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ABSTRACT 

In this paper, we present anomaly detection and diagnostics for articulated frame steered hydraulic wheel 

loader. The presented methodology is based on the analysis and comparison of the responses of a dynamic 

mathematical model and a real wheel loader using a joint probability distribution of correlation coefficients of 

multiple variables. The behaviour of an undamaged machine is modelled by probability density functions of 

the correlation coefficients using histograms and test how well the future behaviour fits the model. First, the 

time series data of multiple variables are segmented into segments of the same length. Correlation 

coefficients are then calculated for each segment and the distributions of the correlation coefficients are 

estimated by computing probability density functions using histograms. Finally, the joint probabilities that the 

correlations in the data segments of the time series data are observed are calculated using the already 

computed histograms. The diagnostics is based on the combination of static threshold and threshold based 

on mean value of joint probabilities. The dynamic mathematical model of the wheel loader is presented with 

verification results. A jammed flushing valve of the hydrostatic transmission was used as an anomaly to 

study the changes in the joint probability values. Finally, the efficiency of the presented method is presented 

with good results regarding detection of anomalies and diagnostics of the wheel loader. 

KEYWORDS: Diagnostics, time series, anomaly detection, joint probability, correlation coefficients, 

simulation, dynamic mathematical model, wheel loader, hydraulics   

1. INTRODUCTION 

Diagnostics and fault detection of machine systems have been studied widely and significant amount of 

literature exist of it. See for example the following surveys [1], [2], [3]. Diagnostic techniques can be 

generally classified into two approaches, depending on whether the diagnostics assessment is based on 

deterministic or on stochastic information (e.g. historical, statistical parameters) [4], [5]. Segmentation and 

feature extraction are two major components of time series analysis employed in diagnostics. Segmentation 

[6], [7] is a method which allows the dividing of time series data into smaller groups of data sets which 

describe the patterns of the measured variables. Feature extraction involves extracting relevant and 

discriminating information, and in so doing, reducing data dimensionality: see [8], [9]. The extracted features 



are then used to derive the status and the condition of the system using for example classification methods 

[9], [10], [11].  

The use of simulation models in the development of highly automated machines is becoming a necessity 

[12], [13], [14]. Models are typically created during the early development phase of a machine. However, 

these simulation models are not effectively utilized in the later phases of product lifecycle. In this paper, 

previously developed methodology [15], [16], originally developed in simulator environment [14], for using a 

dynamic simulation model of the machine system for diagnostics purposes is used and the results are 

verified in real machine environment. In this methodology, the responses of a real undamaged machine and 

a dynamic mathematical model of this machine are analysed and compared from a stochastic point of view 

based on probabilities. This means, a statistical model using certain drive sequences of a real undamaged 

(i.e. healthy) machine and simulated undamaged machine is build and tested how well the future behaviour 

fits this model. 

In the following sections, we present an approach to the anomaly detection and diagnostics of a wheel 

loader. Section 2 introduces our studied machine, a wheel loader and its dynamic mathematical model. 

Section 3 describes the methodology to analyse time series data. In section 4 experiments to acquire the 

data and analysis results are presented, followed by the conclusion in section 5.  

2. STUDIED WHEEL LOADER AND DYNAMIC MATHEMETICAL MODEL 

In this chapter, the studied wheel loader and the developed dynamic mathematical model are presented with 

verification results. The wheel loader was engineered at the Department of Intelligent Hydraulics and 

Automation at Tampere University of Technology [17]. The wheel loader is shown in Fig. 1. 

 

Figure 1. Studied wheel loader [17]. 

2.1. Analysed sub-system – hydrostatic drive (HSD) 

An overview of the hydraulic systems of the wheel loader, which are related to the analysis performed in this 

study, is given here. To be precise, the analysed sub-system is hydrostatic drive (HSD). More details about 

the machine are presented in [17]. Fig. 2 shows a simplified hydraulic circuit of the closed loop HSD of the 

machine.  

 



 

Figure 2. HSD of studied wheel loader. Flushing valve is highlighted with coloured dash line.  

The main source of power is a 100 kW four-cylinder diesel engine. The HSD pump has a displacement of 

110 cm
3
/r and contains various integrated hydraulic components, sensors and electronics to implement the 

closed-loop control of the swivel angle and the data communication.  

Both the diesel engine and the pump are connected to the control system of the machine via the CAN bus. 

They also have separate control units, which are connected to the CAN bus, offering data from integrated 

sensors. Therefore, via the CAN bus several parameters related to the operation of these components, e.g. 

rotational speed of the diesel engine and displacement of the HSD pump, can be monitored and recorded for 

later analysis. 

Every wheel of the machine is equipped with a slow speed hydraulic hub motor, with a displacement of 470 

cm
3
/r. The displacement of the motors can also be reduced into 235 cm

3
/r when the displacement is 

bisected. Each motor has a pressure controlled holding brake and an integrated sensor for measuring 

rotational speed. A separate hydraulic gear pump provides the power needed by the steering system. The 

steering of the machine can be controlled using proportional flow control valve and two symmetrically placed 

hydraulic cylinders.  

The valve connected to the ports A and B of the pump is called a flushing valve. A certain amount of flow is 

always circulated through this valve to the tank from the lower pressure side of the pump. This reduces the 

temperature of the fluid and the amount of impurities in it. In this research, this valve has been taken out to 

simulate a jammed flushing valve of the hydrostatic drive transmission which is used as an anomaly to study 

the changes in the joint probability values and to verify the results of anomaly detection and diagnostics. This 

component was selected because jamming of the valve cannot be directly recognized by the operator during 

normal use of the machine. 

2.2. Dynamic mathematical model of wheel loader 

The diesel engine of the studied machine has a common rail injection system. The most significant part 

affecting to the engine dynamics is the torque generation in the combustion chamber. This is modelled using 

a first order system, whose time constant depends on the rotational speed of the engine. The dynamics of 

fuel injection system is very fast and it is modelled using a 1st order system with a small time constant and a 

PID-controller. The dynamics of the engine model is verified with separate laboratory measurement data. A 

detailed description of the engine model is presented in [18] and [19].  

The model of the HSD variable displacement pump presents the linear dependency leakage flow and loss 

torque as a function of port pressures and rotational speed. The equations for the hydraulic pump, and 

hydraulic fluid volumes are presented in [20] and they are based on [21], [22], [23], [24]. In the simulation 

model a viscosity of the hydraulic fluid is constant, pressures in the control chambers are distributed evenly 
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and the pressure of the oil tank is constant. The dynamics of the displacement of the HSD pump are 

modelled with a delay and a first order transfer function, which is different for increasing and decreasing 

displacement. The HSD pump displacement controller includes a rate limiter and a cut off pressure functions, 

which are also modelled. The HSD pump model is verified based on separate step and ramp response 

measurements. A constant displacement auxiliary hydraulic pump feeding a hydraulic fluid from the tank to 

the HSD system through the check valves is included to the hydraulic model.  

The leakage model of the HSD hub motors with two different configurations for the displacement is 

formulated the same way as the HSD pump. Mechanical efficiency of the hub motors is modelled with a 

bristle type dynamic friction torque model presented in [20], based on [25]. Parameters of the HSD motors 

are based on the measurement data provided by the manufacturer. The dynamics of the displacement 

change of all the four HSD motors is verified using the measurement data of the field tests instead of 

laboratory test bench data.  

The flushing valve contains one flow control spool and one pressure relief valve after the spool, see Fig 2. 

Opening of the spool depends of the pressure difference of the A and B port pressures and a certain 

pressure difference, in this case 16 bar, is needed to open the valve against to the spring. The pressure – 

volume flow characteristics of the spool is modelled using look-up table data and dynamics of the spool 

using a first order transfer function. This parameter data was taken from the manufacturer catalogue. All 

pressure relief valves including one in the flushing valve are modelled with a semi-empirical model using 

catalogue data of the manufacturer and is described in more detail in [20].  

The mathematical model of the mechanics of the studied machine includes models of the machine body and 

a tyre-road interaction model; see Fig. 3 for schematics of the mechanical model. The tyre-road model is 

presented in [18], [20]. It is based on [26] and the parameter data was got from the manufacturer. The body 

of the machine is assumed to be rigid and Matlab/SimMechanics toolbox is used to calculate 6DOF 

dynamics of the machine. The boom masses were taken from manufacturer data and the axle weights of the 

machine were measured. Machine body masses and inertia parameters are estimated based on this data. 

 

Figure 3. Schematics of machine mechanical model.  

2.3. Verification of simulation model 

The dynamic mathematical model described in the previous section was verified with the data of over 50 

different acceleration/deceleration tests. 13 different tests of these 50 were conducted both with functional 

flushing valve and without it, and four of them were repeated twice for testing the repeatability. These data 

were utilized in tuning the parameters of the simulation model. In this paper, three different cases for 

verification are shown. 

The reference signals of the actuators (HSD pump and motor displacements, rotational speed of the diesel 

engine) of HSD were generated with a computer, but the starting time of acceleration and deceleration 

phase were defined manually by the user. The measurement data was recorded with 1 kHz sampling 

frequency to the hard drive of the machine and downloaded after the test to a storage drive. The tests were 



done at flat asphalt terrain. Afterwards, the recorded references are used as inputs also to the simulation 

model. The measured variables for the verification were as shown in Table 1. 

Table 1. Measured variables for verification of dynamic mathematical model. 

Signal Range Unit 

Diesel engine rotational speed 0…2200 rpm 

HSD pump displacement -100…100 % 

Machine velocity 0…20 km/h 

Consumption of diesel engine 0…20 kg/h 

Pressure at port A 0…400 bar 

Pressure at port B 0…400 bar 

 

Figure 4 presents a verification test case 1 in which the machine is accelerated with a predefined 2 s ramp 

reference change of the HSD pump from 0 to 70% and keeping the diesel rotation speed reference at 1000 

rpm. After reaching steady-state the diesel rotation reference was risen stepwise to from 1000 rpm to 1900. 

Finally, the machine was stopped driving the displacement of the HSD pump to 0 with a 0.7 s ramp. 

Displacement of the hydraulic motors was held constant (100%) during the test. The temperature of the 

measured hydraulic fluid was 38 degrees of Celsius in this test case.   

In the verification case 2 presented in Fig. 5, the machine was driven with constant diesel engine rotation 

speed 1300 rpm and rising the displacement of the HSD pump stepwise from 0 to 60%. In the measurement 

of the pump displacement there can be seen slight overshoot. Because of the first order dynamics of the 

HSD pump model this phenomenon cannot be seen at the simulation curve. However, this does not give a 

big error to the operation of the machine, especially because the pump very rarely is controlled with stepwise 

control signal, and there is no need to use a second order model. At the time 8 s, the hydraulic motors were 

set to the half displacement and the velocity is increased from about 8 m/s to 15 m/s. In this measurement 

the temperature of the hydraulic fluid was only 23 degrees of Celsius and because of this the velocity of the 

machine is about 0.6…0.8 m/s greater than the simulated velocity in the steady state. In all simulations the 

viscosity of the hydraulic fluid was kept as a constant. 

Figure 6 presents a verification test in which the flushing valve is inactive. The machine was accelerated with 

a predefined 2 s ramp reference change of the HSD pump (from 0 displacement to 50 %) and stopped with a 

0.5 s ramp. In this test case, the hydraulic motors were set to half displacement. In this case, the verification 

results are also satisfactory, as they were also in all other test cases not discussed in this paper. It can be 

concluded that the model is suitable to be used in anomaly detection and diagnostics study presented in 

Sections 3 and 4, as well as in control system development presented in [27]. It should be highlighted, that 

the direct comparison between the measurements with active and inactive flushing valve for fault detection 

purposes is impossible and some other approach is needed. 

Random (short time, high amplitude) error values were detected in some wheel speed measurements, which 

were done using Hall sensors and a gear ring installed in the wheel axles. Because of this the velocity 

measurement of the machine was not used at the time series data analysis discussed in Section 4. 



 

Figure 4. Verification case 1. With flushing valve. 

 

Figure 5. Verification case 2. With flushing valve. 

 

Figure 6. Verification case 3. Without flushing valve.  
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3. ANALYSIS OF TIME SERIES DATA 

Analysing and comparing the responses of a real work machine and a corresponding dynamic mathematical 

model can reveal deteriorated conditions and evolving failures. In this study, a statistical method called a 

joint probability distribution [16] is utilized for this purpose. In this method, the main idea is to model the 

behaviour of the system with probability density functions of the correlation coefficients for segmented 

multivariate time series data using histograms and test how well the future behaviour fits the model. The 

modelled histograms are then used to derive the joint probability values and furthermore the distributions of 

these values. Comparison of the joint probability values of multiple variables of individual segments or whole 

drive sequence enables us to detect effectively different anomalies [16].  

When the correlation coefficients of the segmented multivariate data belong to sections of histograms where 

the probability is very low, then it is treated as rare occasion and the probability of an anomaly is high. Again, 

if the correlation coefficients belong to sections where the probability is high, it is treated as normal 

behaviour. On the basis of this information further actions can be targeted on essential subsystems and 

specific work movements. The main goal is not to try to allocate reasons for possible differences to a specific 

part of a component or even to a component. The output from the analysis is to verify whether all machine 

functions correspond to the requirements and to reveal response anomalies and other characteristics in 

machine operation. The complete procedure for the analysis of time series data will be explained in the 

following sections. 

3.1. Data selection and segmentation 

In the analysis, the data are first selected and parsed from the measurements to acquire specifically the data 

from the acceleration and deceleration phases. This way we can reduce the data dimensionality, 

synchronize and capture the most relevant data in regards to the analysis [9].  

After data selection, the data sets are segmented (i.e. divided) into equal lengths where the segments are 

overlapping. Segmentation allows the dividing of time series data into smaller groups of data sets which 

describe the patterns of the measured variables. Segmentation enables allocation of the segments in the 

time series data that generates anomalies. The length of the segments was chosen long enough to capture 

transient periods which contain the most relevant data in regards to anomaly detection and diagnostics, but 

not too long, because otherwise the contribution of the important phenomena in the correlation coefficients 

decreases.  

The measured signals after data selection are denoted 𝒙𝑖 for 𝑖 = 1, … , 𝑚, where 𝑚 is the number of signals of 

interest. We will assume 𝑁 data segments and let data segment 𝑗 contain 𝑛 data samples sampled at time 

instances 𝑡1
𝑗
, … , 𝑡𝑛

𝑗
 for 𝑗 = 1, … , 𝑁. Our earlier assumption on overlapping segments thus requires that 

𝑡1
𝑗

< 𝑡1
𝑗+1

< 𝑡𝑛
𝑗
. 

3.2. Estimated distribution of correlation coefficients and observed joint probability distributions  

In different sub-systems of a machine, the data signals are mostly dependent to each other and in case of an 

anomaly these dependencies change in certain way. We will build statistical models of these dependencies 

and use these models to discriminate the faulty machines by detecting when the correlations deviate from 

the model of the undamaged machine. 

When two sets of data are strongly linked together they have a high correlation. To compare extracted 

segments of multiple variables, correlations are calculated for each variable pair. The correlation coefficient, 

denoted by r, tells how closely data in a scatterplot fall along a straight line. The closer the absolute value of 

𝑟 is to one, the better the data are described by a linear equation. The value 𝑟 =  1 means a perfect positive 

correlation, and the value 𝑟 =  −1  means a perfect negative correlation. Data with values of 𝑟 close to zero 



show little to no straight-line relationship. Pearson's correlation coefficient
 
[28] is defined in Eq. 1. For 

segment 𝑗, correlation between 𝒙𝑖  and 𝒙𝑘 is given by 

 

𝑟𝑖,𝑘(𝑗) =
∑ (𝒙𝑖(𝑡𝑝

𝑗
) − �̅�𝑖,𝑗)(𝒙𝑘(𝑡𝑝

𝑗
) − �̅�𝑘,𝑗)𝑛

𝑝=1

√∑ (𝒙𝑖(𝑡𝑝
𝑗

) − �̅�𝑖,𝑗)
2

𝑛
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𝑗
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where 

�̅�𝑖,𝑗 =
1

𝑛
∑ 𝒙𝑖(𝑡𝑝

𝑗
)

𝑛

𝑝=1

 
(2) 

is the mean value of  segment 𝑗 of signal 𝒙𝑖. Other correlation coefficients and mean values are defined in 

similar manner. 

The behaviour of an undamaged machine is then modelled by probability density functions of these 

correlation coefficients using histograms and test how well the future behaviour fits the model. In histogram 

calculation, interval [−1,1] is divided to 𝑀 bins. Then, to calculate probability distribution 𝑝𝑖,𝑘, the number of 

times that  𝑟𝑖,𝑘(𝑗): 𝑗 = 1, … , 𝑁 falls in each bin is counted and normalized such that sum of 𝑝𝑖,𝑘 over all bins 

equals 1. Logarithmic scale is used to present 𝑝𝑖,𝑘. Therefore, small positive values are added to zero 

probabilities before normalization to avoid singularity at zero. Notice that 𝑟𝑖,𝑖 = 1 and that correlation is a 

symmetric function, that is, 𝑟𝑖,𝑘 = 𝑟𝑘,𝑖. Therefore, we will only calculate 𝑝𝑖,𝑘 for 𝑖, 𝑘 ∈ Π, where Π = {(𝑖, 𝑘): 𝑖, 𝑘 =

1, … , 𝑚 and 𝑖 < 𝑘}. 

After the the statistical models (i.e. probability distributions of correlation coefficients) are built, those can be 

evaluated using the measured signals of the test machine. This means, for every extracted segment, 

correlation coefficients 𝑟𝑖,𝑘  for 𝑖, 𝑘 ∈ Π are calculated as described in the previous section. Now, probability of 

outcome 𝑟𝑖𝑘 can be evaluated using 𝑝𝑖,𝑘(𝑟𝑖,𝑘) function, that is, the value of 𝑝𝑖,𝑘 at the bin where 𝑟𝑖,𝑘 falls. 

Further, we will now calculate how probable this segment is using joint probability of all the correlation 

coefficients given by 

𝑃 =  ∑ 𝑝𝑖,𝑘(𝑟𝑖,𝑘)

(𝑖,𝑘)∈Π

 (3) 

When most of the correlation coefficients are highly probable, value of 𝑃 is large, and probability of an 

anomaly is really low (i.e. anomaly is not detected). Otherwise, when large portion of correlation coefficients 

have low probabilities, 𝑃 becomes small and anomaly is detected. Threshold values are used for 𝑃 under 

which anomalies are detected. 

4. EXPERIMENTS AND ANALYSIS RESULTS 

Both, the wheel loader and its dynamic mathematical model (i.e. simulation model) were used to generating 

the analysed data. A jammed flush valve of the hydrostatic transmission was used as a fault case (an 

anomaly). To a healthy machine we refer as undamaged and to a machine with the fault as damaged. We 

used the similar type of control inputs to drive the real undamaged and damaged machines, and the dynamic 

mathematical model to generate comparable time sequences both for statistical modelling and tests. 

First, we drove the undamaged machine according the defined test case. The control signals were recorded 

to be used for the mathematical model. The used test drive case was the following: acceleration (driving 

straight) – deceleration – stopping. The reference control signals for acceleration and deceleration are 

predefined for each experiment but starting and stopping the test drive is done manually. All the test drives 

were carried out without any additional load. We measured 17 sets of data in case undamaged and 



simulated machine and seven sets of data in case of damaged machine as shown in Table 2. So altogether 

41 test drives were completed. Undamaged and damaged data sets are actually part of the verification 

measurements which were chosen for analysis: see verification measurements in Section 2.3.  

Table 2. Number of measured test drives and their use in analysis. 

Machine Training Test 

Undamaged 10 7 

Simulated 10 7 

Damaged - 7 

 

Four variables were measured in each experiment as shown in Table 3. The sampling frequency was 100 Hz 

(resampled from verification measurements). 20 test drives from these 41 data sets were used in the training 

phase (statistical model generation) and 21 in the testing phase of the analysis: see table 2. Although, the 

driven test drives are quite similar, there are still differences and it was the purpose of our research to show 

that this methodology works even when the tested data sets are driven with different but still similar type of 

control inputs than used in the statistical model generation. 

Table 3. Analysed variables of HSD. 

Signal Range Unit 

𝒔1  Diesel engine rotational speed 0…2200 rpm 

𝒔2  HSD pump displacement -100…100 % 

𝒔3  Pressure at port A 0…400 bar 

𝒔4  Pressure at port B 0…400 bar 

 

Data selection is based on the HSD pump displacement signal. The analysed signals are combined of three 

parts: 1) 𝑎 =  400 data points after the displacement starts to rise (i.e. is higher than zero), 2) 𝑏 =  200 data 

points before the displacement decreases to zero and 3) 𝑐 =  200 data points after the displacement 

reaches zero displacement at the end of the test drive: see Fig. 7. This same procedure is done to all the 

analysed signals using the information (i.e. specific points a,b and c in time series data) of data selection 

acquired from the corresponding displacement signal. 

   

a)  b) 

Figure 7. Data selection based on HSD pump displacement data: a) raw HSD pump displacement data, b) 

example of data selection.  

Measured variables from all the test drives used in the analysis in the case of undamaged, simulated and 

damaged machines are shown in Fig. 8. The data shown in Fig. 8 is already selected according the 

procedure described previously. 
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c)  d) 

Figure 8. Analysed data in case of real undamaged, simulated and real damaged machines: a) diesel engine 

rotational speed, b) HSD pump displacement, c) pressure A and d) pressure B.      

After data selection, each data set contained 800 data points for each measured variable. The 

measurements were segmented into parts of the same length. The length of the segment was 𝑛 = 100 with 

50 overlapping data points. Thus the number of segments equal 𝑁 = 15 for each data set. 

In modelling of probability density functions, every extracted segment included 𝑚 = 8 variables, that is, 

𝒙𝑖: 𝑖 = 1, … ,8, where 𝒙𝑖: 𝑖 = 1, … ,4 are signals 𝒔𝑖: 𝑖 = 1, … ,4 (defined in Table 3) of the undamaged machine, 

and  𝒙𝑖: 𝑖 = 5, … ,8 are signals 𝒔𝑖: 𝑖 = 1, … ,4 of the mathematical model. This means altogether 28 correlation 

coefficients. Probability density functions for these correlation coefficients were computed using histograms. 

The histogram, interval [-1, 1] was divided into 𝑀 = 21 bins. 

In testing phase, the correlation coefficients 𝑟𝑖,𝑘 for 𝑖, 𝑘 ∈ Π are calculated in the same way as in the training 

using the undamaged or the damaged machine (𝒙𝑖: 𝑖 = 1, … ,4) against the mathematical model. The mutual 

correlations of the simulated machine (𝑟1,2, 𝑟1,3, 𝑟1,4, 𝑟2,3, 𝑟2,4, 𝑟3,4) were omitted. Based on earlier research, 

those correlation coefficients do not contain information which would help in anomaly detection [16]. 

Therefore, we used only the remaining 22 correlation coefficients. 

After that, we calculate 𝑃 for each segment to obtain 𝑃𝑛 which is the sequence of the joint probabilities 𝑃 for 

𝑛 = 1, . . , 𝑁. Fig. 9 shows joint probability distributions of training (statistical model generation) and testing 
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with calculated mean values of the distributions and defined static threshold for anomaly detection. The 

differences between the undamaged and the damaged machines can be clearly seen.  

 

Figure 9. Joint probability distributions of training and testing data. Static Threshold for anomaly detection 

and mean values of joint probability distributions are shown. 

The diagnostics is finally based on thresholds. Using a static threshold for every segment, which is a little 

smaller than the smallest 𝑃 in the case of the undamaged machine, we can detect the presented fault. So if 

𝑃 in a segment is smaller than the threshold, then this segment is treated as anomaly. This enables also the 

combining of the anomalies with the operating states of the machine. From Fig. 9 can be seen that there are 

segments which have very low 𝑃 value. These segments are very rare or they do not appear at all in the 

training phase. It indicates a high probability of an anomaly. When the static threshold is defined to be 

smaller than the smallest value of the statistical model, here -70, we can detect anomalies that have smaller 

𝑃. Because the data sets in the testing were slightly different than in the model generation, it can also be 

noticed that some of the segments in the testing in the case of the undamaged machine gets a 𝑃 which is 

lower than the defined threshold. Therefore, the threshold value could be lowered a little to get rid of this 

phenomenon. Table 4 shows the number of segments under the static threshold using the value -70.     

Table 4. Anomaly detection using static threshold (i.e. segments under threshold). 

Undamaged train Undamaged test Damaged test 

0/111 (0 %) 5/111 (4.5 %) 14/111 (12.6 %) 

 

In addition to the static threshold, a threshold based on the arithmetic mean of 𝑃𝑛 from one test drive or 

longer period containing several test drives can be used. In this way, both the single segments with low 

probability values, which indicate high probability of an anomaly, and also changing trends of the system can 

be detected. The mean value of the damaged machine is clearly lower than in the case of the undamaged 

machine, see Fig. 9. In testing, the difference between the mean value of the damaged machine (red) and 

the mean value of the statistical model of the undamaged machine (blue) is over five times higher (529%) 

compared to the undamaged machine (green). 

5. CONCLUSIONS 

Anomaly detection and diagnostics of a wheel loader was studied using a real machine (wheel loader), a 

dynamic mathematical model of this machine and joint probability distributions. The dynamic mathematical 

model of the wheel loader and its sub-components were verified with several different laboratory and field 

measurements. The verification results of three different cases were presented in the paper. Based on the 

0 50 100 150

-80

-70

-60

-50

-40

Segments

L
o

g
a
ri

th
m

 o
f 

jo
in

t 
p

ro
b

a
b

il
it

y

 

 

Simulated vs Real undamaged (Train)

Simulated vs Real undamaged (Test)

Simulated vs Real damaged (Test)

Threshold = -70

Mean(undamaged train) = -55.00
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verification results can be concluded that the model is suitable to be used in anomaly detection and 

diagnostics study.     

The HSD of the wheel loader was selected as analysed sub-system of the machine. A jammed flush valve of 

the hydrostatic transmission was used as an anomaly to study the changes in the joint probability values and 

to verify the results of the anomaly detection and the diagnostics. Altogether, 41 test drives, 24 with the real 

machine and 17 with the dynamic mathematical model, were carried out to obtain measurement data for 

analysis purposes. The measured data comprised of four variables describing the behaviour of the HSD. 

Experimental results of anomaly detection and diagnostics were presented using a combination of a static 

threshold and a threshold based on the arithmetic mean of the joint probability distribution. This enables 

detection of both single segments with low probability values indicating anomalies and also changing trends 

of the system. The central point of the joint probability distribution method is that the probabilities of the 

multiple correlation coefficients of the variable pairs are compared, instead of comparing the responses or 

even the calculated correlations directly. Combining these probabilities enables the detection of anomalies, 

rare situations with low probabilities, from which one can conclude there is something wrong in the system or 

the subsystem. Joint probability distributions were calculated for the test drives using the computed 

histograms of the correlation coefficients. The experimental results show clearly lower probabilities for test 

drives where fault is present compared to ones without faults. 

The analysing methodology which is used in this study enables the detection of sudden critical faults as well 

as slowly evolving faults. The simultaneous examination of several variables enables also a more generic 

approach of detecting several different anomalies and applying it to different machine types. 
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NOMENCLATURE 

Designation Denotation Unit 

𝑐𝑜𝑛𝑠𝑚𝑒𝑎𝑠 Measured fuel consumption [kg/h] 

𝑐𝑜𝑛𝑠𝑠𝑖𝑚  Simulated fuel consumption [kg/h] 

�̅� Arithmetic mean of error [-] 

𝑒𝑚𝑚𝑒𝑎𝑠 Measured displacement of hydraulic motor [%] 

𝑒𝑚𝑠𝑖𝑚 Simulated displacement of hydraulic motor [%] 

𝑒𝑝𝑚𝑒𝑎𝑠 Measured displacement of pump [%] 

𝑒𝑝𝑠𝑖𝑚 Simulated displacement of pump [%] 

𝑘 Number of variables [-] 

𝑀 Number of bins [-] 

𝑁 Number of segments [-] 

m Number of data signals [-] 

𝑛 Number of data points [-] 

𝑛𝑚𝑒𝑎𝑠 Measured rotational speed of diesel engine [rpm] 

𝑛𝑠𝑖𝑚 Simulated rotational speed of diesel engine [rpm] 

𝑃 Joint probability value [-] 

𝑝𝐴𝑚𝑒𝑎𝑠 Measured pressure A [bar] 
𝑝𝐵𝑚𝑒𝑎𝑠

 Measured pressure B [bar] 



𝑝𝐴𝑠𝑖𝑚 Simulated pressure A [bar] 

𝑝𝐵𝑠𝑖𝑚
 Simulated pressure B [bar] 

𝑝𝑖,𝑘(𝑟𝑖,𝑘)  Probability of 𝑟𝑖,𝑘   [-] 

𝑃𝑚𝑖𝑛 Minimum joint probability value [-] 

𝑃𝑛 Joint probability distribution [-] 

�̅� Mean of joint probability [-] 

𝑟 Correlation coefficient [-] 

𝑟𝑖,𝑘(𝑗) Correlation between 𝒙𝑖 and 𝒙𝑘 for segment 𝑗 [-] 

𝑠2 Variance [-] 

𝒔𝑖 Analysed signals [-] 

𝑡1
𝑗
, … , 𝑡𝑛

𝑗
 Time instances on which 𝑛 data samples in 

data segment 𝑗 are sampled  
[-] 

  

𝑣𝑚𝑒𝑎𝑠 Measured velocity of machine [km/h] 

𝑣𝑠𝑖𝑚 Simulated velocity of machine [km/h] 

𝒙𝑖 Data vector [-] 

�̅�𝑖,𝑗 Mean value of segment 𝑗 of signal 𝒙𝑖 [-] 

𝒙𝑘 Data vector [-] 

�̅�𝑘,𝑗 Mean value of segment 𝑗 of signal 𝒙𝑘 [-] 

∑ 𝑒  Accumulated error of 𝑃𝑛  [-] 
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