
Power Optimizations for
Transport Triggered SIMD Processors

Joonas Multanen, Timo Viitanen,
Henry Linjamäki, Heikki Kultala,
Pekka Jääskeläinen, Jarmo Takala

Tampere University of Technology, Finland
Email: joonas.multanen@tut.fi,

timo.2.viitanen@tut.fi,
henry.linjamaki@tut.fi,
heikki.kultala@tut.fi,

pekka.jaaskelainen@tut.fi,
jarmo.takala@tut.fi

Lauri Koskinen, Jesse Simonsson
University of Turku, Finland
Email: lauri.koskinen@utu.fi,

jesse.simonsson@utu.fi

Heikki Berg, Kalle Raiskila,
Tommi Zetterman

Nokia Technologies LTD, Finland
Email: heikki.berg@nokia.com,

kalle.raiskila@nokia.com,
tommi.zetterman@nokia.com

Abstract—Power consumption in modern processor design
is a key aspect. Optimizing the processor for power leads to
direct savings in battery energy consumption in case of mobile
devices. At the same time, many mobile applications demand high
computational performance. In case of large scale computing,
low power compute devices help in thermal design and in
reducing the electricity bill. This paper presents a case study
of a customized low power vector processor design that was
synthesized on a 28 nm process technology. The processor has a
programmer exposed datapath based on the transport triggered
architecture programming model. The paper’s focus is on the
RTL and microarchitecture level power optimizations applied to
the design. Using semiautomated interconnection network and
register file optimization algorithm, up to 27% of power savings
were achieved. Using this as a baseline and applying register
file datapath gating, register file banking and enabling clock
gating of individual pipeline stages in pipelined function units,
up to 26% of power and energy savings could be achieved with
only a 3% area overhead. On top of this, for the measured
radio applications, the exposed datapath architecture helped to
achieve approximately 18% power improvement in comparison
to a VLIW-like architecture by utilizing optimizations unique to
transport triggered architectures.

I. INTRODUCTION

The choice for the implementation technology to be used
for an accelerator has to take in account a number of variables
such as the cost of manufacturing per device on a given
manufacturing method. General purpose Central Processing
Units (CPUs) are flexible in terms of programmability and
can be bought off the shelf, therefore, having a low non-
recurring costs. In this sense, the extreme opposite of generic
CPUs are fixed-function Application-Specific Integrated Cir-
cuits (ASICs), that execute a specific function and that function
only. A fixed-function ASIC can be reconfigurable or pro-
grammable to some extent, but not necessarily.

In terms of power consumption, specialized ASICs perform
better than their programmable counterparts. They contain no
extra logic which would consume power when executing the
specific task. For the same reason, their area is usually small
compared to CPUs. ASICs also perform better performance-

wise since their architecture is tuned to accelerate a specific
function.

Especially for portable devices where space and possi-
bilities for cooling are limited, thermal constraints are im-
portant. Electrical energy transforms into thermal energy in
an integrated circuit and, therefore, ASICs can be the only
option when thermal constraints are strict. For large scale
computing such as data centers and super computer clusters,
energy savings translate to reduced cooling costs, essentially
in the form of a smaller energy bill.

Nowadays common other alternatives for CPUs and fixed
function ASICs include general-purpose Graphical Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs).
GPUs expose high degree of parallel hardware to the pro-
grammer, but are not as easy-to-use as CPUs. FPGAs are
highly configurable (programmable), but they are not as power-
efficient or have as high performance as ASICs. However, non-
recurring engineering costs for FPGAs are a fraction compared
to that of ASICs and there is no need to manufacture large
batches of the targeted product to bring the unit costs to a
tolerable level.

In addition, with FPGAs, testing, verification and bug
fixing can be done simply by reconfiguring the device (on
the field), whereas faulty ASICs have to go through a respin,
which is both very expensive and lengthy in time.

This paper presents a case study of three power opti-
mizations implemented for a software defined radio (SDR)
Transport Triggered Architecture (TTA) [1] processor on the
Register Transfer Level (RTL) and microarchitecture level.
There are not many publications regarding power optimizations
for TTA processors. The power consumption of the optimized
TTA is compared to a VLIW-like architecture with no TTA-
unique optimizations to observe the effects of TTA-unique
optimizations.

This paper is organized as follows. Section II describes
the idea of TTA that sets the structure for the presented
processor design. Section III describes power optimizations
that were either implemented to the design architecture or



Instruction
memory Instruction

fetch
Instruction
decode

FU

FU

FU

Data
memory

RF

CPU

(a) VLIW

Instruction
memory Instruction

fetch
Instruction
decode

FU

FU

RF

Data
memory

IC
network

CPU

FU

(b) TTA

Fig. 1. The structure of VLIW and TTA processor architectures.

otherwise interesting for future research. Section IV describes
the optimizations implemented to the design. Post synthesis
power and area measurements are presented in Section V, and
Section VI concludes the paper.

II. TRANSPORT TRIGGERED ARCHITECTURE

Very Long Instruction Word (VLIW) architecture processors
expose Instruction Level Parallelism (ILP) to the programmer.
This means that independent operations can be executed si-
multaneously if there are enough resources in the architecture
and if the programmer/compiler instructs so.

The basic VLIW architecture is presented in Fig. 1a. A
VLIW has a component to fetch instructions from instruction
memory. Fetched instructions are passed to an instruction de-
coder, which converts instructions to signals controlling other
parts of the processor. The actual program operations are done
in parallel in multiple Function Units (FUs). The instruction
word size is proportional to the number of FUs in parallel,
hence the name VLIW. VLIWs are statically scheduled pro-
cessors, which means that the program compiler decides the
order of instructions during compile-time, instead of at run-
time by the processor hardware. This translates to a simpler
control logic in the processor, since there is no need for the
hardware to detect dependencies in the instructions and reorder
them for high performance operation. An opposite approach
is dynamic scheduling which is a common in contemporary
general purpose CPUs.

A shortcoming of VLIW architecture is increased register
file complexity, when the architecture is scaled [1] to support
more parallelism. This is due to the fact that the complexity
of the register files storing the operands and temporary results
needs to account for the peak performance of the function
units. The worst case scenario in this point of view would
be all FUs reading or writing to/from the RF simultaneously
and the RFs need to have enough read and write ports
(supported parallel accesses) to satisfy this demand. Scaling
the architecture also increases the complexity of bypass logic
in VLIWs. Bypassing means that the result of an operation

can be directly transported from an FU output to an FU
input, without circulating it through the RF, saving a clock
cycle in the instruction latency. In VLIW architectures, adding
symmetric bypassing capabilities means connecting all (or a
subset of) FU outputs to other FU inputs. The effect of this is
that the bypass network grows quadratically when adding FUs
to improve the instruction-level parallelism supported by the
processor.

In 1976, Lipovski [2] presented a control processor using
a so called “MOVE architecture”, where operations were
triggered by moving operands to inputs of FUs. Thus, the
program operations were transport triggered, rather than oper-
ation triggered. Operation triggering is the traditional paradigm
in processor design and means that in addition to input
operands and the destination (usually in form of general
purpose registers), the programmer gives the opcode defining
the operation to be executed, and the hardware performs the
data transfers required to execute the instruction. In TTAs, the
programming model is mirrored by making the data transports
the responsibility of the program. The idea of TTAs was later
studied extensively by Corporaal et al. [3], who proposed the
MOVE architecture as an improvement to traditional operation-
triggered VLIWs to alleviate their scalability bottlenecks.

Like VLIWs, TTAs use instruction fetch and decode units
to control the operation of the CPU and are also statically
scheduled. However, unlike in VLIWs, TTAs have an exposed
datapath, allowing the programmer to control the InterCon-
nection (IC) network in addition to scheduling FU operations.
The difference of TTA to VLIW is presented in Fig. 1b,
where the instruction decode unit controls the IC network,
to which FUs and RF(s) are connected. In a sense, the only
instructions in TTAs are Move and No Operation (NOP). The
actual computation is still done in FUs, but in TTAs this
happens as a “side effect” of moving data to FU trigger ports.
FUs still need an opcode port to know which operation to
execute.

TTA addresses the scaling bottleneck of the VLIW archi-
tecture with its programming model. Unlike in VLIW, the
number of RF ports does not directly depend on the number
of FUs in TTAs. Also, in TTAs, controlling bypassing can be
done at software level.

TTAs allow some unique optimizations due to the exposed
datapath and FU structure. An FU can have any number of
input and output ports needed. Data to non-triggering ports
can be stored into them before an operation is triggered
if the FU is not used before that operation, allowing an
extra degree of scheduling freedom compared to the VLIW
programming model. This allows input and output operands to
be moved directly between FUs by the programmer (software
bypassing) without accessing a general purpose register file
for the temporary variable. Dead result move elimination can
be done in case all uses of a result can be software bypassed;
the RF needs not to be accessed at all, thus no register need
to be allocated for the value. That is, the general purpose RF
pressure is relieved due to the ability to move data directly
to FU ports using the program. This allows smaller RF size
and port number, since less data needs to be stored in them,
resulting in power and area savings.

Operand sharing provides another way to eliminate un-



FU:

LSU

FU:

ALU

RF:

RF

RF:

BOOL

CU:
cu

0

Fig. 2. Example of a TTA processor in TCE view with two FUs: A Load-
Store Unit (LSU) and an ALU, two RFs and a CU.

necessary move operations. When two consecutive operations
in an FU use the same operand value, it can be moved to
the FU input register for the first operation and kept there for
the second operation, saving a move operation. If the same
operand is used repetitively, for example in all iterations of a
loop, a move is saved for each iteration.

Due to their modular, flexible and scalable nature and due
to their unique optimizations, TTAs are interesting for low-
power programmable devices and as a template for rapid pro-
grammable accelerator customization. Furthermore, the mod-
ularity helps automatic datapath gating and makes automatic
RTL generation of TTA processors rather straightforward.

At Tampere University of Technology a design and pro-
gramming tool suite for TTAs has been developed. TTA-based
Co-design Environment (TCE) [4] allows the user to generate
Hardware Description Language (HDL) code for customized
parallel processors and to produce parallel program images
from high-level programming languages using a retargetable
compiler. TCE features a graphical user interface to define
data buses, components and the connections between them.
TCE was used to design the customized architecture studied
in this paper.

Fig. 2 presents an example of a TTA in TCE view. This
architecture has one data transport bus, two FUs, two RFs and a
Control Unit (CU). The CU contains the Instruction Fetch and
Instruction Decoder components and possibly an Instruction
Decompressor. The components are connected to the data bus
by sockets.

TCE presents rather many customization points to the
control of the processor designer. Relevant to the optimiza-
tions described later in this paper are its FU customization
capabilities. For example, in TCE, a TTA FU can contain any
number of operations. New operations can be implemented
or combined from existing ones to create custom operations.
This can be useful when a program uses a series of operations
repeatedly. Non-unit latency FUs can be fully pipelined or
multi-cycled, the difference being that a multi-cycled operation
may not accept new input operands, if an operation is being
executed while fully pipelined operations can be launched at
every cycle. A hybrid of these two is also possible (operations
with complex pipeline resource usage patterns). In TCE, FUs
can interact with other system components, such as memories
or I/O devices. An example of this is the LSU in Fig. 2. It can
be used for read and write operations to/from a data memory.

III. POWER OPTIMIZATION TECHNIQUES

The studied design is a TTA Single Instruction, Multiple
Data (SIMD) customized processor with the primary use

case in software defined radio. The processor has a 32-bit
datapath for scalar operations and a 512-bit datapath for
vector operations. It supports execution of 32 parallel 16-bit
floating point operations. The design has on purpose a minimal
number of custom operations to retain high degree of reuse
of the processor for a wider range of future applications. A
summary of the design is presented in Table I. Thanks to
TTA based design, straightforward generation of RTL code for
verification and prototyping was quite effortless. This section
first describes existing power optimization techniques and then
presents how three of them were implemented in the design
architecture.

1) Pipeline Stage Latching: Corporaal [1] distinguishes
between real time latching, where no control logic is imple-
mented for the FU pipeline stages and virtual-time latching,
where FU pipeline stages propagate forward every clock cycle,
except when a global lock signal is active. A global lock is
distributed to all FUs and used to stall the processor in case of,
e.g., cache misses. Virtual-time latching is further divided into
true virtual-time latching (TVTL), where operations in FUs are
triggered if data is written to any of the input ports and semi
virtual-time latching (SVTL) where, only writing data to the
trigger port starts an operation.

2) Register File Datapath Gating: In TTAs, register file
power, though reduced, is still a major factor in power con-
sumption. Donkoh et al. [5] analyze that a large fraction of RF
power is consumed in write data distribution, and reduce power
by means of write data gating. In local bitline data gating,
the RF is segmented, and the write data signals to inactive
segments are gated to zero. Conversely, in global bitline data
gating, the entire RF’s write data signals are gated. This is
beneficial when the signals come from a data bus with multiple
destinations. Both approaches are similar to operand isolation.

3) Instruction Encoding and Address Bus Optimization:
An interesting possibility to reduce TTA power consumption
would be to schedule instructions in a way that acknowledges
the hamming distance of two consecutive instructions on the
instruction bus. In a bus, hamming distance is the number of
wires changing their state when compared to the previous bus
value. Minimizing the number of wires changing has an impact
on power and energy consumption. Su et al. used Gray code
addressing and Cold scheduling to reduce switching activity
of the instruction and address bus [6]. Benini et al. presented
the Beach solution, which is a suitable method for reducing
address bus switching activity on special-purpose processors
rather than general-purpose [7]. Instruction bus encoding could
decrease the power consumption of the instruction fetch com-
ponent, instruction bus and instruction memory.

4) Loop Buffer: Another energy optimization we are in-
vestigating for our test architecture is to incorporate a loop
buffer. The effects of using a loop buffer for TTA processors
was studied in [8], where up to 62% total energy savings were
achieved. The effect is application-specific since the power
and energy reduction depends on the size, number, and type
of loops present in the executed program.

5) Memory Banking: Memory banking is a common tech-
nique to reduce memory power consumption and access time.
The memory is divided into banks, reducing the capacitive load
seen when accessing the memory. Now only the bank being



RF
32x32 bit

RF
32x512 bit

VFPU
512 bit

Fig. 3. Datapath components of the design that the power optimizations were
targeted to. A three-stage pipelined vector floating point multiply-accumulator
and two register files; a scalar and a vector one.

operated on is active for each access. Similar strategy can also
be applied to register files, which has been studied previously.
Balasubramonian et al. [9] partitioned a monolithic RF into
two levels and divided it into banks, where each bank had their
own read/write ports. A banking method by Tremblay and Joy
has been patented in [10], where a multi-ported register file
was divided into smaller register files. Each register file had
the same amount of write ports as the original RF and the
original read ports were allocated between the smaller register
files. In [11], the RF was partitioned to different regions based
on activity, and also used drowsyable register cells for further
power reduction.

TABLE I. SUMMARY OF THE IMPLEMENTED TTA DESIGN.

target clock frequency 1GHz
instruction width 128b
transport buses 3x32b, 4x512b
registers 2x1b, 32x32b, 32x512b
ASIC technology 28nm FDSOI

IV. IMPLEMENTED OPTIMIZATIONS

Power measurements after synthesis were performed with
Synopsys Design Compiler with two SDR benchmark pro-
grams optimized for the processor. Here the programs are
referred to as SDR1 and SDR2. 1

The design was first synthesized to find the components
consuming the majority of power. In this case, the RF and FU
components consumed the majority of the total power. The
vector floating point unit consumed more than 29% of total
power in both test cases, indicating rather good function unit
utilization for an unoptimized programmable design. These
components are presented in Fig. 3. The initial power dis-
tributions for each test program are presented in Fig. 4. These
measurements served as a motivation and a starting point for
power optimizations.

Register files and function units combined in the design
architecture took more than 65% of the total TTA core
power consumption before optimizations. Since RFs and FUs
were the most power-hungry components, optimizations were
targeted to these two component types. Optimizations were
implemented at the microarchitecture and register transfer
levels.

The effect of Design Compiler’s automatic power opti-
mizations was also observed. Optimizations enabled were leak-
age power & dynamic power optimization and clock gating.
The tool also automatically performed logic and gate level

1Benchmark names withheld due to confidentiality reasons.

Clock Tree

1.000

0.903

Instr. Fetch
Instr. Decoder
FU
RF
IU
IC

SDR1 SDR2

Fig. 4. Power distribution between components with two test programs before
the implemented optimizations.

optimizations by logic substitution and low power placement
based on switching activity. Optimizations such as ungrouping
and register retiming were disabled to better see the effect on
individual components rather than the whole core. Ungrouping
removes logic block boundaries and can remove redundant
logic leading to smaller design area. Register retiming tries to
move registers through logic in the design and can improve the
timing, if the critical path of the design can be shortened. The
architecture was also synthesized with these optimizations, but
the additional decrease in power consumption was negligible.

The most effective automated optimization was clock gat-
ing the design, which decreased the total power consumption
more than 68% in both test cases. Naturally, its benefit
depends on the program running on the core as it only
reduces the power consumption of underutilized components.
Leakage power optimization decreased the power consumption
for around 3% in both test cases. Enabling the previous
optimizations decreases the overall power consumption more
than 71% in both test cases.

A. Interconnect and Register File Exploration

The initial design for the architecture had a quite wide
instruction word and high interconnect power. We addressed
this by performing automated design space exploration as
described in [12]. The FUs of the initial design were first
rearranged in a single-RF VLIW-like configuration, where
each FU has dedicated read and write ports in a large central
register file. The greedy optimization algorithm then merged
interconnection buses and RF ports which were seldom si-
multaneously active. We ran the process until the starting
instruction word size (which in the TTA’s case heavily depends
on the IC network connectivity) of 223 bits was reduced
below 128 bits. Finally, we pruned bypass connections with a
round-robin interconnect optimizer of which operation idea is
described in [13]. The initial TTA, before these semiautomated
optimizations, had 6x32 scalar data buses and 8x512 vector
data buses. The optimization reduced the number of buses to
3x32 scalar and 4x512 vector. The resulting machine runs the
SDR2 and SDR1 benchmarks 20% and 13% slower in terms of
cycle counts, respectively, but provides significant area savings
and power consumption reduction on instruction memory and
interconnection.



load

data

. . .

data[0] data[1]

n

data[n]

load
n

RF

data

Fig. 5. Register file datapath gating using AND gates.

B. Register File Write Data Gating

Two factors make write data gating particularly interesting
in our design. First, the interconnect data buses to which the
RFs are connected are often connected also to FUs, and thus
used instead to transport FU input data, generating a large
amount of spurious RF input switching for data gating to
eliminate. Second, we did not have the resources for a custom
RF design as in [5] and opted instead for a standard cell based
RF. The standard cell flip-flops are likely to have a higher
load capacitance than custom RF cells, and due to their larger
size and less regular placement, the write signals require more
wiring and buffers. Consequently, write data distribution power
is larger in a standard cell design, and data gating techniques
more effective.

Data transfers between components and data memory in a
TTA processor are passed through the interconnection network.
The IC consists of data buses and input and output sockets.
RFs and FUs only load in new input values if their load
signal is active. In [14], RF input data was gated with its
enable signal using an AND gate to reduce the load (switching)
capacitance of the IC. This prevented the data bus going from
the interconnect network to an RF from changing its value, if
the value was not to be loaded into the RF. This decreased
power consumption by decreasing the capacitive load seen by
the interconnection network.

Similar datapath gating of the RFs was implemented in
TCE’s processor generator and is now automatically included
in the generated RTL for the designed processors. The structure
is presented in Fig. 5. A gating block is generated for each RF
write port.

C. Pipelined Function Unit Clock Gating Enhancement

In TTAs designed with TCE, the function units have well-
defined pipeline behavior. Operations are started by writing
data to a trigger port, and the results are available n cycles
afterwards, where n is the latency of the FU. As discussed
in IV, clock gating is an efficient way to reduce power
consumption due to eliminating unnecessary switching activity.
However, depending on the pipeline stage control implementa-
tion, automatic clock gating by synthesis tools may not always
be possible.

A straightforward implementation of SVTL used in TCE
updates the input registers based on a load signal which

indicates writes to the trigger port. The data then falls through
the subsequent pipeline stages which are only disabled during
a global stall. However, this results in inefficient clock gating,
as shown in Fig. 6, top. All pipeline registers except for the
inputs are constantly clocked even while the FU is idle.

In order to better match the clock gating with TTA opera-
tion semantics, RTL implementations of pipelined FUs should
be modified to propagate the load signal to further pipeline
stages, resulting in the hardware shown in Fig. 6, bottom.
This requires some extra hardware: flip-flops to delay the load
signal and AND gates with an the global lock signal inverted
to evaluate the clock enable condition. Separate pipeline stages
require their own clock gating elements.

The presented design utilizes a pipelined three-stage vec-
tor floating point unit, which before improvement consumed
29.2% of total core power with SDR1 and 29.1% with SDR2
test programs. Restructuring the FPU RTL for load signal
propagation as discussed above decreases its power consump-
tion by almost one-third. As usual with an optimization that
concentrates on reducing the idle time power consumption, if
the FU is highly utilized, the effect of this modification is
smaller compared to when the use is sporadic.

D. Register File Banking

The design in this paper had a 32x512-bit register file
for vector operations. Implementing RFs with standard cell
flip-flops instead of dedicated register file standard cells can
save power in a situation, where the optimal RF size and
number of ports are not available as an RF standard cell. In
our design the vector RF had one write and three read ports,
that were common to all banks. Different bank sizes for the
RF were evaluated and the optimal power consumption was
reached with 16 banks (2 registers per bank). Banking was
implemented by multiplexing input data lines going to registers
based on the most significant bits of the register write address.
The implemented banking reduced the RF power consumption
over 35% for both benchmark programs.

CG

clk

CG

glock

load

CG

clk

CG

glock

load

CG
load_delay1

load

load_delay2

Fig. 6. Clock gating in a three-stage pipelined FU. Top: A straightforward
pipeline. The load signal is only used to clock gate the input registers. Later
stages are only gated by global lock. Bottom: Extra hardware propagates
delayed load signals to later stages and uses them for clock gating.



V. EFFECTS ON POWER AND AREA

For the synthesis and power analysis, switching activity
information was produced with Modelsim which was used in
Synopsys Design Compiler’s topographical synthesis. The de-
sign was synthesized using a 28nm FDSOI process technology
and 1 GHz target clock frequency. The described optimizations
were synthesized and measured first individually, and finally
all together to measure their total effect on power consumption.

The semiautomated IC network and register file optimiza-
tion decreased the power usage of the design by 19.0% for
SDR1 and 27.5% for SDR2. However, it caused the cycle
counts of the benchmarks to increase by 13.3% and 19.5%,
respectively. Thus, the optimization brought a saving of 8.3%
for SDR1 and 13.4% for SDR2 in total energy. In addition,
it was estimated that the reduced instruction size reduces the
instruction memory read operation power consumption from
20.0 mW to 10.0 mW if we compare a cache scaled for an 256b
instruction to one scaled to 128b. Before the optimization,
the instruction width was 223b, which was padded to the
next power of two, hence 256b. The area estimation for the
instruction memory was reduced from 0.16 mm2 to 0.07 mm2.
Estimates for instruction memory power usage were produced
with CACTI [15]. The instruction memory was modeled with
1024 words at a temperature of 300K with no banking, using
32 nm technology node and ITRS-LSTP cells. Taking into
account the increase in cycle times, we can estimate energy
savings of 43.4% for SDR1 and 40.3% for SDR2 on instruction
memory reads.

RF datapath gating decreased the total power usage of the
core by 8.2% when running SDR1 and by 7.8% when running
SDR2. In both cases, the gating logic caused an area overhead
of 2.0% to the total core area. The power consumption of the
RF blocks decreased by 10.5% and the IC by 18.5%. when
running SDR1. For SDR2, the RF blocks power decreased
by 5.5% and the IC by 15.7%. The implemented gating logic
consumed 5.4% of total core power with SDR1 and 5.5% with
SDR2.

RF banking decreased the total power consumption by
11.5% when running SDR1 and 8.4% when running SDR2,
with 1.8% area overhead in both cases.

The floating point unit clock gating enhancement decreased
the total power usage of the core by 10.4% when running
SDR1 and 11.5% when running SDR2. The total area of the
core decreased slightly by 0.7%.

Total power decrease with the optimizations combined was
24.8% when running SDR1 and 26.1% when running SDR2. In
both cases, the optimizations caused an area overhead of 3.3%.
The decrease of overall energy consumption of the design is
directly proportional to the decrease in power consumption
with the two programs used here, since the cycle counts
and the clock frequency remained constant. The effects of
optimizations are summarized in Fig. 7.

It is interesting to evaluate the exposed datapath design in
comparison to a traditional operation triggered VLIW archi-
tecture to estimate the benefits of TTA-specific optimizations.
This was conducted by first evaluating a TTA processor with
similar datapath resources as those in the studied design, but
with most of the TTA-unique optimizations turned off in the

100

80

60

40

20

0 Power Area Power Area
SDR1

RF Gating

SDR2

RF Banking
TotalVFPU Clock Gating Enhancement

-8.2%
-10.4%

-24.8%
+2.0%

-0.7%
+1.8%

+3.3%
-11

.5%
-7.8%

-11
.5%

-26.1%
+2.0%

-0.7%
+1.8%

+3.3%
-8.5%

Fig. 7. Effect of power optimizations on test architecture. Numbers compared
to the IC and RF optimized design as baseline. Synthesized with Design
Compiler’s power optimizations enabled.

compiler, thus simulating limits where a VLIW programming
model might get regarding the instruction cycles with similar
function units and register files.

Then, to estimate the resource savings, we iteratively added
data buses and register files until the cycle counts achieved
by the design were approximately the same as the ones of
the studied TTA design. Power measurements after synthesis
using register file datapath gating and the floating point unit
clock gating enhancement were performed. These measure-
ments showed that the TTA design with the TTA-unique
optimizations enabled used 18% less power on average. This
translates to 18% total energy reduction, since the execution
time for both designs was matched. In the VLIW-like model,
the instruction scheduler of the compiler backend still had the
freedom of scheduling the timing of data transports, a feature
not available in VLIW programming models.

VI. CONCLUSION

Power consumption is nowadays an important point of con-
sideration in processor design, especially for portable devices.
In this paper, three power optimizations on the RTL level
were implemented for a customized high power performance
SIMD TTA processor design case. In addition, the TTA
interconnection network and register files were optimized by
semiautomated design space exploration tools. The design was
synthesized on 28 nm process technology and the achieved
decrease in power consumption for the tailored SDR1 and
SDR2 test programs were 24.8% and 26.1% respectively with
no penalty in cycle count. In both cases, the optimizations
brought an area increase of 3.3%.

The exposed datapath architecture allowed TTA-unique
optimizations, operand sharing, software bypassing and dead
result move elimination, which helped in reducing register file
accesses and on top of the implemented optimizations helped
to achieve on average approximately 18% energy saving in



comparison with a VLIW-like processor. Further power opti-
mizations such as incorporating a loop buffer and investigating
energy-efficient instruction encoding are ongoing.

ACKNOWLEDGMENT

This work was mainly funded by the Academy of Fin-
land (funding decision 253087), Finnish Funding Agency for
Technology and Innovation (project ”Parallel Acceleration”,
funding decision 40115/13), and ARTEMIS JU under grant
agreement no 621439 (ALMARVI).

REFERENCES

[1] H. Corporaal, Microprocessor Architectures: From VLIW to TTA.
Chichester, England: John Wiley & Sons, Ltd., 1998.

[2] G. J. Lipovski, “Architecture of a simple, effective control processor,”
in Proc. Symposium on Micro Architecture, 1976, pp. 187–194.

[3] H. Corporaal and H. J. Mulder, “MOVE: A Framework for High-
performance Processor Design,” in Proc. ACM/IEEE Conference on
Supercomputing, Albuquerque, NM, Nov. 18-22 1991, pp. 692–701.

[4] (2015) TCE: TTA-based Co-design Environment. [Online]. Available:
http://tce.cs.tut.fi

[5] E. Donkoh, T. S. Ong, Y. N. Too, and P. Chiang, “Register file
write data gating techniques and break-even analysis model,” in Proc.
ACM/IEEE International Symposium on Low Power Electronics and
Design, Redondo Beach, CA, July 30-Aug. 1 2012, pp. 149–154.

[6] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Saving power in the control
path of embedded processors,” IEEE Design and Test of Computers,
vol. 11, no. 4, pp. 24–30, Winter 1994.

[7] L. Benini, G. De Mecheli, E. Macii, M. Poncino, and S. Quer, “Power
Optimization of Core-based Systems by Address Bus Encoding,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 6, no. 4, pp. 554–562, Dec.
1998.

[8] V. Guzma, T. Pitkänen, and J. Takala, “Effects of loop unrolling and
use of instruction buffer on processor energy consumption,” in Proc.
International Symposium on System on Chip (SoC), Tampere, Finland,
Oct. 31-Nov. 2 2011, pp. 82–85.

[9] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing the
complexity of the register file in dynamic superscalar processors,” in
34th ACM/IEEE International Symposium on Microarchitecture, Austin,
TX, Dec. 1-5 2001, pp. 237–248.

[10] M. Tremblay and W. Joy, “Apparatus and method for optimizing die
utilization and speed performance by register file splitting,” Jan. 2002,
US Patent 6,343,348.

[11] X. Guan and Y. Fei, “Reducing power consumption of embedded pro-
cessors through register file partitioning and compiler support,” in Proc.
International Conference on Application-Specific Systems, Architectures
and Processors, Leuven, Belgium, July 2-4 2008, pp. 269–274.

[12] T. Viitanen, H. Kultala, P. Jääskelainen, and J. Takala, “Heuristics
for greedy transport triggered architecture interconnect exploration,”
in Proc. International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, Uttar Pradesh, India, Oct. 12-17 2014,
pp. 1–7.

[13] J. Hoogerbrugge and H. Corporaal, “Automatic synthesis of transport
triggered processors,” in Proc. First Annual Conference in Advanced
School for Computing and Imaging, Heijen, The Netherlands, May 16-
18 1995, pp. 1–11.

[14] Y. He, D. She, B. Mesman, and H. Corporaal, “MOVE-Pro: A low
power and high code density TTA architecture,” in Proc. International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, Samos, Greece, July 18-21 2011, pp. 294–301.

[15] (2015) HP Labs : CACTI. [Online]. Available:
http://www.hpl.hp.com/research/cacti/


