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Abstract—Wireless Local Area Networks are widely used for
indoor localization purposes based on Received Signal Strength
-based positioning algorithms, due to the increasing demands for
Location-based Services indoors. A huge number of hearable Ac-
cess Points can however increase the complexity of the positioning
system and the difficulty of location estimation, since not all of the
available Access Points carry useful or significant information.
This paper focuses on Wireless Local Area Networks-based
indoor location by taking into account the contribution of each
hearable Access Point in the location estimation. Several criteria
for Access Point selection are examined, and we will show what is
the permissible reduction factor without a large deterioration in
positioning performance and which criterion is optimal for use in
Access Point removal. The fingerprinting estimation method and
the deconvolution based path loss positioning approach are both
addressed, and the results are based on a large measurement
campaign covering five different buildings with several floors
each, in two countries.

I. INTRODUCTION

Wireless Local Area Networks (WLAN)-based positioning
is becoming more and more popular in indoor areas, where
the traditional Global Navigation Satellite Systems generally
fail to offer a position estimate due to multipath propagation,
low visibility of satellites and weak signal powers [1], [2],
[3]. A wide area of location-based services and location-based
business models are envisioned for the future, once the barrier
of indoor location is crossed [4]. The underlying multiple
access schemes for WLANSs are both Direct Sequence-Code
Division Multiple Access and Orthogonal Frequency Division
Multiplexing techniques and the underlying modulations range
from Binary Phase Shift Keying to higher order Quadrature
Amplitude Modulation. Thus, Time-Of-Arrival or Round-Trip-
Time based estimations for WLAN location are still not
widespread, due to the many different underlying physical
layer features of WLANSs on the market. Alternatively, the Re-
ceived Signal Strength (RSS) or the Received Signal Strength
Indicator (RSSI) of the signal can be used for the positioning
purposes. RSS-based positioning methods have the advantage
of easy accessibility, availability in almost every device and
cost effectiveness due to the ability to utilize the current
wireless infrastructures.

Alternatively, RSS can be used for the location purpose,
either by matching the measured RSSs with some RSSs col-
lected in preamble in a database (fingerprinting method) or by
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trilateration methods using some signal-to-distance mapping
derived from the measured RSS (path-loss estimation). Both
methods involve two stages: an initial off-line training phase
and an on-line estimation phase [1], [5], [6]. In the training
phase, models and databases are built based on collected infor-
mation about the indoor environment. In the estimation phase,
that involves real-time processing, the unknown position of
a mobile station (MS) is estimated based on the information
saved in the training phase. Due to the high deployment of
Access Points (APs) in many buildings, both fingerprinting
and path loss-based positioning methods suffer from having
to deal with a huge amount of data. Indeed, it is generally
believed that some APs are strongly relevant, while others are
weakly relevant for the positioning purpose [7], [8].

WLAN transmitters inside buildings can nowadays support
multiple BSSID. This means that several MAC addresses can
be visible at exactly the same location. In addition, WLAN AP
deployment inside a building is optimized for communication
purposes, not for navigation purposes. This means that several
APs can be placed in the vicinity of each other or can transmit
some correlated information. For positioning purposes, it may
be that not all of the available APs carry useful or significant
information. Redundant, unnecessary APs may increase the
difficulty of location estimation and increase the time and
space complexity to build a positioning system [9].

To overcome the problems caused by a large amount of
available data, the number of APs can be decreased by
selecting a subset of APs among all of the availabe APs. With
a suitable subset of APs, it is possible not only to decrease the
amount of data, but also to improve the positioning accuracy
[10], [11]. However, so far there has still been very little
work regarding how to choose the subset and measure the
significance of an AP [7], [12], [13]. Indeed, the existing
studies are limited into one building only, and general rules
are difficult to be drawn based on one particular building.

This paper addresses two related questions: first, whether
we can reduce the fingerprint database in WLAN-based posi-
tioning, by removing some of the available APs and what is
the permissible reduction factor without a large deterioration
in performance, and secondly, which criterion is the best to be
used in AP removal. We continue our previous studies in [11],
by introducing two new selection criteria and by addressing
both the fingerprinting estimation method and the deconvo-
lution based path loss (PL) positioning approach, based on a



large indoor measurement data campaign. The data has been
collected with two different tablets, a Windows tablet and an
Android Nexus tablet, in several buildings in Tampere, Finland
and Berlin, Germany (university buildings, office buildings and
shopping centers). Nokia HERE indoor maps and proprietary
software has been used in the data gathering. In this paper,
we will show that the maxRSS-based removal criterion seems
to be most consistent and to offer the best results among the
other studied methods. Indeed, we will show that it is possible
to remove even up to 50% of the APs in the training phase
without a significant performance degradation.

II. POSITIONING PRINCIPLES
A. Fingerprinting

Fingerprinting has two stages, described below.

1) Training Phase: The fingerprinting (FP) based posi-
tioning method is a database correlation technique, where
a database is first created using pre-measured samples with
known locations in the building of interest (i.e., the training
phase) and then only this database and the current real-time
measurements are used to calculate the position estimate (i.e.,
the estimation phase). The measurement points (i.e., grid
points or FPs) are formed as (z;, ¥; 2i, Pi i), where z;, y; 2;
are the 3D coordinates of the FP i (i = 1, ..., Nyp, where Ny,
is the total number of FPs) and F; ;; denotes the measured RSS
from kth AP in the 7th FP. An AP stands for a MAC address;
several APs can transmit from exactly the same location (e.g.,
as it is the case in WLAN with multiple BSSID). We refer to
those WLANs with multiple MAC addresses from the same
location as Multiple Input Multiple Output (MIMO) WLANS,
by analogy with the most widespread WLAN standard nowa-
days, 802.11n, which supports MIMO transmissions.

In the training phase, we use so-called synthetic grids with
fixed grid resolution. This means that the grid points (i.e., FPs)
have a pre-defined size (e.g., 1 mx 1 m, or 5 m x 5 m, building
dependent) and all samples measured in this area are fixed to
the same grid point. Since the training phase process consists
of several different measurement collections at different time
instants (and they can be collected also continuously, e.g., by
using crowdsourcing), several measurements can occur at the
same grid point. Therefore, when a new sample occurs to a
grid point that already has a sample, all hearable APs are ex-
amined. If a new AP has been detected in the incoming sample,
the AP is saved to the grid point data. If an AP is detected
both in the old and incoming sample, the old RSS value is
replaced by the mean over the old and new RSS values. The
architecture of the positioning system used in this paper is
mobile-based. This means that the user device, e.g., a mobile
station (MS), makes the necessary measurements (here, the
RSSs of the heard APs) and calculates the position estimate.
The training phase data is saved and continuously maintained
and updated on a database (i.e., server) and transferred to the
MS when requested.

2) Estimation Phase: When comparing currently measured
RSS levels by the MS with the RSS levels of the FPs, based
on our studies the best results are achieved by minimizing the

power difference between the observed RSS Oy, and the RSS
of the FP P:k and by maximizing at the same time the number
of commonly heard APs N 4p in the current measurement and
in the FP. This is a common optimization criteria [14] and it
can be performed, e.g., by computing a Gaussian likelihood
function £; for each FP ¢ as a sum of logaritmic likelihoods:

1 O — P,1,)?
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where o4, is a noise variance that takes into account both
shadowing and measurement error effects. Now, if no near-
est neighbour (NN) method is used, the FP i with highest
Gaussian likelihood £; is selected, and the location of this
FP [z;,1;, 2] is returned as MS location ( [z;,y;,2;] =
[Tris: Yniss Zais] )- When the NN method is used, FPs with
highest Gaussian likelihoods are selected, and the position of
the MS is calculated as an average over the corresponding
locations of N,, nearest neighbours as

1 N, N, N,
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B. Deconvolution-based PL positioning

The traditional path-loss model is based on wave propaga-
tion in free space [15] and it is assumed that the path loss
coefficient ny, for the apth AP remains constant within the
distance between the transmitter and receiver. Two modeling
parameters, namely the path loss coefficient n,, and the
transmit power Pr,  for the apth AP, are needed per AP and
they are related to the RSS via

P)i,ap =
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where P; ., is the measured RSS of the apth AP in the
1th measurement point, d;, is the distance between the
apth AP and the ith measurement point (i.e., d;qp =
\/(Ii - xap)Q + (yi — yap)2 + (2 — Zap)Q) and 7);4 is a
Gaussian distributed noise factor with standard deviation o
and zero mean. In our model, it is assumed that the noise
standard deviation o is constant per AP.

As in the fingerprinting approach, the training phase is
needed in the deconvolution-based PL approach as well. In the
training phase, the AP positions x4y, Yap, 2qp and the modeling
parameters ng, and Pp, —are estimated based on the same
database as in fingerprinting method, with z;, y; 2;, P; . Also
here, synthetic grids with a fixed resolution are used. In the
estimation phase, the mobile position estimate is calculated
using the parameters saved per AP in the training phase (i.e.,
estimates for the AP position Z4y, Yap, Zap, Path loss coeffi-
cient 14y and transmit power Pr, ) and the measured RSS by
the mobile. It can easily be noticed, that the motivation for PL
approaches is in the amount of stored data. In fingerprinting
approach, not only the amount of fingerprints may be huge, but
also the data saved for each fingerprint usually demands more




than 10 variables. Besides the fingerprint coordinates (z;, ¥y;
zi), also the AP indexes k and the measured power for the kth
AP P, . need to be saved. E.g., if in a certain fingerprint i the
number of heard APs is 12, we need to save 27 parameters for
this one fingerprint only: 3 parameters for the location, 12 for
RSS and 12 for the AP indexes. In the PL-based approaches,
we only need to store 5 parameters per AP (i.e., Tap, Yap, Zap
, Ngp and PTap).

In the deconvolution-based PL approach, the idea is to
formulate the estimation problem as a deconvolution problem.
In the training phase, the PL model in Eq. 3 can be written in
matricial form as [16]

Pap = Hap O, +n, 4)

where P, is a vector of power fingerprints of apth AP
(e, Pap = [PrapPiap .. Pnpoap]), ©Oqp includes the
unknown AP parameters, except the coordinates (i.e., ©4p =
[Nap Pr,,]), T is the transpose operator, n is a Gaussian
distributed noise vector with size Npx1, and

1 —10wilogi0di,ap —10wnr—1logiodi,ap
Hap= (5)
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In order to solve both unknowns, i.e., Hap and @45, we use
the Least Squares (LS) deconvolution method that is presented
in detail in [16]. Moreover, the AP position in this paper is
estimated using the Gaussian regression based approach [17].

III. AP SELECTION CRITERIA

In this paper, several different AP selection criteria in the
training phase were studied. The criteria are:

1) No selection

- Here, all heard APs are kept. This criterion is
included in the results as a reference, in order to
see the effect of limiting the number of APs. This
also gives the benchmark results.

2) MIMO selection

- WLAN transmitters inside buildings can support
multiple BSSID nowadays, allowing multiple MACs
from the same physical location. The reasoning
behind the MIMO selection criterion (see the ex-
planations for the terminology in Section II A) is
to try to remove redundant information offered by
similar (i.e., closely located) APs. The MIMO APs
(or other APs with several MAC-addresses) are rec-
ognized simply based on the estimated AP location:
if there are several APs located with maximum
one meter distance of each other, only one (with
maximum average RSS) is kept. The unknown AP
locations are estimated using the Gaussian regres-
sion based approach [17] as in the deconvolution-
based positioning approach. Naturally, there may
also occur situations where two or more separate
APs are truly located next to each others. Since the

distance estimation is the only measure to determine
closely located APs in our studies, these kind of
situations are not taken into account, and only one
AP among the closely located APs will be kept. The
number of MIMO APs in total is dependent on the
measurement scenario.
3) KL

- APs are sorted in descending order, based on a

criterion derived by analogy with Kullback-Leibler

(KL) divergence D1, = [dap;,ap;lapi,ap;=1..Nap-
where
dapi’apj = Z Z | Pap, — Fap, | log(|Pap, — Fap, )
i g
(6)

4) Dissimilarities
- Here, the APs are sorted in descending order based
on dissimilarity matrices, that are calculated based
on the difference between the average RSS values
between all APs in the building:

0 | P1— Py |Pr—Png, |
Doe | Py—P1| 0 | Pa—Png, |
|PNap—P1l  |Png,—P2| . 0
@)

where P,p is the mean RSS heard from apth AP.
5) Maximum RSS (maxRSS)
- APs are sorted in descending order based on their
maximum RSS value.
6) Entropy
- APs are sorted in descending order based on so-
called entropy of RSS per AP. The entropy is
calculated and derived by the Authors by analogy
with classical entropy definition [18]:

Eyp = max (Pap X loga (Pap))v (&)

where P, is a vector of power fingerprints of apth
AP (e, P,y = [Prap Prap - - Pny,ap)) and x is
the point multiplication.

In MIMO selection, the number of MIMO APs in total is
dependent on the measurement scenario and on how many
APs at a close physical location were available in a certain
building. Thus, also the removal percentage for the MIMO
case is dependent on the measurement scenario. With the other
criteria, only a certain part of APs is removed: e.g., 20%, 30%,
or 50% out of all APs, and this removal percentage is flexible
and user defined.

IV. MEASUREMENT ANALYSIS
A. Measurement scenarios

The measurement data was collected in 5 different build-
ings (two university buildings, one office building and two
shopping malls) in Tampere, Finland and in Berlin, Germany.
Measurements for both training and estimation phases were
collected manually with two different tablets, a Windows tablet



TABLE I
MEASUREMENT SCENARIOS.

Building Location No. of FPs No. of No. of APs No. of No. of Horizontal

(measurement device) user meas. independent APs floors | grid size [m]
A University building 1 (Nexus) Tampere, Finland 4417 606 358 173 4 1m
B | University building 2 (Windows) | Tampere, Finland 584 176 311 186 3 1m
C Office building 1 (Nexus) Berlin, Germany 624 850 252 166 9 5 m
D Shopping mall 1 (Nexus) Berlin, Germany 1633 520 281 236 6 5m
E Shopping mall 2 (Windows) Tampere, Finland 274 215 43 34 3 1 m

y [m]

x[m]

Fig. 1. Illustration of collected measurement grid for the building A.

and an Android Nexus tablet, that included detailed indoor
maps for each building. After the training phase, the user
tracks used for the positioning analysis here were collected
separately during different days and covering several floors
in each building. The same exact device was used to collect
the training and estimation data for one particular building,
but the devices may have been different from one building to
another. All measurement scenarios, with building descriptions
and main characteristics, are detailed in Table I, showing the
number of FPs (i.e., the number of synthetic grid points in
the training database), the number of user measurements in
the user track, the number of detected APs, the number of
independent APs, the number of floors and the horizontal grid
size (x-y-dimention) of the particular building. The number
of detected APs is the number of individual MAC addresses,
but since some WLAN transmitters may have multiple MAC
addresses, some of the APs here can be at the same physical
location. Therefore, we calculated the number of independent
APs by estimating the AP locations and deciding that all APs
that are closer than 1 m of each other, are MIMO APs and
handled as one AP only.

B. Positioning results

In what follows, the positioning results are presented as
mean distance error in 3D. The mean distance error is
computed by averaging the Euclidean distances between the
estimated location and the true location in a three-dimensional
Cartesian coordinate system (z,y,z). In the fingerprinting
approach, NN-method is used, with NV,, = 5.

Figs. 2 and 3 show the mean positioning error for all
AP selection criteria for Building A with fingerprinting and
deconvolution based PL approach, respectively. The removal
percentage varied between 10% — 70%, except for the MIMO
case, since the number of MIMO APs is dependent on
the measurement scenario. For MIMO selection criteria, the
number of removed APs varied so that only one (with the
highest mean RSS), two or three APs were kept out of those
APs located close to each other. If only one AP was kept, the
removal percentage is naturally the highest (e.g., about 50%
for Building A with fingerprinting approach, see Fig. 2).

Similarly, Fig. 4 represents the mean positioning error for
all AP selection criteria for Building A with fingerprinting and
Fig. 5 with deconvolution based PL approach. As the results
begin to deteriorate fast after a 50% removal, the figures show
the results only up to 50% removal for a clearer visibility of
the relative performance of algorithms. When examining the
Figs. 2 - 5, it can easily be seen, that APs can be removed
with MIMO AP removal criteria keeping only one AP out
of closely located APs without deteriorating the positioning
results. However, since the number of MIMO APs is dependent
on the building, the removal percentage may vary from a few
percent up to 50%. From Figs. 4 and 5, it is also very clear,
that in the case of less MIMO APs (here, around 17%), it is
possible to remove even 50% of the APs with other selection
criteria.

Based not only on the Figs. 2 - 5 but also on the results
obtained for buildings B, C, and E (that could not all be
included here due to the lack of space), it was noticed that the
maxRSS-based AP removal criteria offered the best results
in general when removing 50% of the APs. This holds for
both fingerprinting and deconvolution based PL approach. In
Figs. 2 and 3, it can be seen, that with the Dissimilarities-
based removal method, the mean distance error is already
increased by more than 2 meters, when 30% of the APs are
removed. With other removal criteria (MIMO, KL, entropy
and maxRSS), 50% of the APs can be removed increasing the
positioning errors by less than 0.5 meters. With maxRSS-based
and KL-based removal algorithms, even 70% of the APs can
be removed in the case of Building A, while the entropy-based
algorithm starts to deteriorate very fast after a 50% removal.
The results are very similar for both positioning methods.

For Building D (Figs. 4 and 5), the results are slightly
different. Also here, the entropy-based algorithm begins to
deteriorate faster, but unlike the results for Building A, now



Building A, fingerprinting

107 ,
—a— MIMO K
e KL ]
1
91| - - - Diss. [
- © -max RSS -
£ entropy ST -seT
— 8
S —No removal
5]
]
S 77
E -
6,
5

0 10 20 30 40 50 60 70
removal percentage [%)]

Fig. 2. Mean positioning error for all AP selection criteria. Building A with
fingerprinting.
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Fig. 3. Mean positioning error for all AP selection criteria. Building A with
deconvolution based PL approach.

also the KL-criterion (for fingerprinting) and both the KL-
and Dissimilaritied-based criteria (for deconvolution based PL
approach) are not giving as good results as the maxRSS-based
option for a 50% removal. When comparing all of the results,
it can be seen that the simple maxRSS-based algorithm is
the most consistent among all criteria. This can be seen also
in Table II (for both fingerprinting and deconvolution based
positioning), which represent the mean and median positioning
errors and Root Mean Square Error (RMSE) in meters for all
buildings, with a 50% removal. Results for both maxRSS-
and KL-based algorithms are presented, together with a "no
removal”’-option, that is kept as a reference. When comparing
the results for KL- and maxRSS-based algorithms, it can be
noticed that the results are quite close to each other and the
biggest differences between these criteria are in the case of
building D. One reason for this may be large opening areas
and smaller AP density of this particular building. In general,
the mean positioning error for the fingerprinting approach
is increased by only about 8% with the maxRSS-based and
about 16.5% with the KL-based approach, when compared
with the case without any removal. For deconvolution based
positioning, the mean error is increased by about 6% with the
maxRSS-method and 11.5% with the KL.
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Fig. 4. Mean positioning error for all AP selection criteria. Building D with
fingerprinting.
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Fig. 5. Mean positioning error for all AP selection criteria. Building D with
deconvolution based PL approach.

V. CONCLUSION

In this paper, we have shown via an extensive measurement
campaign, that it is possible to remove up to 50% of the
APs in the training phase with only a 6 — 8% deterioration
in positioning performance. We examined several different
removal criteria and noticed that the maxRSS-based removal
criterion seems to be most consistent and to offer the best
results among the other studied methods. Nowadays, WLAN
transmitters inside buildings can support multiple BSSID and
due to the AP deployment meant for communication purposes,
several APs can be placed in the vicinity of each other or
can transmit some correlated information. Keeping only one
AP among the many closely located ones can in some cases
give the best results by removing most of the repetitive APs,
but in some other building with different AP deployment,
the removal percentage may be very low using the MIMO
criterion. We have shown that even in buildings with less
closely located APs, there are still redundant and unnecessary
APs, and using the maxRSS-based removal algorithm, the
number of APs to be used in the positioning phase can be
lowered significantly. To answer the question raised in our
paper title, not all APs are needed in the positioning phase in
an indoor RSS-based positioning, and, with a properly chosen



TABLE 1T
RESULTS FOR ALL BUILDINGS, 50% REMOVAL.

[ Building | Criteria [ mean error [m] | median error [m] | RMSE [m] |
No removal 5.87 3.11 8.55
A maxRSS 50% 6.00 3.99 8.48
KL 50% 6.15 4.11 8.71
No removal 9.33 7.59 11.96
B maxRSS 50% 9.77 8.08 12.50
KL 50% 9.62 7.91 12.30
No removal 4.01 3.59 4.54
FP C maxRSS 50% 4.92 4.33 5.60
KL 50% 4.82 4.19 5.63
No removal 7.40 6.44 8.51
D maxRSS 50% 8.04 7.16 9.27
KL 50% 10.90 8.52 13.98
No removal 17.47 13.58 23.69
E maxRSS 50% 18.47 13.22 25.27
KL 50% 18.74 13.63 25.42
No removal 9.74 8.21 11.76
A maxRSS 50% 10.06 8.77 12.06
KL 50% 9.84 8.66 11.75
No removal 9.01 7.38 12.45
B maxRSS 50% 9.39 7.44 12.69
KL 50% 9.11 7.19 12.58
No removal 6.09 5.87 6.75
deconv. C maxRSS 50% 6.99 7.26 7.73
KL 50% 6.81 6.46 7.65
No removal 11.05 9.08 13.16
D maxRSS 50% 12.07 10.26 13.77
KL 50% 16.05 16.57 18.32
No removal 20.46 19.51 23.77
E maxRSS 50% 20.22 19.31 23.48
KL 50% 20.12 19.72 23.47

removal criterion, we can remove even up to 50% of the
available APs without a significant performance degradation.
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