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ABSTRACT 

Several methods for compressing light-fields (LF) and multiview 
3D video content have been proposed in the literature. The most 
widely accepted and standardized method is the Multi View 
Coding (MVC) extension of H.264, which is considered 
appropriate for use with stereoscopic and multiview 3D displays. 
In this paper we will focus on light-field 3D displays, outline 
typical use cases for such displays, analyze processing 
requirements for display-specific and display-independent light-
fields, and see how these map to MVC as the underlying 3D 
video compression method. We also provide an overview of 
available MVC implementations, and the support these provide 
for multiview 3D video. Directions for future research and 
additional features supporting LF video compression are 
presented. 

Index Terms — light-field, 3D video, compression, multi-
view coding, MVC, H.264 

1. INTRODUCTION 

Future 3D displays will go far beyond stereoscopic and multi-
view, as demonstrated in currently existing prototype and 
commercial 3D displays [1][2][3]. Some of the existing displays 
aim to reproduce light-fields having both horizontal and vertical 
parallax, while others omit vertical parallax in order to provide 
better resolution and higher number of viewing directions 
horizontally, typically resulting in wider horizontal Field Of 
View (FOV) for the same number of light rays. 

Wide-angle LF displays may have hundreds of viewing 
directions, but typically only in the horizontal direction 
(Horizontal Parallax Only, HPO). To achieve wide field-of-view 
and still maintain a reasonable resolution, these displays operate 
with large pixel counts (nowadays, up to 100 megapixels). The 
storage, compression, transmission and rendering of light-fields 
of this size is a major challenge, which needs to be solved to 
pave the way towards the wide adoption of such advanced 3D 
display technologies.  

There have been a lot of effort directed towards supporting 
3D displays with effective 3D video compression standards 
[4][5]. In this paper we give an insight into the computational 
background of LF displays, and analyze how the results of 
standardized 3D video coding technology can be exploited. 
Based on this analysis, we identify areas that need attention in 
future research in 3D LF video coding. In this paper we focus on 
H.264/MVC, since that is the current accepted standard for 
coding 3D video data, and is more likely to have mature 
implementations than work-in-progress 3D HEVC. 

 

Figure 1. Light rays emitted by a single projection module are spread 
over screen positions and viewing directions, thus cannot be seen from a 

single viewing position  

2. LF DISPLAY ARCHITECTURE 

We focus our discussion on HoloVizio light-field displays [1], 
but the results presented in this paper are directly applicable to 
any LF display that is driven by a distributed projection and 
rendering system. Considering the gap between pixel / light ray 
counts and the rendering capacity available in a single computer 
/ GPU, using a distributed rendering system for these systems is 
a necessity today and in the foreseeable future. Therefore LF 
displays are typically driven by multiple processing nodes. 

LF displays are capable of providing 3D images with a 
continuous motion parallax on a wide viewing zone, without 
wearing glasses. Instead of showing separate 2D views of a 3D 
scene, they reconstruct the 3D light field as a set of light rays. In 
most LF displays this is achieved by using an array of projection 
modules emitting light rays and a custom made holographic 
screen. The light rays generated in the projection modules hit the 
holographic screen at different points and the holographic screen 
makes the optical transformation to compose these light rays into 
a continuous 3D view. Each point of the holographic screen 
emits light rays of different color to various directions. 

Light rays leaving the screen spread in multiple directions, 
as if they were emitted from points of 3D objects at fixed spatial 
locations. However, the most important characteristic of this 
distributed projection architecture is that the individual 
projection modules do not correspond to discrete perspective 
views, in the way views are defined in a typical multi-view 
setting. What the projection modules require on their input 
depends on the exact layout of the LF display, but in general, a 
single projection module is responsible for light rays emitted at 
different screen positions, and in different directions at all those 
positions. The whole image projected by a single projection 
module cannot be seen from a single viewing position, as shown 
on Figure 1. As such, one projection module represents a LF 
slice, which is composed of many image fragments that will be 
perceived from different viewing positions. 



  
Figure 2. Left: Pixels required by processing nodes 4, 5, 6 (Red, Green 
and Blue channels). Right: Pixels required by processing nodes 0, 5, 9 

(Red, Green and Blue channels) 

Although these LF slices can be composed based on the 
known geometry of a multi-camera setup and the geometry of 
the LF display, this mapping is nonlinear and typically requires 
accessing light rays from a large number of views, even when 
generating the image for a single projection module. 

The layout of the typical rendering cluster, made up of 
processing nodes (nodes for short), is such that a single 
computer is attached to multiple projection modules (2, 4, 8 or 
more), and as such, a single computer is responsible for 
generating adjacent LF slices. During LF conversion, individual 
nodes do not require all the views, nor all the pixels from these 
views. Although there is some overlap between the camera 
pixels required by nodes, those that are responsible for distant 
parts of the overall light-field require a disjoint set of pixels from 
the camera images.  

To demonstrate this arrangement visually, Figure 2 shows 
which parts of the input perspective views are actually required 
for generating specific LF slices. A simulation has been run on a 
45º large-scale light-field display with 80 projection modules, 
which has 10 processing nodes for generating the light-field. The 
display has been fed with 91-view input. What we can see is that 
adjacent processing nodes use adjacent, somewhat overlapping 
parts of the views, while processing nodes that are further away 
in the sense of LF slices will require completely different parts 
of the same view to synthesize the light field. These results are 
shown for the central camera, the pattern for other views is 
similar. 

3. USE CASES 

Two general use cases are defined to evaluate the applicability of 
specific 3D video coding tools, as the requirements imposed by 
these use cases are substantially different. The use cases 
identified by MPEG [6][7] can be classified into one of these, 
depending on whether the content is stored / transmitted in a 
display-specific or display-independent format. In both use 
cases, the requirement for real-time playback (as seen by the 
viewers) is above all other requirements. 

The first and least demanding use case is playback of pre-
processed LF content. In this case content has been prepared for 
a specific LF display model in advance, and must be played back 
in real time. In this setting the content is stored in display 
specific LF format. Display specific LF means the light rays are 
stored in a way that the individual slices of the full LF already 
correspond to the physical layout (projection modules) of the 
display on which the content should be played back. In other 
words, the LF in this case has already gone through the ray 
interpolation step that transforms it from camera space to display 
space. The implication is that the LF slices correspond to the 
layout of the distributed system driving the LF display, and as 
such, no ray interpolation is needed during playback, and no 
image data needs to be exchanged between nodes. As an 
example, in case of an 80-channel LF display, we may consider 
this data to be 80 separate images or videos making up a 3D 
image or video, for example 80 times WXGA (~78 MPixels). 

The second use case we consider is broadcast LF video 
transmission, with the possibility to target different LF displays. 

3D LF displays can differ in multiple properties, but spatial 
resolution and FOV have the most substantial effect on the 
content. The goal is to support different LF displays with the 
same video stream in a scalable way. In order to support 
different displays, we need to use display independent LF, which 
is not parametrized by display terms, but using some other terms 
(for example capture cameras), which is subsequently processed 
on the display side during playback. In this paper we consider 
this display independent LF to be a set of perspective images 
representing a scene from a number of viewpoints. Please note 
there are many other device-independent LF representations 
which lay between these two, however these two are the closest 
to practical hardware setups (camera rigs and LF displays). 

The analysis that follows focuses on the decoder / display 
side, and does not consider encoder complexity. 

4. PROCESSING DISPLAY-SPECIFIC LIGHT-FIELDS 

In this case, as LF preprocessing is performed offline, the 
encoding process is not time critical, i.e. there is no real-time 
requirement for the encoder. Visual quality should be maximized 
wrt. bitrate, to be able to store the largest amount of LF video. 
On the decoding side, the goal is to be able to decompress 
separately the LF slices that correspond to the individual 
projection engines contained in the display, in real-time.  The 
simplest solution to this problem is simulcoding all the LF slices 
independently using a 2D video codec (ie. H.264), and distribute 
the decoding task to the processing nodes corresponding to the 
mapping between processing nodes and projection engines. Take 
80 optical engines and 10 nodes as an example: if all nodes are 
able to decompress 8 videos in real-time, simultaneously, we 
have a working solution (provided we can maintain 
synchronized playback). The complexity of H.264 decoding 
typically allows running several decoders on a high-end PC, and 
25 FPS can be achieved. This solution is currently used in 
production LF displays.  

However, in this case we do not exploit similarities between 
the LF slice images which have similar features, like multiview 
imagery. On the other extreme, compressing all 80 LF streams 
with MVC would require that a single processing node can 
decompress all of them simultaneously in real-time, which is 
typically prohibitive. The complexity of MVC decoding is 
expected to increase linearly with the number of views in terms 
of computing power. Furthermore it also requires a larger 
Decoded Picture Buffer (DPB) depending on the number of 
views. Assuming that having enough RAM for the DPB is not an 
issue, decoding a 80-view MV stream on a single node in real-
time is still an issue, especially as there is no real-time 
implementation available that can perform this task (see Section 
7). Even considering parallelization techniques [8], decoding all 
views in real-time on a single node is out of reach. 

A reasonable tradeoff is to compress as many LF module 
images that are mapped to a single processing element, and do 
this as many times as necessary to contain all the views. As an 
example, we may use 10 separate MVC streams, each having 8 
LF slices inside. We can increase the number of views contained 
in one MVC stream as long as a single processing node can 
maintain real-time decoding speed. 

5. PROCESSING DISPLAY-INDEPENDENT LIGHT-
FIELDS 

As discussed in Section 2, and in [9], not all views are required 
for interpolating a specific LF slice, and even from these views, 
only parts are required to generate the desired LF slice – some 
regions of the camera images might even be left unused. 



FOV (degrees) 27 38 48 59 69 79 89 
No. views used 42 44 46 48 50 52 54 

Table 1. Number of views used overall for LF synthesis when targeting 
LF displays with different FOV. 

 
To find out how much we can bound the number of views and 
pixels to be compressed, we may determine the images and 
image regions which are actually used during the LF 
interpolation process, and compress only those for the targeted 
display. However, assuming receivers with displays with 
different viewing capabilities makes such an approach 
impractical, and requires scalability in terms of spatial resolution 
and FOV. Difference in spatial resolution might be effectively 
handled by SVC, and is not discussed further here. The 
differences in FOV however have not been addressed, as studies 
on the effect of display FOV on the source data used for LF 
conversion have not been performed so far.  

We have performed simulations to see how the FOV of the 
receiver’s LF display affects the way the available captured 
views are used. We have modeled 7 hyphotetical LF displays, 
with the FOV ranging between 27º and 89º. Source data with 
180 cameras, in a 180º arc setup, with 1 degree angular 
resolution has been used. Using the tool from [9] and analyzing 
the pixel usage patterns, we have analyzed how the display’s 
FOV affects the number of views required for synthesizing the 
whole LF image. This analysis has shown that depending on the 
FOV of the display, the LF conversion requires 42 to 54 views 
as input for these sample displays, as seen in Table 1. Please 
note the actual number depends on the source camera layout 
(number and FOV of cameras), but the trend is clearly visible. 

Looking at the images representing the pixels read from 
each view also reveals that for most views, only small portions 
of the view are used, which is especially true for side views. This 
can be intuitively seen if we consider a 3D display with a wide 
viewing angle, looking at the screen from a steep angle. In this 
case, we can only see a narrow image under a small viewing 
angle – this is also what we need to capture and transmit. This 
observation suggests that any coding scheme targeting multi-
view video on LF displays should be capable of encoding 
multiple views with different resolution. In case of HPO LF 
displays, only the horizontal resolution changes. In full parallax 
setups, both horizontal and vertical resolutions change. Such 
flexibility is not supported by MVC. 

Due to the fact that distributed processing nodes are 
responsible for different parts of the overall LF, these units 
require different parts of the incoming views (as seen in Section 
2). Thus we may expect that the number of views necessary for 
one node is lower than for the whole display. Further analyzing 
pixel usage patterns and separating the parts required by distinct 
nodes, we can see that this number is indeed lower, however not 
significantly lower. For example, in case of the 89° FOV 
display, instead of the 54 views required for the whole LF, one 
node requires access to 38 views on average, which is still high - 
decompressing these many full views is a challenge. 

As seen previously, not all pixels from these views are 
necessary to construct the LF. If we look at the patterns showing 
which regions of the views captured by the cameras are used for 
the LF conversion process when targeting LF displays with 
different FOVs, we can see that the area is pointing to the scene 
center, and is widening with the increased FOV, see Figure 3. 

This property may be used to decrease the computational 
complexity of decoding many views, by decoding only regions 
of interest for the specific display. H.264 supports dividing the 
image into regions to distinctly decodable regions using slice 
groups, however this feature is typically targeted to achieve 
some level of parallelism in the decoding process. By defining 
individually decodable slice groups that subdivide the image into 

 
Figure 3. Image regions used from the central camera, by the 27º (left), 

59º(center) and 89º (right) LF displays. 

vertical regions, and decoding only those required, it is possible 
to decrease the time required to decode the views. Defining 
several slice groups would give enough granularity to target a 
wide range of displays with little overhead. 

On the other hand, by separating views into vertical slices, 
we lose some coding gain due to motion estimation / 
compensation not going across slice boundaries. Some of this 
loss might be recovered by using prediction from the center of 
views to the sides, however such hierarchies are not supported. 
Exploiting this possibility is an area of future research. 

6. NONLINEAR CAMERA SETUPS 

With the emergence of LF displays with extremely wide FOV, it 
is more and more apparent that an equidistant linear camera 
array cannot capture the visual information necessary to 
represent the scene from all around. A more suitable setup is an 
arc of cameras, facing the center of the scene. Compressing such 
captured information with MVC should also be efficient, as the 
views captured in this manner also bear more similarity than 
views captured by a linear camera array. 

However, the kind of pixel-precise inter-view similarity that 
MVC implicitly assumes only exist when using parallel cameras 
on a linear rig, and assuming Lambertian surfaces. It has been 
shown [10] that the coding gain from inter-view prediction is 
significantly less for arc cameras than for linear cameras. 

Due to the emergence of wide-FOV 3D displays it is 
expected that non-linear multiview setups will be more 
significant in the future. Coding tools to support the efficient 
coding of views rotating around the scene center should be 
explored, and the similarities inherent in such views exploited 
for additional coding gains. 

7. OVERVIEW OF MVC IMPLEMENTATIONS 

The features discussed above can be embedded into the systems 
supporting LF displays if there exists implementations that 
support real-time operation.  

MVC is the compression method of choice for 3D Blu-ray 
disks, where it is used for encoding the stereoscopic pair more 
efficiently than simulcasting the two views. Due to this 
widespread use of the Stereo High Profile of MVC, there are 
several implementations supporting it. However, support for 
real-time encoding and decoding of Multiview High Profile with 
more than two views is very weak, practically nonexistent.  

JM 18.6 [11], the latest H.264/AVC reference software 
supports MVC, but only up to 2 views, which seems to be a hard 
coded limit. On the other hand it supports the specification of 
GOP structure explicitly, thus by interleaving frames from 
multiple views, it is possible to use it for inter-view prediction. It 
further allows the specification of arbitrary slice groups. Being a 
reference implementation however, its performance is typically 
below real-time. When running a single instance of the encoder / 
decoder, multiple CPU cores are not utilized, however it is 
possible to run parallel instances of the encoder / decoder during 
simulcoding, as in this case instances can run independently. 
Still, due to its low processing speed, this software cannot be 
utilized in real applications. 



JMVC 8.5 [12], the latest H.264/MVC reference software 
naturally supports MVC with arbitrary number of views. Being a 
reference implementation, its runtime performance is low, 
similar to JM. Unlike JM however, depending on setup of inter-
view prediction, encoder / decoder instances have to be executed 
sequentially for each view, and cannot be parallelized, as the 
dependent views rely on the reconstructed images output by the 
encoder in previous run. Parallelizing MVC encoding by 
partially delaying dependent views is possible [8], however this 
alone does not make JMVC real-time.   

x264 [13] the popular, open source implementation of 
H.264 is considered the fastest pure-software H.264 codec. 
While it provides real-time encoding and decoding performance 
for high-resolution 2D videos, it does not support MVC, nor the 
specification of custom GOP structures to emulate inter-view 
prediction. Slicing is supported, but only for the purposes of 
parallel processing – the shape of slice groups cannot be defined 
externally. 

NVENC [14] is a pure-hardware H.264 codec embedded in 
high-end Nvidia GPUs. It supports faster than real-time 2D 
video encoding / decoding for very high resolution videos, and it 
also supports MVC for up to two views. Nvidia does not have 
plans to extend it to multiple views. Using custom prediction 
structures and slicing along vertical blocks are not supported. 

The DXVA MVC Specification [15] mentions support for 
the Multiview High Profile, however we have not seen any 
implementation of this in the latest Windows SDK. 

As of commercial H.264 SDKs, we have found only one 
from MainConcept MVC/3D codec [16], which, according to the 
publicly available material supports decoding MVC for up to 10 
views, but on the encoding side, only Stereo profile is supported.  

IP cores (for embedding in hardware codecs in FPGAs or 
ASICs) have also been announced with MVC support, mostly 
for Blu-ray decoding. The announcement of the POWERVR 
VXD392 / VXE382 cores [17] explicitly mentioned Multiview 
High Profile, the Video Encoder / Decoder fact sheets however 
reveal that the final products support 2-view MVC. 

There have been several attempts towards integrating MVC 
into open-source H.264 codecs into ffmpeg [18], and x264 [19] 
(the latter targeted only stereo), however none of these patches 
made it to the mainline development branch. 

8. CONCLUSIONS AND FUTURE WORK 

Based on the use cases and processing considerations 
described in this paper, we can formulate at least three aspects 
that need attention and future research when developing 
compression methods for LFs. First, we shall add the possibility 
to encode views having different resolution. Secondly, the ability 
to decode the required number of views should be supported by 
the ability to decode views partially, starting from the center of 
the view, thus decreasing the computing workload by restricting 
the areas of interest. Third, efficient coding tools for nonlinear 
(curved) camera setups shall be developed, as we expect to see 
this kind of acquisition format more in the future. 

In the future, we will focus on including many-view MVC 
encoding / decoding into the x264 codec, which will allow us to 
exploit the possibilities of MVC (at least partially) in the use 
cases described. Also, the structure of image data and distributed 
processing requirements suggest that a novel display-
independent representation for LFs should be developed, which 
gathers the necessary image data into a better localized format, 
instead of having the image data scattered all around views and 
compressed as such. We will also explore the SoA of HEVC 3D 
Extension, and how it can be applied to compress LF data. 
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