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Abstract—OpenCL is a programming language standard which
enables the programmer to express the application by structuring
its computation as kernels. The OpenCL compiler is given the
explicit freedom to parallelize the execution of kernel instances

at all the levels of parallelism. In comparison to the traditional C

programming language which is sequential in nature, OpenCL
enables higher utilization of parallelism naturally available in
hardware constructs while still having a feasible learning curve
for engineers familiar with the C language.

This paper describes methodology and compiler techniques
involved in applying OpenCL as an input language for a
design flow of application-specific processors. At the core of the
methodology is a whole program optimizing compiler that links
together the host and kernel codes of the input OpenCL program
and parallelizes the result on a customized statically scheduled
processor. The OpenCL vendor extension mechanism is used to
provide clean access to custom operations.

The methodology is studied with a design case to verify the
scalability of the implementation at the instruction level and to
exemplify the use of custom operations. The case shows that
the use of OpenCL allows producing scalable application-specific
processor designs and makes it possible to gradually reach
the performance of hand-tailored RTL designs by exploiting
the OpenCL extension mechanism to access custom hardware
operations of varying complexity.

Index Terms—OpenCL, Application-Specific Processors, Hard-
ware accelerators, Instruction level parallelism, VLIW, Transport
Triggered Architectures

I. INTRODUCTION

Today the trend in computation platform design is to add

more independent processor cores and processing elements to

improve throughput by means of parallel execution instead of

increasing the clock frequency and the level of pipelining of

single monolithic cores. This is due to the fact that the clock

frequencies of processor designs are reaching the limits of

the CMOS technology and microarchitecture designs [1]. In

addition, high clock frequencies might lead to heat problems

due to higher power consumption [2].

Programming such parallel processors requires program-

ming languages supporting parallelism. The C programming

language was developed in 1970s and has retained its popular-

ity ever since [3]. It has been the traditional choice especially

for embedded systems engineers due to its ”close-to-hardware“
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nature and widely available compiler support. In addition to

programming existing processors, the C language has been

widely used as an input to hardware design flows. Especially

so called hardware/software co-design toolsets often start

from application descriptions in C which are then gradually

converted, automatically or manually, to hardware accelerators

or customized processors executing the described algorithm

faster than an off-the-shelf processor would. However, as C is

a sequential programming language with unrestricted pointers

and no standardized means to describe parallel execution at the

multiple levels of parallelism, its capabilities in the generation

of hardware accelerators with adequate throughput are limited.

Experience has shown that it is very difficult, computa-

tionally expensive, and often just plain impossible to extract

parallelism from sequentially defined programs [4].

OpenCL standard [5] sidesteps this issue by structuring

computation into kernels, and specifying that there are no

dependences between kernel instances by default. The imple-

mentation is free to execute code from the different “kernel

instances” sequentially, in parallel, or in an interleaved fashion,

as long as the synchronization primitives (barriers) present in

the kernel descriptions are respected. This freedom is utilized

in our methodology by extracting instruction level parallelism

from the kernel instances to improve the utilization of the

available hardware resources in the automatically generated

statically scheduled processor architecture. In addition to the

parallel execution, an important feature of the proposed design

flow is a clean and simple way to use custom hardware

operations from the OpenCL C kernels using the OpenCL

extension API.

This paper proposes methodology using OpenCL as an

input language for designing application-specific processor

(ASP) based hardware accelerators. At the core of this work

is a compilation algorithm that allows full program offline

compilation of OpenCL applications, including both the host

program and the kernels, together to a single processor binary

that is executable on a standalone customized processor. The

use of OpenCL alleviates the exploration of design tradeoffs

between silicon area and execution performance.

The paper is organized as follows. Related work is reviewed

in Section II. Section III introduces the OpenCL standard

and its benefits when used in ASP programming. Section IV



describes the processor architecture template and the toolset

used as the framework for the automated generation of ASPs.

Section V presents the practical issues in compiling OpenCL

programs fully offline to produce scalable parallel implementa-

tions of the accelerated algorithms. Section VI presents proof-

of-concept experiments of the methodology, and finally the

paper is concluded in Section VII.

II. RELATED WORK

In general, support for OpenCL has been increasingly

started to appear from major companies such as Apple,

NVIDIA, AMD, Intel, and S3. Thus, it seems OpenCL is here

to stay and an important standard to support in the future.

Recently there has appeared a few publications on using

GPGPU programming paradigms for generating code for non-

GPU devices. The papers that have been published describe the

use of the proprietary CUDA [6] language as the input while

our work is based on the standardized OpenCL. However,

as OpenCL and CUDA are very similar we consider these

projects related to ours.

MCUDA [7] is a framework that aims to replace the sub-

optimal CUDA to x86 compilation tool of the NVIDIA SDK

with a version that parallelizes the execution on multiple host

cores. The framework creates loops out of multiple work-item

execution to retain work group barrier semantics. However,

the parallelization is considered only at the task level while in

our work focus is on instruction level parallelization issues.

FCUDA [8] is a source-to-source translator built on tech-

niques implemented in MCUDA. They use the AutoPilot tool

from AutoESL [9] for high level synthesis. Their main focus

is on task level parallelization while leaving the important

instruction level parallelism between work-items to lesser

attention. Exploiting the ILP within a single wide statically

scheduled core has its benefits as there are less off-core

synchronization and communication required because more of

the shared variables between work items can be stored in fast

general-purpose registers.

CUDA is used as a starting point for hardware accelerator

generation for FPGAs in [10]. The approach is exemplified

with a kernel used to implement the MrBayes algorithm. The

paper shows a procedure on how to map the relatively simple

kernel of this algorithm to a pipelined hardware design. The

approach differs from ours mainly in the reprogrammability.

While our approach is based on a processor template with

simplistic control logic, their approach generates directly hard-

ware constructs with schedules implemented as state machines.

This approach might lead to complex state machines when

the mapped kernel is not trivial and contains control flow. In

addition, the approach they present is not automatized while

our contribution is to present a fully operational tool flow that

targets a customizable processor architecture template, thus

enables scaling of datapath resources according to the ILP

available in the compiled OpenCL kernels.

III. OPEN COMPUTING LANGUAGE

OpenCL (Open Computing Language) [5] is a standard

for programming heterogeneous multiprocessor platforms. The

standard defines a C language API for invoking “kernels”

(functions describing parallel execution on the device) and a

C-based language called OpenCL C that is used for defining

the kernels.

Albeit the background of OpenCL is clearly in the general-

purpose computing on graphics processing units (GPGPU)

community, and it is closely resembling the proprietary CUDA

language from NVIDIA [6], the aim of OpenCL is to become

a universal language for programming platforms with hetero-

geneous processing devices such as GPUs, CPUs, DSPs, etc.

What makes OpenCL an attractive candidate to act as

an input for customized processor design flow is that it

allows explicit definition of parallel execution at multiple

levels. Operations on its vector data types invoke data level

parallelism within a single kernel instance while the kernel

instances itself implicitly describe parallel execution which

is explicitly synchronized with barriers. The host API allows

describing the number of “work-items” (instances of kernels

executed in parallel) in a number of “work-groups”, and the

compiler and the execution platform is left the freedom - and

the responsibility - to actually map the descriptions to the

underlying hardware as efficiently as possible.

For our work, the interesting aspect of OpenCL is that

it opens the possibility of design space exploration of the

execution platform’s area/performance ratio by means of al-

lowing the scaling the performance by adding or removing

computational resources according to the number of work

items to be executed in parallel.

As a language for implementing processing kernels such

as DSP filters as hardware accelerators, OpenCL C is clearly

more powerful than the traditional C. While providing the

most useful characteristics of C, the following differences and

additional features stand out:

• Implicit independence between work-items and work-

groups. As the execution is assumed to be independent,

including memory accesses not only to “private” storage

but also to shared “local” and “global” memory, it is pos-

sible to parallelize code from multiple work-items at the

different granularities of parallelism. All synchronization

is done by explicit barrier and memory fence calls.

• Support for multiple disjoint address spaces helps in alias

analysis and enables explicit access to multiple separate

memories.

• No dynamic memory allocation. The data memory con-

sumption of the kernels can be estimated at compile time.

• Vector data types. Allows defining vector computation

which can be trivially parallelized at instruction and data

levels.

• Recursion not supported. Enables aggressive procedure

call inlining.

IV. TRANSPORT TRIGGERED ARCHITECTURES

In this work, we have used transport triggered architecture

(TTA) as the processor template. TTA reminds VLIW architec-

tures [11] and the main difference between TTAs and VLIWs

can be seen in how they are programmed: instead of defining
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Fig. 1. Example of a TTA processor.

which operations are started in which function units (FU) at

which instruction cycles, TTA programs are defined as data

transports between register files (RF) and FUs of the datapath.

The operations are started as side-effects of writing operand

data to the “triggering port” of the FU. Fig. 1 presents a simple

example TTA processor. The modularity of TTA enables easy

customization of processor designs, making it an interesting

architecture template for automated processor generation.

Thanks to its programmer-visible interconnection network,

TTA datapath can support more FUs with simpler RFs [12]

than an operation-programmed VLIW can. Because the

scheduling of data transports between datapath units are

programmer-defined, there is no obligation to scale the number

of RF ports according to the number of FUs [13]. In addition,

the datapath connectivity can be tailored according to the

application at hand, adding only the bypassing paths that

benefit the application the most potentially improving the

maximum clock frequency.

TTA-based Codesign Environment (TCE) [14] is a processor

design toolset that provides a complete design flow from

software written in C or C++ down to parallel TTA program

image and VHDL implementation of the processor. In this

paper we explore the benefits of OpenCL as an additional

input language alternative for TCE.

Because TTA is a statically scheduled architecture with

low level details of execution exposed to the programmer, the

runtime efficiency of the end results produced with the design

toolset depends heavily on the quality of the compiler. The

TCE complier uses the LLVM compiler infrastructure [15]

for the frontend, the global middle-end optimizations (such as

aggressive inlining and dead code elimination), and parts of

the backend (the instruction selector and the register allocator).

LLVM has been also used to implement the OpenCL trans-

formation algorithms presented later in the paper. The final

phases of TCE code generation have been written from the

scratch to provide efficient retargetable instruction scheduling

and TTA-specific optimizations.

V. COMPILING OPENCL FOR APPLICATION-SPECIFIC

PROCESSORS

The portability of OpenCL programs allows development

and verification of the application code first outside the TCE

toolset and later the code can be recompiled using the TCE

compiler to generate code for a TTA-based ASP. Thus, the pro-

posed OpenCL to ASP design methodology usually starts from

implementation and verification of the OpenCL application

using, for example, a GPU-based compilation environment and

continues using the TCE tools for co-design of the ASP that

can execute the application as efficiently as possible.

The core algorithms and concepts used in efficient compi-

lation of OpenCL kernels to instruction level parallel code are

described in Subsections V-A-V-D. Subsection V-E describes

the way we use OpenCL API to let the hardware designer to

access “custom operations” or “special function units” in the

underlying ASP design.

A. Standalone Execution of OpenCL Applications

OpenCL is a computing language that is primarily meant for

programming heterogenous multicore platforms. However, as

one of the goals of OpenCL is to enable portability across

multiple platforms, it is possible to execute full OpenCL

programs purely using a single processor. This notion leads

to two different setups for the generated ASPs:

1) Standalone. The ASP executes both the OpenCL host

and device code. In this mode, the compiler compiles

and links both the host and kernel programs together to a

single processor binary that is executable on a standalone

customized processor. No OpenCL support is required

from the (possible) host processor of the ASP. However,

the whole source code of the kernel must be available

for offline compilation unless the ASP also includes an

OpenCL C compiler, which is usually unrealistic.

2) Host/device. The ASP executes only the kernels im-

plemented with OpenCL C and is commanded by a

host processor. This is the standard CPU/GPU setup

and requires OpenCL runtime and platform APIs to be

implemented in the host. Supports also kernel code ma-

nipulation in runtime as the kernels can be recompiled

on the host.

In our experiments, we used the standalone setup to produce

standalone ASPs. Thus, in the terms of the OpenCL platform

model, the generated ASPs act as the host, the compute device,

and the compute unit at the same time. Function units of

the TTA can be considered to be processing elements. In the

terms of OpenCL memory model, the global memory and the

constant memory can be mapped to either the ASP’s internal

local memory or a possible shared memory between the master

processor and the ASP(s), while local and private memories

map to the ASP’s fast local memory and general-purpose

registers.

Whereas OpenCL standard is designed with Single Instruc-

tion Multiple Data (SIMD) or Single Program Multiple Data

(SPMD) execution of work-items in mind, our goal was to

exploit the instruction scheduling freedom of TTA as much

as possible, thus resorting to highly predicated instruction

level parallel execution of code from multiple work-items.

Thanks to the support of overcommitting resources by means

of predicate aware scheduling [16] in TTA it is possible to

schedule execution of two operations to the same function unit

at the same time instance in case the operations are guarded

with opposite predicates. This leads to improved throughput



when compared to SIMD/SPMD style of execution. In SPMD,

diverging control flow in the executed work-items usually

results in function unit idle time because the branches are

executed sequentially.

B. Chaining Work-Items

OpenCL C data parallel execution is described like stream

processing: computation on a piece of input data. As the

work-items are completely independent from each other, it is

straightforward to chain code from multiple work-items by

just appending multiple instances of kernel code after each

other and allowing the instruction scheduler to parallelize

the code between the work-items. The analogy to C-based

compilation is to schedule multiple independent iterations of

a loop in parallel using loop unrolling or software pipelining.

However, an important benefit with OpenCL C kernels is

that the basic assumption is that the “loop iterations” (work-

items) are independent from each other, in contrast to C

loops where complex data dependence analysis is required

to prove independence. Figure 2(a) shows a simple OpenCL

C kernel structure with a single basic block (a sequence of

instructions without branches which is always executed in its

entirety). Its original control flow graph (CFG [17]) is shown

in Fig. 2(b) and the CFG after work-item chaining and joining

to a single basic block in Fig. 2(c). The final form of the

code shows that the processor can execute instructions from

two work-items in parallel if there are free datapath resources.

Another benefit from the chaining is the ability to potentially

hide operation latencies due to long latency operations like

divisions or memory loads of one work-item with instructions

from the another.

k e r n e l vo id
som e kerne l ( . . . . ) {

BB1 ;
}

(a)

<entry>

BB1

<exit>

(b)

<entry>

BB1+BB1’

<exit>

(c)

Fig. 2. Simple example on work-item chaining: (a) OpenCL C kernel source,
(b) original kernel CFG, and (c) a CFG with two work-items chained and
joined.

Some complexity to work-item chaining is introduced by

the work-group barriers. In the presence of barriers, all work-

items in the same work-group are expected to synchronize

their execution at the barrier call sites. That is, whenever

a single work-item reaches a barrier, it cannot proceed its

execution until the rest of the work-items in the work-group

have reached it. Thus, in case the work-items are to be chained

statically, the kernel has to be split at barrier points and the

chaining has to be done with the split parts.

The example in Fig. 3 shows the chaining of two work-

items in case of a simple kernel with a barrier call in the

middle. In this case chaining is still relatively straightforward:

just duplicate and chain the basic blocks before the barrier

and connect the last basic block in the copied chain to the

“barrier pseudo basic block” (which is just an instruction

scheduling barrier in our case) and similarly duplicate and

chain the basic blocks after the barrier. In this example, the

code before the barrier includes a simple if-else structure. In

such case, each control flow structure needs to be duplicated as

a whole for each work-item due to the single program counter

execution. A succeeding if-conversion [18] pass attempts to

convert these control structures to single instruction level

parallelizable predicated basic blocks. However, the code after

the barrier is a single basic block without branching, thus the

chaining algorithm can join the basic blocks of the two work-

items to a single one.

When there are barriers inside a conditional basic block or

a loop body, the work-item chaining becomes more complex

as the problematic nature of static compilation of independent

execution using a single program counter becomes more appar-

ent. According to the OpenCL standard, in case of a loop with

barriers, each iteration of the loop is synchronized separately.

Thus, when a single work-item reaches the barrier in an

iteration, it waits for the rest of the work-items to complete the

code before the barrier at that iteration. Conversely, when there

is a barrier inside a loop, it can be assumed that all work-items

execute the loop the same number of times, otherwise the end

result is undefined (the barrier causes a subset of work-items

to lock up indefinitely). The work-item chaining in this case

can be done by treating the loop body independently from the

loop construct as is done in [7]. The loop construct is retained

as in the original kernel to not break the semantics and the

number of iterations in the loop, but the code before and after

the potential barriers is duplicated for each work-item.

C. Work-item Chaining Algorithm

The algorithm for statically generating code for every work-

item (effectively replicating the kernel code the required

number of times) is implemented as a set of closely related

LLVM optimization passes. The high-level structure of the

whole replication process is shown in Fig. 4.

The first step for the algorithm is to find the barriers,

i.e., calls to OpenCL C barrier() API function, present in

the kernel code. As the barriers do not need to be in the

main kernel function code, but might have been placed by

the programmer in some of the kernel called sub functions, a

prior “flattening” is required. This process performs aggressive

function inlining for all non-kernel functions, thus ensuring

kernels themselves have no calls once flattened. Apart from

easing the barrier detection, flattening also improves the results



k e r n e l vo id
som e kerne l ( . . . . ) {

i f ( BB1 ) {
BB2 ;

}
b a r r i e r ( ) ;
BB3 ;

}
(a)

<entry>

BB1

<exit>

<barrier>

BB3

F BB2

T

(b)

<entry>

BB1

<exit>

<barrier>

BB3+BB3’

BB2

T
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F

F BB2’

T

(c)

<entry>

BB1+?BB2+BB1’+?BB2’

<exit>

<barrier>

BB3+BB3’

(d)

Fig. 3. Work-item chaining with barriers: (a) OpenCL C kernel source,
(b) initial kernel CFG, (c) two work-items chained, and (d) the CFG after
branching eliminated with if-conversion.

LLVMOPENCL(module)

1 for each Function f ∈ module

2 do if IsKernel(f)
3 then FLATTEN(f)
4 DETECTBARRIERS(f)
5 for each Region r ∈ f

6 do LOOPREGION(r)
7 REPLICATECODE(r)
8 return module

Fig. 4. Work-item code replication algorithm.

of latter language-independent optimization passes such as

loop-unrolling or dead code elimination.

Each of the regions between barrier calls are then processed

independently. In order to follow the OpenCL programming

model, the regions need to be executed a number of times

equal to the work-group size. This can be achieved by two

different ways: creating loops or replicating the code for each

work-item. The former has the advantage of keeping the code

size small, but results less ILP to be exploited, while the

latter creates more ILP but can lead to huge programs needing

lots of resources and processing time to schedule. In order

to parametrize this tradeoff, our algorithm uses a runtime

parameter to determine the maximum number of replications

to be performed per region, thus the number of work items

potentially executed in parallel, and generates the remaining

work-item executions using loops.

The region replication algorithm works like the basic loop

unrolling that is modified to mark instructions belonging to

different work-items with an unique annotation to help alias

analyzer in recognizing independent instructions. Each basic

block is replicated, maintaining the intra-region control flow

structure, and an unconditional branch is then added at the end

of the previously existing region to ensure the replicated code

is run after the original. This process is repeated as many times

as required according to the number of parallel work-items to

be created.

The region chaining algorithm is designed to generate

valid and easy-to-debug code, but it does not perform any

optimization. As such, it creates several basic blocks connected

by unconditional branches, which can be combined into a

single larger basic block. After the region replication has been

performed for each kernel, the whole code is linked with the

host program and a global optimization stage takes place to

reduce this unoptimized code to a smaller and more efficient

form.

D. Efficient Instruction Scheduling of Work-Items

The processors generated with our design flow are statically

scheduled VLIW-style architectures with up to hundreds of

programmer visible general-purpose registers. In order to not

hinder the post-pass instruction scheduler from exploiting

the potential parallelism between work-items due to “false

dependencies” introduced by the reuse of registers, we im-

plemented a customized register allocator. The goal for the

register allocator is to assign different registers for the chained

work-items to allow them to be fully parallelized.

The register allocator implementation is based on the LLVM

version of the Linear Scan Register Allocator [19] by adding a

round-robin style bookkeeping for the indices of the registers

allocated to variables. This way variables get assigned new

registers whenever possible. This simple modification caused

the instructions from different work items to usually have

registers allocated from different register sets, resulting in a

reduced number of register antidependencies. However, this

allocation strategy is not even close to optimal due to its

greediness that results in more spill code than necessary.

Work is ongoing to improve the register allocator to minimize

harmful false dependencies while still preserving conservative

register usage.

The another source for data dependencies in programs lead-

ing to unnecessary sequentialization are the memory accesses.

In case the program contains stores, it is not legal to schedule

a succeeding load before or parallel with the store unless it can



be proven that the store and the load never access the same

memory address. The problem of figuring out whether the

same memory location is accessed by two different memory

instructions is called “alias analysis”.

When scheduling instructions from multiple work-items

of OpenCL C kernels in parallel there are several useful

properties to assist the alias analysis:

1) All pointer arguments to the kernel function can be

assumed to not alias with each other within the work-

item. Thus, the pointers can be marked as “restricted

pointers” (introduced by ISO C99 [20]) allowing re-

ordering memory accesses to the different input and

output buffers within a single work-item.

2) Accesses to the different address spaces cannot alias.

That is, even in case the global and local memories

were mapped to the same physical address space, the

instruction scheduler can treat them as disjoint areas and

reorder the accesses.

3) Accesses through pointers to the constant memory can

be assumed to be only reads. Thus, no overlapping

with non-const pointers can happen. Furthermore, as

the constant memory is known to be truly read-only

(contrary to the const pointers in C/C++, for example,

which can point to memory that is modified by non-

const pointers) no write can alias with constant memory

reads.

4) Most importantly: in the regions between work group

barriers, the memory accesses of different work-items

can be considered not to alias. This allows treating

the chained work-items as fully independent regions of

code.

The alias analyzer of our instruction scheduler takes advan-

tage of these special properties of OpenCL C to minimize the

data dependencies in the work-item chained code, resulting in

more scheduling freedom.

E. Custom Operation Support

The use of custom operations, also known as special instruc-

tions or special function units (SFUs), is often the most impor-

tant way to accelerate the execution of an application running

in an application-specific processor. The capability to support

custom operations without restrictions to their complexity

enables gradual optimization of the architecture by adding

more and more target-specific custom operations until the

performance is close or equal to an accelerator implemented

purely as a non-programmable hardware block. Therefore, it is

crucial to provide seamless support for programmers to access

custom operations from the source code level.

The OpenCL standard defines an API to provide support

for vendor specific extensions (see [5], Chapter 9). This API

is used in our framework as a means to access the custom

operations available in the target processor. The standard

requires the OpenCL compiler implementation to generate

specifically named preprocessor macros when an extension is

supported. In our toolset, the required headers and macros to

produce the inline assembly that triggers the custom operations

#ifdef cl_TCE_ADDSUB

clADDSUBTCE(a, b, c, d);

#else

c = a + b;

d = a - b;

#endif

Fig. 5. Example of using a custom operation inside an OpenCL kernel in a
portable way.

are generated automatically from an architecture description

file. Thus, it is possible to compile the same OpenCL C

kernel code both to a target that supports and does not support

the custom operation in question by using the preprocessor

to select the accelerated custom operation or the software-

only version. One important benefit from this is that the

custom operation accelerated program can be still compiled

with a regular GPGPU tool chain like that of NVIDIA’s

without modifications in case a software version of the custom

operation is provided.

An example code snippet that uses a 2-input-2-output cus-

tom operation ADDSUB, which adds and subtracts its operands

in parallel is shown in Fig.. 5. The #else branch executes the

same operation in software to maintain portability.

VI. EXPERIMENTS

In order to validate and measure the performance and

feasibility of the use of OpenCL for ASP design in practice,

we implemented an Advanced Encryption Standard (AES)

encoder using the design flow.

AES uses a data block of 128 bits and a key size of 128,

192 or 256 bits. For our experiment we chose 128-bit key size.

The operations involved in the algorithm are substitutions,

rotations and permutations, using the 128 bits of data as a

4x4 array of bytes. Many software implementations of the

algorithm manage the data to be processed as a buffer of chars,

and all the operations are done in char size. For minimizing

the number of memory accesses we used a variation of the

Gladman’s implementation [21] that packs each 4 bytes of data

in 32 bits unsigned values and uses other similar optimizations

in some steps of the algorithm for reducing memory read and

write operations.

The algorithm is divided into two steps: key expansion and

encryption/decryption. The key expansion takes a 128-bit key

and generates a 1408-bit expanded key. This step has to be

done only once if the key doesn’t change, therefore in our

OpenCL implementation we implemented this functionality in

the main program.

The encrypt and decrypt steps are done for each block of

128 bits on the source data. These functions were imple-

mented as OpenCL kernels. The encryption kernel receives

several parameters from the host side: the global buffer to be

encrypted, the expanded key, the buffer to store the results,

and the substitution tables needed by the algorithm. Using

these parameters and its own global identifier each work-item



Fig. 6. The OpenCL AES encryption implementation.

Parallel WIs cycles speedup

1 35,729 1.00
2 18,209 1.96
4 9,505 3.76

TABLE I
EFFECT OF THE PARALLEL WORK ITEM COUNT TO THE CYCLE COUNT.

executing the kernel calculates the piece of input data it must

process.

The host program is responsible for copying the data, key,

and substitution tables to the device global memory. Once data

is on device memory, the host launches as many work-items as

there are 128-bit blocks in the input data buffer that must be

encrypted or decrypted, and finally when all the work-items

have finished it reads back the results (see Fig. 6).

A. Instruction-level Parallelism

The first experiment was conducted to verify the instruction

level parallelism scalability of the OpenCL implementation.

In order to measure this, we designed an architecture that

provided enough resources for the program to be limited

only by its data dependencies. The OpenCL application was

compiled for this architecture with one, two and four parallel

work items.

The benchmark program encrypted 4KB of random data.

The cycle counts with different number of parallel work items

are shown in Table. I. The numbers show that the compiler

optimizations described in the paper are able to take advantage

of the explicit parallelism in the OpenCL kernels, and, given

enough resources in the target machine, parallelizing the work

items perfectly producing approximately linear speedup with

relation to the number of parallel work items.

B. Custom Operations

In the second experiment, we evaluated the use of custom

hardware operations to accelerate the application using the

OpenCL C extension API as proposed in Section V-E. For

this experiment, we designed a realistic base architecture

named AESTTA with datapath resources as shown in Table II.

The connectivity between the datapath units was clustered

resource multiplicity notes

Arithmetic-logic unit 3 1 cycle latency

Register file 3 16 registers per file

Load/Store unit 1 2 cycle load latency

32-bit multiplier unit 1 3 cycle latency

TABLE II
RESOURCES IN THE AESTTA PROCESSOR.

architecture cycles speedup KB/s at 100 MHz

AESTTA 1,119,415 366
AESTTA+MUL GAL 450,490 2.5 909
AESTTA+MUL GAL+SS 286,778 3.9 1,428

TABLE III
SPEEDUPS FROM CUSTOM OPERATIONS.

VLIW-like with FUs and RFs divided to three one-FU-one-RF

clusters. The three clusters were interconnected with a fully

connected transport bus.

In order to verify that the architecture is implementable

without long critical paths ruining the performance due to

low clock frequency, the architecture was synthesized on

two FPGA chips: Xilinx Virtex 5 and Altera Stratix II. The

maximum clock frequencies were 191MHz for Virtex 5 and

149MHz for Stratix II.

Two custom operations were designed and added to the base

architecture:

• MUL GAL, a multiplication of two integers in the Galois

field GF(28). The software implementation needs two

reads from a logarithm table, a read from an antilogarithm

table, an addition, and some control for performing this

multiplication. In hardware, it can be done in a single

clock cycle using two ROMs for the tables, and an 8-bit

adder.

• SUBSHIFT involves searching in a look-up table, sub-

stituting and mixing some elements of an 4 × 4 array.

In software, it takes several clock cycles for reading the

look-up table and mixing the elements of the array, but

in hardware this operation can be done in a single clock

cycle using a ROM and multiplexers.

The same encoding benchmark with the random 4KB input

data set as in the previous experiment was compiled with two

parallel work items and simulated with the architecture simu-

lator to produce the cycle counts for the kernel execution. The

speedups from using the two custom operations in comparison

to the software-only AESTTA are shown in Table III. For

curiosity, in addition to the cycle count speedups, the table

includes the calculated encoding throughput with 100 MHz

clock frequency.

The results show that adding custom operations using

the extension mechanism works and provides remarkable

speedups as expected. Adding both custom operations to the

machine produces almost 4x speedup in comparison to the

software-only version. By inspecting the generated code, the

speedup is partially due to reduced general purpose register



pressure which results in less spills and less antidependencies

that constrain the parallelism.

In this case, it would be possible to further accelerate the

design with little effort, for example, by adding a fourth

cluster to the base machine, increasing the number of general

purpose registers, or by adding more custom operations to the

design. It can be seen from the previous experiment that given

enough resources, the cycle count can be reduced considerably.

However, the purpose of this experiment was not to design

the fastest possible AES hardware implementation, but to

provide a proof-of-concept for the proposed OpenCL-based

ASP design methodology.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a design methodology that uses the

OpenCL standard in application-specific processor (ASP) de-

sign. The leading idea in this work is to exploit the ability

of OpenCL to describe parallelism at its multiple granularities

and exploit the instruction level parallelism of the ASP as

much as possible while providing a clean access to custom

operations.

In our experiments, we verified that the parallel application

description capabilities of OpenCL make it possible to scale

the single core performance of the ASP design efficiently by

increasing the number of parallel work-items and datapath

resources. The custom operation support was verified by using

two non-trivial custom operations to accelerate the AES ASP

design.

The next steps in our work is to extend and implement the

static work-item chaining algorithm to cover more OpenCL

kernels with more complex barrier usage scenarios and to im-

prove the efficiency of the instruction scheduler on machines

with small number of registers and reduced connectivity. In

addition, we plan to add support for generating multicore ASPs

to exploit task level parallelism.
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