0) are assigned to the unknown parameters.

Then the parameters are ordered and samples from the

conditional distribution of each parameter given the error data

v1:n and the current estimates of the remaining parameters are

drawn. This updating process is repeated T0 + T times. The

posterior means of the estimates are estimated by the empirical

sample means of the last T samples; the first T0 "burn-in"
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Fig. 3. Histogram of training data drawn from vj ∼ ST
(

0, 32, 3, 3
)

and
pdf of a skew-t distribution that uses the median values given in Table III for
T0 = 1000 and T = 10 000.

samples are discarded. For example,

E
(

ξ̂|v1:n
)

≈ 1

T

T
∑

t=1

ξ(t+T0). (25)

Other statistics, such as the posterior median, can be estimated

in a similar way.

Since in the problem under consideration four parameters

have to be estimated a large set of training data will be required

to obtain estimates that are close to the true values of the

parameters. If priors are vague, a large training set is needed

to obtain a posterior with small dispersion. A smaller training

set can be used if the priors are more informative.

B. An example for fitting parameters by the GS

In this subsection a small demo for fitting parameters of a

skew-t distribution using the GS algorithm is presented. The

training data consists of n = 1 000 observations that are drawn

from

vj |ξ = 0, σ2 = 9, λ = 3, ν = 3 ∼ ST
(

ξ, σ2, λ, ν
)

. (26)

The source code and the full test suite are available at

https://PMullerTUT@bitbucket.org/PMullerTU

T/trilaterationskewterrors.git.

For estimating the parameters a hierarchical model similar

to (11) and JAGS [7], which is a program that allows analysing

Bayesian hierarchical models by Gibbs samplers, are used.

Algorithm 2 shows the pseudo-code for the model used in

JAGS.

The GS is run twice with different ξ(0), σ
2
(0), λ(0), ν(0).

For each parameter a diffuse prior is used; only for ν a

slightly informative prior, namely a uniform distribution over

the interval (2, 100) is used because ν > 2 is required in (6).

Table III contains the summary statistics of the posterior

distribution for different numbers of "burn-in" and retained



Algorithm 2 Model for JAGS used for fitting parameters

Input: number of measurements n
Draw parameters from priors: ξ ∼ N

(

0, 1002
)

, σ = 1/p
with p ∼ Γ (10 000, 10 000), λ ∼ N

(

0, 1002
)

and ν ∼
Uniform (2, 100)
Compute δλ = λ√

1+λ2

for j = 1 to n do

draw τj ∼ Γ
(

ν
2 ,

ν
2

)

draw tj ∼ HN
(

0, σ2

τj

)

(see (7) for its pdf)

draw vj ∼ N
(

ξ + δλtj ,
1−δ2λ
τj

σ2
)

end for

draw predicted latent variable τ (pr) ∼ Γ
(

ν
2 ,

ν
2

)

draw predicted latent variable t(pr) ∼ HN
(

0, σ2

τ (pr)

)

draw predicted observation v(pr) ∼ N
(

ξ + δλt
(pr),

1−δ2λ
τ (pr) σ

2
)

TABLE III
Statistics of posterior distributions estimated from 1 000 observations, drawn

from vj |ξ = 0, σ2 = 9, λ = 3, ν = 3 ∼ ST
(

ξ, σ2, λ, ν
)

, by two Gibbs
samplers with each T0 "burn-in" and T retained samples.

Parameter T0 T 5%-ile Median 95%-ile

ξ 200 500 -0.230 -0.114 -0.001

σ2 200 500 3.474 4.129 5.065

λ 200 500 2.867 3.681 4.617

ν 200 500 2.390 2.818 3.410

ξ 1000 10000 -0.219 -0.115 -0.008

σ2 1000 10000 3.455 4.159 5.001

λ 1000 10000 2.987 3.646 4.459

ν 1000 10000 2.390 2.813 3.389

samples. For each parameter the median, and 5%-ile and 95%-

ile are given.

Already with T0 = 200 "burn-in" and T = 500
retained samples the parameter estimates are quite good;

only σ2 is underestimated slightly. Using T0 = 1 000 and

T = 10 000 does not improve the quality of the estimates

significantly. To further improve the estimates more training

data (i.e. observations) would be required or could be fixed

to reasonable values and the GS could be repeatedly run with

various fixed ν for estimating ξ, σ2 and λ. However, from

Fig. 3, which shows the histogram of the training data and the

pdf of a skew-t distribution that uses the median values given

in Table III for T0 = 1 000 and T = 10 000, these approaches

seem to be unnecessary.

The computation times on a laptop where 15 seconds for

T0 = 200 and T = 500 and less than 4 minutes for T0 = 1 000
and T = 10 000, which is tolerable for an algorithm that is

intended for offline use.

As mentioned in the introduction, the non-line-of-sight data

from UWB network in [2] is clearly skewed. Fig. 4 shows the

density histogram of the data and a skew-t distribution fitted

by JAGS using T0 = 1 000 and T = 10 000 and two GS.
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Fig. 4. Density histogram of non-line-of-sight errors from UWB data in [2]
and fitted skew-t ST (−30.73, 4450.05, 3.22, 2.05).

VI. CONCLUDING REMARKS

This paper explained how the trilateration problem can be

solved using an Expectation-Maximisation algorithm when

the measurements contain additive skew-t distributed errors.

For such measurement data it was shown by simulations

that the presented EM algorithm improves the positioning

precision significantly compared with a descending Gauss-

newton algorithm, which models the measurement noise as

being additive normal. This improvement in precision comes

at the cost of higher computational demand.

In addition, it is shown how the parameters of a skew-t can

be fitted to training data by using a Gibbs sampler.

Future work includes the testing of the algorithm with real-

world data that has skew measurement noise. Moreover, the

algorithm can be modified for other measurement functions,

e.g. pseudo-ranges, angle-of-arrival or time-of-arrival type

measurements, and the algorithm could be implemented in a

filter to further improve its positioning precision.
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