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ABSTRACT
We propose an algorithm for designing nonuniform oversam-
pled filterbanks with arbitray delay. The filterbank has uni-
form sections obtained by generalized DFT modulation; be-
tween the uniform sections, there are transition filters. There
is no a priori constraint on the widths of transition filters
channels, as in previous publications. The design algorithm
is composed of three steps, in which a bank (analysis or syn-
thesis) is optimized by solving convex optimization problems
for finding the prototypes of uniform sections and the transi-
tion filters. In the first step, an orthogonal filterbank is de-
signed, while in the other steps a bank is given and the other
is optimized. We present an example of design suitable to
subband processing of wideband speech signals.

1. INTRODUCTION

Subband adaptive filtering and particularly its applications
to acoustic echo control have attracted considerable attention
in the last decade. Oversampled filterbanks are used in this
context, as the only possibility to have good out-of-band at-
tenuation. Generalized DFT (GDFT) modulated uniform fil-
terbanks (UFB) offer a low implementation complexity and
several algorithms have been proposed recently for their de-
sign [5, 2, 8, 3]. Continuing the work from [3], in this paper
we focus on the design of low-delay oversampled nonuni-
form filterbanks (NUFB) with a structure allowing efficient
implementation.

There are three partly contradictory design requirements
for filterbank design in high quality acoustic echo control and
related speech enhancements. First, adaptive filtering can be
carried out the more efficiently the lower the sampling rates
in subchannels are. This suggests the use of UFBs whose
number of channels is as high as possible for given delay
and minimum stopband attenuation. Second, stopband at-
tenuation of FB filters dictates cumulative alias in downsam-
pling, which from the adaptive filtering point of view is noise.
Thus, the higher the stopband attenuation, the better echo at-
tenuation can be achieved until the level of background noise
is reached. Third, in real-time applications, low delay is not
only desirable but also required by standards.

NUFBs are more natural in subband speech processing
because of human perception. Although it seems impossible
in near future to design NUFBs that mitigate Bark-scale with
affordable cost for real-time applications, it is desirable to
have high frequency resolution in low band, because acoustic
echo control is typically followed by and connected to other
speech enhancement tasks such as noise reduction.

Speech signal has typically a spectrum that has a lowpass
nature. Thus, strong low frequencies cumulate on weaker

high frequencies in downsampling and high stopband atten-
uation is needed especially for the FB filters that correspond
to high frequencies. Sufficient level of cumulative alias and
delay can be obtained with NUFBs, where the frequency res-
olution provided by the filterbank is higher in low than in
high frequencies.

The general structure of a NUFB with M channels is
given in Figure 1. The NUFB is oversampled if the down-
sampling factors Rk, k = 0 : M−1, respect the relation

M−1

∑
k=0

1
Rk

> 1. (1)

The frequency responses of the filters in one bank (analy-
sis or synthesis) have the idealized form presented in Fig-
ure 2. Subband speech processing requires that the filters
Hk(z), Fk(z) have very good attenuation outside a band of
width π/Rk and oversampling is the only way to fulfill this
condition.

The input-output relation for the NUFB from Figure 1 is

Y (z) = T0(z)X(z)+
M−1

∑
k=0

Fk(z)
Rk

Rk−1

∑̀
=1

Hk(zW `
Rk

)X(zW `
Rk

), (2)

where WR = e− j2π/R and

T0(z) =
M−1

∑
k=0

1
Rk

Hk(z)Fk(z) (3)

is the distortion transfer function and determines the distor-
tion caused by the overall system for the input signal. The
terms of the double sum in (2) determine the effect of the
aliased components X(zW `

Rk
) on the output signal.

The implementation complexity of a NUFB with inde-
pendent filters Hk(z), Fk(z) is unacceptable in real-time ap-
plications; we describe in Section 2 a NUFB formed with
sections of modulated uniform FB (UFB), joined with tran-
sition filters. In Section 3, we give an algorithm for design-
ing low-delay NUFBs with such structures. In Section 4, we
present an example of NUFB design.

2. FILTERBANK STRUCTURE

A low complexity NUFB consists of sections of several
UFBs. Between consecutive sections lie transition filters.
The number of sections, S, is usually very small, typically 2
or 3. The filters from the same section are obtained by GDFT
modulation from a single prototype; so, their frequency re-
sponses are shifted versions of the frequency response of the
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Figure 1: Nonuniform filterbank.
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Figure 2: Idealized frequency responses of the filters in the
analysis bank.

prototype. For example, the filters shown in Figure 2 can be-
long to a NUFB with 2 sections, the first with 3 filters and
the second with 2 filters, joined by the transition filter H3(z).

Let us denote Ms, s = 0 : S− 1, the number of channels
of the UFB from which the filters in section s are extracted.
Let ms be the number of filters in section s; the number of
channels of the NUFB is M = ∑S−1

s=0 ms +S−1. The width of
channels in section s is ds = π/Ms. Denoting d̃s, s = 1 : S−1,
the widths of transition channels, it follows that

π
S−1

∑
s=0

ms

Ms
+

S

∑
s=1

d̃s = π.

Let As(z), s = 0 : S− 1, be the prototypes of the GDFT
modulated UFBs. Let D be the overall delay of the NUFB.
The impulse response of an analysis filter is

hk[n] = as[n]e jπ(k+αs)(n−D/2)/Ms , (4)

for some s ∈ 0 : S− 1, αs ∈ R. (The numbers αs are deter-
mined by the position of the first filter in the section. For
the first section we have α0 = 1/2.) Similar expressions
hold for the synthesis filters, the prototypes being now Bs(z),
s = 0 : S−1. The transition filters have also complex impulse
response, but not one obtained by modulation.

This NUFB structure was proposed by Princen [6] (using
cosine modulation, i.e. real filters) and refined by Cvetkovic
and Johnston [1], who gave also algorithms for large filters
orders. All previous work dealt with orthogonal NUFBs,
where the delay is equal to the order of the longest filter. We
are interested here by the low-delay case, where D can have
arbitrary values. Our structure is more general than that from
[1] in yet another respect; there is no condition on the width
of the transition channels, whereas in [1] this width is strictly
defined by the width of channels in neighboring uniform sec-
tions.

3. DESIGN OF PROTOTYPE AND TRANSITION
FILTERS

The filters Hk(z), Fk(z) have good filtering properties if they
have good attenuation outside a band of width π/Rk. Also,
this property means that the products Fk(z)Hk(zW `

Rk
), with

` 6= 0, appearing in (2), are bounded by a small constant for
all frequencies. As argued in [1, 3], it follows that the aliasing
terms X(zW `

Rk
) from (2) have an almost negligible contribu-

tion to the output. To obtain a nearly perfect reconstruction
(NPR) NUFB, only the condition

|T0(e jω)− e− jDω | ≤ δd , (5)

has to be imposed on the distortion transfer function, for all
ω ∈ [0,2π], where δd is a preset tolerance.

The design data are the orders of the prototypes and tran-
sition filters, the delay D and the tolerance δd . We seek to
minimize the stopband energy of the filters, as explained be-
low.

We follow the three-steps strategy employed for UFB de-
sign in [3]. First, an orthogonal filterbank is designed, usu-
ally of smaller order. Using the analysis bank thus obtained,
the synthesis bank is optimized (the design data are used
now). Finally, using the designed synthesis bank, the analy-
sis bank is optimized. Each optimization consists of solving
a convex problem, either semidefinite programming (SDP)
or second-order cone programming (SOCP).

The simultaneous design of S prototypes and S− 1 tran-
sition filters of a bank is difficult and so, in each step, we
follow a progressive approach. First, the prototypes of the
uniform sections are designed independently, using the algo-
rithms from [3]. Then, the transition filters are designed one
by one, by minimizing their stopband energy subject to the
NPR constraint (5), imposed on a grid G of frequencies cov-
ering an interval [ωe1,ωe2]; typically, ωe1 is the middle of the
last channel of the uniform section at the left of the transition
filter and ωe2 is the middle of the first channel of the uniform
section at the right of the transition filter. When computing
the distortion transfer function (3), all available information
is included, which means that an already designed transition
filter is used in (5) when designing the other transition filters
in the bank. We denote T̃0(z) the distortion transfer function
obtained as in (3), with the not yet designed filters replaced
by zero.

We describe below the design of a single transition filter
of the analysis bank, denoted generically U(z); its pair in the
synthesis bank is V (z). Let us denote ωc the middle of the
channel corresponding to this transition filter, R the down-
sampling factor for this channel and ωr1 = ωc−π/R, ωr2 =
ωc + π/R the edges of the ideal passband for the channel.

Optimization criterion. The stopband of the transition
filter is Is = [−π,ωs1]∪ [ωs2,π], where

ωr1 ≤ ωs1 < ωe1, ωr2 ≥ ωs2 > ωe2. (6)

The stopband energy, which is the optimization criterion, has
the expression

Es =
1

2π

∫

Is

|U(e jω)|2dω = uHΦu, (7)

where u is the (complex) vector of coefficients of U(z) and
Φ is a positive definite Hermitian Toeplitz matrix with the



element on diagonal n defined by

φn =

{
1− ω2s−ω1s

2π , if n = 0,
j

2πn (e− jωs1 − e− jωs2), otherwise.
(8)

Orthogonal NUFB. In the first step of the overall algo-
rithm, a complete orthogonal NUFB is designed. In this case,
the synthesis filters are Fk(z) = z−DH∗k (z−1) and so

T0(e jω) = e− jDω
M−1

∑
k=0
|Hk(e jω)|2 ∆= e− jDω P0(ω). (9)

We denote P̃0(ω) a function defined as P(ω) above, but with
the not yet designed filters replaced by zero. (We remind
that the prototype filters are already designed when we start
the transition filter design.) For a given frequency ω , the
condition (5) becomes

1− P̃0(ω)−δd ≤ |U(e jω)|2 ≤ 1− P̃0(ω)+ δd . (10)

So, the design problem becomes the minimization of the
stopband energy (7), subject to the NPR constraint (10) for
ω ∈ G. This optimization problem is convex in the coeffi-
cients of G(e jω) = |U(e jω)|2. Both (7) and (10) are linear in
the coefficients of G(z). Moreover, the coefficients of G(z)
are always a linear combination of the elements of a nonneg-
ative definite matrix Q (more precisely, the coefficient gn is
the sum of the elements of Q on the n-th diagonal; see [4]
for details). So, the design of the transition filter in an or-
thogonal NUFB consists of solving an SDP problem whose
variable is Q, followed by the complex spectral factorization
of G(z) that produces U(z).

Biorthogonal NUFB. We assume that the synthesis bank
is given (we are in step 2 or 3 of the overall algorithm de-
scribed in the beginning of the section) and so V (z) is known.
The NPR condition (5) becomes

|T̃0(e jω)+U(e jω)V (e jω)− e− jDω | ≤ δd . (11)

Denoting u = ur + jui, where now ur and ui are real vectors,
the inequality (11) can be transformed into the second-order
cone inequality

‖Ar(ω)ur +Ai(ω)ui−b(ω)‖ ≤ δd , (12)

where Ar(ω), Ai(ω) are known real matrices with two rows
and b(ω) ∈ R2.

With Φ = Φr + jΦi, the stopband energy (7) of U(z) can
be expressed as

Es = [uT
r uT

i ]
[

Φr −Φi
Φi Φr

][
ur
ui

]
∆= [uT

r uT
i ]C

[
ur
ui

]
.

(13)
The minimization of the stopband energy subject to NPR
constraints can be cast as the following SOCP problem

min
ur ,ui,α

α

s.t.
∥∥∥∥C1/2

[
ur
ui

]∥∥∥∥≤ α

(12), ω ∈ G
(14)

Comments. Considering only the design of a pair of tran-
sition filters, the algorithm we propose has three additional

Section 1 Transition Section 2
m0 M0 d0 d̃1 m1 M1 d1
24 48 π/48 π/16 7 16 π/16

Table 1: NUFB channel parameters.

parameters (besides those specified in the beginning of this
section and the information given by the channel structure of
the NUFB). One is the order N0 of the initial orthogonal tran-
sition filter and the others are the frequencies ωe1, ωe2 defin-
ing the interval on which the NPR constraint (5) is imposed.
The appropriate choice of the values of the frequencies from
(6) is important. Practically, we have taken ωs1, ωs2 near the
given edges ωr1, ωr2 and selected ωe1, ωe2 via a trial and
error procedure.

As we make some approximations in imposing the NPR
constraints, especially near the stopband edges of transition
filters, there is a small price to pay: the uniform sections
must have at least two filters (this is just a rule of the thumb;
a careful analysis can be made, taking into account the rela-
tions between channel widths and down-sampling factors).

4. EXAMPLE OF DESIGN

We illustrate the algorithm presented in the previous section
with a NUFB with S = 2 uniform sections. The parameters
describing the NUFB structure are given in Table 1. For sim-
plicity, we have taken the transition channel width equal to
the width of second section channels (we remind that such
a condition is not necessary for our algorithm). The down-
sampling factors are 32 for the first section and 10 for the
second section and the transition filters. The filters lengths
are 160 and 80 for the uniform sections prototypes and 150
for the transition filter; analysis and synthesis filters on the
same channel have the same lengths. The NPR error from
(5) is δd = 0.01. The delay of the filterbank is D = 128 sam-
ples; for a sampling rate of 16 kHz, this corresponds to 8 ms.

The Matlab program implementing the design algorithm
has been written with the help of the SDP library SeDuMi
[7]. The design time for the NUFB with the above specifica-
tions is about 12 minutes, on a Pentium III PC at 1GHz. The
design of the transition filters takes more than 10 minutes and
thus is the most expensive part of the algorithm.

The frequency responses of the two uniform sections
prototypes, transition filter and complete analysis bank are
shown in Figures 3–6. The dashed vertical lines show the
extent of the baseband. The stopband attenuations of the fil-
ters are given in Table 2; by As we denote the worst attenu-
ation (typically near the baseband) and by Am the best atten-
uation. The down-sampling factor of the transition channel
can be raised to 12, case in which As becomes 65dB, i.e. still
a convenient value. In Figure 6, the frequency axis is marked
in kHz as for the use of the designed NUFB for processing
wideband speech.

5. CONCLUSIONS

We have presented an algorithm for the design of NUFBs
with uniform sections joined by transition filters. The al-
gorithm consists of solving a succession of SDP and SOCP
problems. Although the overall design problem is not con-
vex, we have obtained filters with very good attenuations



Section 1 Transition Section 2
As Am As Am As Am

Analysis 44.6 75 84.3 101 75.2 93
Synthesis 43.6 77 83.9 103 74.5 95

Table 2: Stopband attenuations (in dB).
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Figure 3: Frequency response of the first prototype.

for NUFBs with delay appropriate to real-time processing of
speech signals.
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Figure 4: Frequency response of the second prototype.
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Figure 5: Frequency response of transition filter.
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Figure 6: Frequency response of all analysis filters.




