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Abstract—Fluctuations in the Received Signal Strength,
caused for example by temporal propagation dynamics
or various mobile types, can decrease the positioning
accuracy in WLAN-based indoor fingerprinting. In this
paper, the effect of an offset between Received Signal
Strength values in the training and estimation phases is
investigated. Our study is based on a huge measurement
campaign that covers in total eight different buildings with
several floors each, in two countries. Different offset types
and offset values are studied on a large scale, in terms of
3D positioning accuracy and floor detection probability. We
will show that biases between −20 dB and +10 dB do not
affect the positioning results in a significant way and that
such biases could be also tolerated without calibration.

I. INTRODUCTION

WLAN-based positioning is becoming more and more
popular in indoor areas, where the traditional Global
Navigation Satellite Systems (GNSS) often fail to of-
fer a position estimate due to the multipath propa-
gation and weak signal powers [1], [2], [3]. A wide
area of Location-Based Services (LBS) and location-
based business models are envisioned for the future,
once the barrier of indoor location is crossed [4].
The underlying multiple access schemes for WLANs
are both Direct Sequence-Code Division Multiple Ac-
cess (DS-CDMA) and Orthogonal Frequency Division
Multiplexing (OFDM) techniques and the underlying
modulations range from Binary Phase Shift Keying
(BPSK) to higher order Quadrature Amplitude Modu-
lation (QAM). Thus, Time-Of-Arrival (TOA) or Round-
Trip-Time (RTT)-based estimations for WLAN location
are still not widespread, due to the many different under-
lying physical layer features of WLANs on the market.
Alternatively, the Received Signal Strength (RSS) or
the Received Signal Strength Indicator (RSSI) of the
signal can be used for the positioning purposes. RSS-
based positioning methods have the advantage of easy
accessibility, availability in almost every device and cost
effectiveness due to the ability to utilize the current
wireless infrastructures.

Many RSS-based positioning methods involve two
stages: an initial off-line training phase and an on-

line estimation phase, where the actual mobile position
estimation is done [1], [5], [6]. It is generally known that
since the positioning process is divided into two phases,
the RSS fluctuations may decrease the positioning ac-
curacy. In the training phase, models and databases are
built based on collected information about the indoor
environment. The information can be collected in a ded-
icated mode (where the samples are collected in advance,
usually with one device only) or a crowd-sourced mode
(where the mobiles collect the samples continuously).
Typically, this information includes data samples such
as measurement point coordinates and RSS values that
have been collected with the help of indoor maps of
the particular building. These location-sensitive samples
are usually called fingerprints (FPs). In the estimation
phase, that involves real-time processing, the unknown
position of a mobile station (MS) is estimated based on
the information saved in the training phase. Now, if the
RSS that is saved to the database in the training phase
differs significantly from the RSS of the user device in
the real-time localization phase, the positioning accuracy
may be degraded. An offset in RSS values can be
caused for example, by different equipment type, which
is especially true in crowd-sourced data collection (this is
most likely seen as a constant positive or negative bias),
temporal propagation dynamics such as user orientation,
body losses in more or less crowded period during
the training phase compared with the estimation phase
(random bias) or environmental changes between the two
phases.

Due to the possible biases between the RSS values
in the training and estimation phases, both calibration
techniques and different calibration-free positioning al-
gorithms have been proposed, e.g. in [7], [8] and [9].
There are studies that present how different equipment
measures the RSSI, e.g. [10] and [11]. In [12], the
effect of three dynamic factors (relative humidity level,
people presence and movements, and open/closed doors)
to the positioning accuracy was studied shortly, but the
study was limited into one corridor only with very few
Access Points (APs) and the amount of the RSS offset



is not specified or studied at all. Also in [13], where
the positioning performance of different devices in the
same environment was studied, the indoor environment
was limited to two corridors of one-floor only. Thus, as
far as the authors know, there are not any publications or
research on the effect of the different types of a bias: how
much a constant or a random bias affects the positioning
results? What is the amount of bias that is still reasonable
in terms of positioning accuracy? How about a bias
that occurs only in some regions of a building? Our
study aims at giving an answer to these questions.
Indeed, many papers rely on some measurements, but
they address only one floor and/or one building. Our
measurements cover in total eight different buildings in
two different countries, all of them with several floors
(between 3-9 floors).

This paper is a comprehensive study of the effect
of a bias between the RSS values in training and
estimation phases. This kind of analysis has not been
done before on a such a large scale. We address fin-
gerprinting estimation method and will show the effect
of different bias types and values, based on a huge
indoor measurement data campaign. The data is collected
with two different tablets, a Windows tablet and an
Android Nexus tablet, in several buildings in Tampere,
Finland and Berlin, Germany (university buildings, office
buildings and shopping centers). Exactly the same device
was used to collect the training and estimation data for
one particular building, but the devices may have been
different from one building to another. In our study, we
show that biases between −20 dB to +10 dB are easily
tolerated in indoor environments. This finding is an
important one for the purpose of future indoor WLAN-
based positioning which will rely on crowd-sourced data
collected with various mobile devices.

II. POSITIONING PRINCIPLE

A. Training Phase

In the FP-based positioning method, the main idea is
to first create a database in the training phase using pre-
measured samples with known locations in the building
of interest and then use only this database and the current
real-time measurements in the estimation phase. The
measurement points (i.e., grid points or FPs) are formed
as (xi, yi zi, Pi,k), where xi, yi zi are the 3D coordinates
of the FP i (i = 1, ..., Nfp, where Nfp is the total
number of FPs) and Pi,k denotes the measured RSS
from kth AP in the FP i. Since in this paper, a bias b is
artificially added to the original measured RSS Pi,k, the
FPs are formed as (xi, yi zi, ˆPi,k), where ˆPi,k = Pi,k+b.
Our artificial added bias tries to model the effect of
a bias coming e.g. from various mobile devices, from
different device orientations, and from different level of
crowdiness in the measurement areas (influencing the

body absorption levels). We will adopt two models of
such a bias: either a constant one (which may happen
when the training data was collected with a single mobile
device different from the device used in the training)
or a random one (which may happen when the training
data was collected in a crowd-sourced mode, with many
different devices).

In the training phase, we use so-called synthetic grids,
where the grid resolution is fixed. The grid points (i.e.,
FPs) have some pre-defined size (e.g., 1 m x 1 m, or 5
m x 5 m, building dependent) and all samples measured
in this area are fixed to the same grid point. Since
the training phase process consists of several different
measurement collections at different time instants (and
can be collected also continuously, e.g., by using crowd-
sourcing), several measurements can occur in the same
grid point. Therefore, when a new sample occurs to a
grid point that already has a sample, all hearable APs
are examined. If a new AP has been detected in the
incoming sample, the AP is saved to the grid point data.
If an AP is detected both in the old and incoming sample,
the old RSS value is replaced with mean over the old
and new RSS values. The architecture of the positioning
system used in this paper is mobile-based. This means
that the user device, e.g., a mobile station (MS), makes
the necessary measurements (here, RSSs of the heard
APs) and calculates the position estimate. The training
phase data are saved and continuously maintained and
updated on a database (i.e., server) and transferred to
the MS when requested.

B. Estimation Phase

When comparing currently measured RSS levels (in
dBm) by the MS to the RSS levels of the FPs, the most
typical optimization criteria are
1) to minimize the power difference between the ob-
served RSS Ok and the RSS of the FP ˆPi,k [14] or
2) to maximize the number of commonly heard APs
NAP in the current measurement and in the FP (test
rank based method) [9] or
3) to take into account both of the previous criteria as
well as possible, e.g., by computing a Gaussian likeli-
hood function Li for each FP i. This is a special case
of the criterion 1 and the most widely used optimization
criterion in fingerprinting [15].
The Gaussian likelihood function Li is calculated for
each FP i as a sum of logaritmic likelihoods:

Li =

NAP∑
k=1

log

(
1√

2πσ2
ap

exp

(
− (Ok − ˆPi,k)

2

2σ2
ap

))
,

(1)
where σap is a noise variance that represents both
shadowing and measurement error effects. Now, if no



nearest neighbour (NN) method is used, the FP î with
highest Gaussian likelihood Lî is selected, and the
location of this FP [xî, yî, zî] is returned as MS loca-
tion ( [xî, yî, zî] = [xM̂S , yM̂S , zM̂S ] ). When the NN
method is used, FPs with highest Gaussian likelihoods
are selected, and the position of the MS is calculated
as an average over the corresponding locations of Nn

nearest neighbours

[xM̂S , yM̂S , zM̂S ] =
1

Nn

([
Nn∑
n=1

xî,

Nn∑
n=1

yî,

Nn∑
n=1

zî

])
.

(2)

III. MEASUREMENT ANALYSIS

A. Measurement scenarios

The measurement data was collected in 8 different
buildings (two university buildings, two office buildings
and four shopping malls) in Tampere, Finland and in
Berlin, Germany. Since the AP infrastructure was re-
newed for one university building after the first mea-
surement collection, the collection was performed again
to have one measurement scenario more. Measurements
for both training and estimation phase were collected
manually with two different tablets, a Windows tablet
and an Android Nexus tablet, that included detailed
indoor maps for each building. The same device was
used in one building, but the device may have changed
from one building to another. After the training phase,
the user tracks used for the positioning analysis here
were collected separately during different days and cov-
ering several floors in each building. All measurement
scenarios, with building descriptions and main charac-
teristics, are detailed in Table I, showing the number
of FPs (i.e., the number of synthetic grid points in the
traning database), the number of user measurements in
the user track, the number of detected APs, the number
of floors, the rough estimate of the building size and the
AP density of the particular building. We remark that an
AP stands for a MAC address; several APs can transmit
from exactly the same location (e.g., as it is the case in
WLAN with multiple BSSID).

B. Adding a bias to the original FPs

When studying the effect of a bias between the RSS
values in training and estimation phases, a bias b is
added to the original measured RSS Pi,k (in dBm) in
the FPs. Both constant and random bias are examined,
as well as a case of localized constant bias, where a
bias occurs just for a certain part of the FPs for every
floor. A constant bias (negative or positive) can be caused
e.g. by different mobile types in training data collection.
Temporal propagation dynamics such as user orientation,
or body losses in more or less crowded period during
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Fig. 1. Illustration of a localized bias for 3-floors of the building A.

the training phase compared with the estimation phase
can instead cause randomizity to the RSS values in the
FPs. Same holds for manual mode in the training phase
or on-going training phase in a crowd-sourced manner,
where several different types of mobile devices are used.
A localized bias can be caused e.g. by environmental
changes between the training and estimation phase or
by only partly updated FP database. A localized bias is
illustrated in Fig. 1, where all of the FPs are shown for
three floors of Building A. The blue crosses represent the
positions of the FPs without a bias and magenta dots
represent the positions of the FPs with a bias. In this
example, a bias occurs for 30% of the FPs. The areas
with a bias are created by choosing first randomly one FP
and then adding a bias to this FP and every neighboring
FP within 20 m range [16]. Then, the next FP is chosen
randomly and a new area with the bias is created. This is
continued as long as the chosen percentage (e.g., 30%)
of the FPs with a bias is filled.

C. Positioning results

In what follows, the positioning results are presented
as Mean Distance Error in 3D (MDE), Floor Detection
Probability (FDP) and Percentage of Distance Errors
(PDE) of less than 5 m. The MDE is computed by aver-
aging the Euclidean distances between the estimated lo-
cation and true location in a three-dimensional Cartesian
coordinate system (x,y,z). Floor detection is estimated
separately, by looking at the z-coordinate of the position
estimate and choosing the closest floor. In our analysis,
both constant and random bias were analyzed by varying
the amount of a bias between −50 dB and +50 dB.
In the position estimation, NN-method is used, with
Nn = 5. The noise variance σap, that represents both
shadowing and measurement error effects, was assumed
to be equal for all APs and was chosen to be σap = 10
dB, which showed consistently good results in all of



TABLE I
MEASUREMENT SCENARIOS.

Building Location No. of No. of No. of No. of Building AP density
(measurement device) FPs user meas. APs a floors size [m] per m2

A University building 1 (Windows) Tampere, Finland 1476 158 309 4 163× 58 0.0029
B University building 1, renewed (Nexus) Tampere, Finland 505 181 238 4 135× 55 0.0033
C University building 2 (Windows) Tampere, Finland 584 176 353 3 152× 93 0.0051
D Office building 1 (Nexus) Berlin, Germany 624 850 333 9 75× 65 0.0133
E Office building 2 (Nexus) Tampere, Finland 844 143 994 7 59× 61 0.0408
F Shopping mall 1 (Nexus) Berlin, Germany 1633 520 405 6 205× 235 0.0019
G Shopping mall 2 (Windows) Tampere, Finland 1789 205 326 6 160× 139 0.0021
H Shopping mall 3 (Nexus) Berlin, Germany 306 776 503 3 175× 160 0.0062
I Shopping mall 4 (Windows) Tampere, Finland 274 215 69 3 152× 123 0.0010

aEach AP is identified by an individual MAC-address, but since some WLAN transmitters may have multiple MAC-addresses, some of the
APs here can be at the same physical location.

the buildings, and according to the average shadowing
variance observed in WLAN indoor channels [17]. For
the cases of random bias and localized bias, all of the
results are averaged over 1000 random iterations.

MDE, FDP and PDE are shown in Tables II, III and
IV, respectively. In each table, the first row (bias b = 0)
shows the results without any bias and it is kept as a
reference. All of the data scenarios are included, and
the results are shown with various constant bias values,
with two different scenarios of random bias and with
two different scenarios of localized bias. For the random
bias, the amount of a bias was varied between −10 dB
and +10 dB (case 1) and between −50 dB and +50 dB
(case 2). In the localized bias case 1, the bias is set up
to be −10 dB for 50% of the FP database and +10 dB
for the rest 50%. In the localized bias case 2, +10 dB
bias occurs in 70% of the FPs, and 30% of the FPs are
without any bias. When studying the tables II, III and
IV, it can be seen that the constant bias b = −10 dB
affects the results very little, if any. The averaged MDE
over all of the data scenarios remains totally the same
than in the reference case (bias b = 0) and both FDP
and PDE decrease only slightly (−0.5% and −0.2%,
respectively). Almost as good results are obtained for
a posivite constant bias b = +10 dB. In this case,
MDE deteriorates less than 1 m in four buildings and
less than 2 m in seven buildings. Same holds for FDP
(4% decrease on average) and PDE (4.3% decrease on
average). The same conclusion can be drawn also based
on Fig. 2 showing the Cumulative Distribution Function
(CDF) of absolute distance error for building A (upper
plot of Fig. 2) and building F (lower plot of Fig. 2) for
random bias case 2 and constant biases of b = +/− 10
dB, b = +/ − 30 dB and b = +/ − 50 dB. As good
results as for the constant bias of +/−10 dB are obtained
also for the two localized bias cases, where either two
different biases (+/ − 10 dB) are covering the whole
building (i.e., localized bias, case 1) or a bias of 10 dB

occurs in some part of the building only (i.e., localized
bias, case 2).

For constant bias b = −20 dB, the results are around
the same level than for b = +10 dB. After this, i.e.
b = −30 dB or less and b = +20 dB or more, the results
start to deteriorate slightly more. However, based on
[13] and [18], it seems that the offset between different
mobile types is usually less than +/−20 dB. It can also
be seen that in some cases, the results seem to improve
with a bias (e.g., MDE and FDP with b = −10 dB, for
buildings C and E). This however can be explained by
the fact that due to the manual data collection, we assume
an error of appr. 0.5−1 m both for the training phase data
and for the user measurement locations. The difference
between the results for buildings A (University building
1) and B (University building 1 with renewed AP infras-
tructure) is caused by the number of the FPs and APs
(see Table I). After the AP infrastructure was renewed,
the measurement collection phase was not as wide as
previously, and the number of FPs in the renewed case
is just around one third of the FPs in the original case.
Indeed, also the number of heard APs is less.

In the case of random bias, a different uniformly
distributed random bias either between −10 dB and +10
dB (case 1) or between −50 dB and +50 dB (case 2)
was added for every heard AP in every FP. As it can
be seen in Tables II, III and IV, the smaller random
bias (i.e., case 1) affects the results very slightly, if any.
Both MDE and FDP are at the same level for every
building, and also PDE is decreased only by ca. 2 meters
on average. In most buildings, also the random bias with
higher variation (i.e., case 2) affects the MDE with less
than 3 meters and to the FDP with less than 10%, as can
be seen in Tables II and III. However, the PDE is clearly
affected more, as noticed both in Table IV and in Fig. 2.
One reason for this pretty good performance of a random
bias may be the APs with multiple MAC-addresses, since
the AP locations are not known or estimated and since
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Fig. 2. CDF of absolute distance error for building A (upper plot) and
building F (lower plot).

the bias for each AP (i.e., for each MAC-address) is
chosen randomly.

Based both on the Fig. 2 and Tables II, III and IV,
we can conclude that both constant or random biases
between −20 dB to +10 dB covering either the whole
building or only parts of it, can be easily tolerated in
indoor environments. Indeed, in most cases a positive
bias affects more than a negative. This is also intuitively
clear, since a negative bias in the FPs actually means that
the measured RSS by the mobile are relatively higher.
Thus, since high RSS values occur in smaller areas in
the AP coverage area than lower values, the positioning
accuracy is also better.

IV. CONCLUSION

In this paper, we have shown the effects of offsets
between the RSS values in the training and estimation
phases of fingerprinting. Both constant and random bi-
ases were investigated, covering either the whole build-
ing or only parts of it. The results are presented in terms
of positioning accyracy and floor detection probability.
Based on a huge measurement campaign, it has been
shown that either constant or random biases between

−20 dB and +10 dB do not increase the positioning
errors as much as it is generally believed. This holds
both for a bias in whole building and for localized bias,
that occurs only in some parts of the building. Thus,
these amounts of biases can be easily tolerated without
any calibration. Indeed, a random bias with relatively
high variation between −50 dB and +50 dB did not
affect significantly the MDE and FDP, but the decrease
can be seen mostly in PDE.
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TABLE II
MEAN DISTANCE ERROR [M] IN 3D.

Building Building Building Building Building Building Building Building Building
Bias b [dB] A B C D E F G H I mean

0 4.7 6.0 10.1 4.0 3.5 7.9 10.7 9.2 17.7 8.2
−10 4.9 6.2 9.8 4.9 3.3 8.5 10.5 9.7 16.0 8.2
+10 5.4 7.8 12.8 3.6 3.9 8.8 12.6 10.9 25.3 10.1
−20 5.9 6.9 9.6 6.0 3.3 9.9 12.1 10.9 17.4 9.1
+20 6.9 9.8 18.1 3.6 4.5 11.2 15.7 12.6 29.7 12.5
−30 7.2 7.5 9.9 6.8 3.5 12.2 14.6 12.4 24.2 10.9
+30 9.9 11.0 25.5 4.4 5.3 14.5 20.5 14.9 34.5 15.6
−40 12.1 12.3 12.7 8.9 5.1 16.6 18.5 15.7 34.7 15.2
+40 15.4 15.5 34.3 6.9 7.4 16.3 23.3 19.2 41.7 20.0

Random, case 1 4.8 6.2 10.5 4.0 3.4 8.0 10.9 9.5 18.6 8.4
Random, case 2 7.2 8.8 11.2 5.5 3.9 9.3 14.3 13.0 21.5 10.5

Localized, case 1 5.4 7.1 11.6 4.6 3.6 8.6 11.4 10.6 20.8 9.3
Localized, case 2 5.1 7.3 11.9 4.0 3.8 8.4 12.1 10.3 22.2 9.5

TABLE III
FLOOR DETECTION PROBABILITY [%].

Building Building Building Building Building Building Building Building Building
Bias b [dB] A B C D E F G H I mean

0 89.9 97.2 86.9 92.7 79.7 88.1 84.4 84.0 91.6 88.3
−10 90.5 96.7 92.6 92.0 82.5 88.3 79.5 84.4 92.6 88.8
+10 84.8 92.3 75.0 92.0 79.7 85.2 77.1 80.8 91.6 84.3
−20 87.3 96.7 90.3 92.5 79.0 90.0 67.8 82.1 94.4 86.7
+20 82.3 86.7 66.5 89.6 73.4 81.2 58.5 78.0 91.6 78.6
−30 81.6 94.5 86.9 88.2 78.3 91.2 60.0 76.7 92.6 83.3
+30 74.1 75.5 46.6 84.8 73.4 82.7 47.3 72.9 95.8 72.6
−40 70.9 77.9 68.8 76.0 59.4 80.0 51.7 63.0 94.0 71.3
+40 61.4 61.3 33.0 72.9 59.4 82.5 37.6 54.3 94.4 61.9

Random, case 1 89.7 97.2 87.6 92.9 80.6 86.9 82.7 84.3 90.2 88.0
Random, case 2 80.8 86.8 74.2 86.2 78.9 84.7 61.9 76.0 92.4 80.2

Localized, case 1 87.1 94.4 83.6 90.6 79.8 86.9 76.5 82.3 92.2 85.9
Localized, case 2 86.7 93.6 78.2 91.8 78.7 85.5 79.0 81.9 90.4 85.1

TABLE IV
PERCENTAGE OF DISTANCE ERRORS LESS THAN 5 M [%].

Building Building Building Building Building Building Building Building Building
Bias b [dB] A B C D E F G H I mean

0 64.4 47.5 24.4 69.8 75.8 30.0 15.9 23.6 10.0 40.2
−10 66.6 46.0 32.0 56.5 79.1 29.1 17.5 22.3 11.3 40.0
+10 54.4 37.2 21.2 77.6 71.6 28.4 13.1 16.1 3.5 35.9
−20 54.9 43.9 29.3 37.3 82.0 25.9 12.2 18.9 10.6 35.0
+20 41.0 29.4 10.1 77.1 66.4 21.2 9.0 12.5 4.0 30.1
−30 44.9 41.6 26.7 26.3 77.0 17.0 6.7 17.7 7.7 29.5
+30 27.3 17.7 5.7 64.4 53.6 15.0 5.6 7.2 4.0 22.3
−40 17.1 21.2 16.8 11.8 58.9 4.4 4.6 13.9 0.2 16.5
+40 10.8 6.4 2.5 35.6 36.1 6.5 2.4 6.4 0.6 11.9
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