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Abstract—A new method to predict a GPS satellite’s clock
offset is presented. The motivation for this work is to improve
the time to first fix and make the clock offset prediction less
sensitive to outliers. The proposed method is tested with real
data and it is shown to improve prediction accuracy compared
to other known methods.

I. INTRODUCTION

When a standalone GPS receiver is turned on, it may
take over 30 seconds until the first position fix. This is a
consequence of the streaming rate of the satellite’s broadcast of
its orbital parameters. For example, it takes over ten seconds to
send the three first subframes and this information is streamed
once every 30 seconds [1, p. 127]. However, under nonideal
conditions the time to first fix might be even longer, and it
may take over one minute before the receiver has enough
information to compute the first position fix.

The time to first fix can be reduced by obtaining the
satellite’s orbital parameters and its clock offset in some other
way than waiting for the data from the broadcast stream. One
option is to download this assisting data from a network, for
instance the Internet. However, this “assisted GPS” option may
not be feasible. For example, an Internet connection might be
too expensive from the end-user’s point of view or the wireless
network’s signal might be too weak. This motivates the study
“self-assisted” methods to predict orbital parameters and clock
offsets.

In [2] a method to predict a GNSS satellite’s orbit and
clock offset was presented. The satellite’s orbit was predicted
by numerically integrating its equation of motion. The clock
offset was predicted using the polynomial model provided in
the satellite’s broadcast message. In this study it was found
that the error in the user position estimate was dominated by
the clock offset prediction model, not by the orbit prediction
model. The empirical results showed that the inaccuracy of the
clock offset prediction approximately doubled the range error
in a four day prediction span.

In this paper a statistical approach to predict a satel-
lite’s clock offset is presented. The proposed method applies
Bayesian filtering theory to estimate and predict a satellite’s
clock offset behaviour. A novel feature is the application of
a recently published outlier-robust Kalman filtering algorithm
[3] in the clock offset estimation and prediction problem.

This research was funded by Nokia Inc.

The structure of this paper is as follows. The task is
formulated as a Bayesian inference problem and a model
for the satellite’s clock offset process is presented in section
II. Computational methods to perform outlier-robust Kalman
filtering and to estimate model parameters are described briefly
in section III. The empirical setup and the performance of the
proposed algorithm with real data are presented in section IV.

II. CLOCK MODEL

A. Dynamical Model

In this work the satellite’s clock dynamics are modelled
with the time discretized version of a constant frequency bias
model presented in [4] for Cesium atomic clocks. That is,
the unknown state vector xk consists of clock offset τk and
frequency bias bk at time tk. The state evolution is written as
a stochastic difference equation as follows

xk+1 =

�
τk+1

bk+1

�
=

�
1 ∆t
0 1

�
xk + wk, (1)

where wk is assumed to be a zero mean Gaussian white noise
process with a known covariance matrix Q.

B. Measurement Model

A GPS satellite sends coefficients af0 , af1 and af2 of
a second order polynomial in the broadcast message. This
polynomial is an approximation of the true path of the clock
offset process. With these coefficients a GPS receiver can
predict the satellite’s clock offset τ at a given time t as

τ(t) = af0 + af1(t− t0) + af2(t− t0)
2, (2)

where t0 is the time of ephemeris. In this work the constant
term af0 is treated as an inaccurate measurement of the
clock offset component of the state that evolves according
to (1). For simplicity the “inaccurateness” is modelled to
be a consequence of an additive measurement noise process
vk. That is, the measurement model is assumed to have the
following form

yk = af0 =
�
1 0

�
xk + vk. (3)

Coefficients af1 and af2 could, at least in principle, be treated
as measurements of frequency bias and frequency drift re-
spectively. However, because these coefficients do not change
much in the time intervals we are considering, their broadcast
values are not used in this work.



With the measurement and dynamical models it is possible
to compute the posterior distribution of the state xk with
Bayesian filtering techniques. That is, one can compute the
probability distribution of the current state given the mea-
surements up to the kth epoch xk|y1:k. With the posterior
distribution it is possible to compute the predictive distribution
xk+1|y1:k and this constitutes a statistical prediction of the
satellite’s clock offset behaviour.

In the standard Kalman filtering scheme the measurement
error process vk is assumed to be a zero mean white noise
process. If measurement error and prior distributions are Gaus-
sian, the posterior distribution is Gaussian and the Kalman
filter computes the parameters of the posterior distribution.

However, the Kalman filter’s estimate is sensitive to occa-
sional large deviations (“outliers”) because the Gaussian dis-
tribution is thin tailed. Student’s t distribution offers a heavy-
tailed alternative to the Gaussian distribution and a possible
approach to obtain an estimate that is not so sensitive to
outliers in the measurements is to assume an additive Student’s
t measurement error process. This estimation problem cannot
be solved with a standard Kalman filter and requires more
sophisticated computational methods.

III. COMPUTATIONAL METHODS

A. Outlier-Robust Kalman Filtering

Consider a state space model such that

xk+1 = Axk + wk (4)
yk = Hxk + vk (5)

where wk is a zero mean Gaussian process and vk is a zero
mean Student’s t ν-degree of freedom distributed random vari-
able. In this work the outlier-robust Kalman filter, presented
in [3], is applied to solve the posterior distribution of state xk

given the measurements y1:k. The outlier-robust Kalman filter
is an iterative algorithm that updates the posterior mean of the
state xk and the covariance matrix of the measurement error
distribution in successions to obtain the posterior distribution
of the state xk.

B. Estimation of Process Noise Covariance

Good filtering performance requires a correct selection of
the process noise covariance matrix Q [5]. In [4] and [6]
the process noise covariance matrices are assumed to have a
certain functional form and the numerical values of the tuning
parameters are chosen with prior knowledge. In this work the
Expectation Maximization algorithm is applied to obtain a
maximum likelihood estimate of the process noise covariance
matrix Q. The Expectation Maximization algorithm can be
written as shown in Algorithm 1 [5].

In estimation theoretical terms the expectation step consists
of fixed interval smoothing with a given process noise co-
variance matrix Qk. After smoothing the objective function is
maximized with respect to the unknown parameter. Both steps
can be carried out analytically for linear dynamical systems
with additive Gaussian measurement and process noise. The

Algorithm 1 Expectation Maximization
Given N measurements y1:N .
Set initial value Q0.
while Not converged do
1) Expectation step. Compute expectation

L(Q, Qk) = EQk
(log(p(x1:N , y1:N |Q)))

2) Maximization step. Solve maximization problem
Qk+1 = argmaxQ L(Q, Qk)

end while

details of the maximum likelihood estimation of the process
noise covariance matrix in dynamical systems are given in [5]
and [7].

IV. EMPIRICAL RESULTS

A. Offline Parameter Estimation

In this work the precise ephemerides (PE) published by
the National Geospatial-Intelligence Agency (NGA) were
considered as the reference values of the satellite’s clock
offsets. That is, it is assumed that the residual error of the
precise ephemerides is small compared to the prediction and
measurement errors. To obtain an estimate of measurement
error statistics, the difference between precise and broadcast
ephemerides aPE

f0
− aBE

f0
was computed for each sample during

GPS weeks 1600 – 1604 and Student’s t distribution was
fitted to the measurement error distribution in the maximum
likelihood sense [8]. The degrees of freedom and the shape
parameter of the Student’s t distribution were fitted to the
measurement error data individually for each satellite.

A typical clock offset measurement error distribution is
given in Figure 1. The cumulative density functions of the
maximum likelihood fits are plotted with realized measure-
ment errors in Figure 1. The Gaussian distribution clearly
underestimates the frequencies in the tails of the distribution.
For example, measurement errors of 5 meters are 5 times
more frequent than predicted by the Gaussian model; errors
of 10 meters are 1000 times more frequent. In contrast the
Student’s t distribution fits the data in the whole range, and
large measurement errors are correctly modelled.

Process noise covariance matrices were estimated offline
with the Expectation Maximization algorithm individually for
each satellite. The training data used in the estimation was
selected to be NGA’s precise ephemerides from GPS weeks
1600 – 1604. The residual error of precise ephemerides was
assumed to be normally distributed.

B. Prediction Results

The proposed algorithm was tested with real broadcast
ephemerides, abbreviated in this paper as BE, from GPS weeks
1605 – 1650. Satellite tracks that had clear step-wise jumps in
the clock offset process were excluded, because such steps are
not included in the statistical model. The sampling rate was
chosen to be 1/day and the prediction was computed after
receiving each sample. The prior state x0 was set to be a
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Fig. 1. Normal probability plot of measurement error distribution showing
realized measurement errors (blue crosses), a gaussian fit (red dashed line)
and a Student’s t fit (solid black line). Data was collected from satellite 30
on GPS weeks 1605 – 1650. Errors are given as error in pseudorange.

Gaussian distribution with mean µ consisting of the parameters
of NGA’s precise ephemerides as follows

µ =

�
aPE
f0

aPE
f1

�
(6)

The covariance matrix of the prior distribution was set to zero.
The posterior predictive mean was reported as the algorithm’s
prediction and its numerical value was compared with NGA’s
precise ephemerides. The filter was set to compute only
the predictive distribution if no broadcast ephemerides were
available for some epoch.

The prediction accuracy of the polynomial models of broad-
cast ephemerides and NGA’s precise ephemerides were also
studied. The predictive polynomial was downloaded for each
epoch that the outlier-robust Kalman filter received a new
measurement. After receiving a predictive polynomial, the
prediction was done and the predicted value was compared
with the precise clock offset value at the predicted epoch.

GPS positioning is based on pseudorange measurements ρ

ρ = �r − si�+ c(τ − τr) + �, (7)

where r is the user’s position, si is the position of the ith
satellite, c is the speed of light, τ the satellite’s clock offset,
τr the receiver’s clock offset and � is measurement error. If
∆τ denotes the estimation error of the satellite’s clock offset,
then the error in pseudorange becomes

∆ρ = c∆τ (8)

Applying standard Dilution of Precision (DOP) analysis, the
variance of the error in pseudorange is mapped to the variance
of actual positioning error ∆P as follows [1, p. 207]

σ2
∆P = DOP · σ2

∆ρ = DOP · σ2
c∆τ , (9)

where DOP is a function of the geometry of visible satellites.
Therefore the error in pseudorange is considered in this paper
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Fig. 2. Prediction error results. The upper and lower edges of the box
show the 75% and 25% quantiles of the prediction error respectively. The
upper whisker corresponds to 90% quantile. In this figure PE, KF, t-KF and
BE corresponds to the prediction error of precise ephemerides, Kalman filter,
outlier-robust Kalman filter and broadcast ephemerides respectively.

when the accuracy analysis is carried out because it is a mea-
sure that is independent of the current satellite constellation;
formula (9) indicates how the prediction accuracy is mapped
to the actual positioning accuracy.

The prediction results (Figure 2) show that the proposed
method improves the accuracy of the broadcast’s clock offset
prediction by approximately 5 meters in 15 days prediction
(90% quantile). There is also slight improvement in shorter
prediction intervals. There are no significant differences be-
tween the 25% quantiles of the prediction error distributions
of the proposed method and broadcast ephemerides. This can
be interpreted as an indication that the predictive polynomials
of broadcast ephemerides are good in about 25% cases, and
filtering is of benefit in the remaining 75% of the cases.

It was observed that the constant drift assumption of the
dynamical model given in (1) was not valid for the whole
constellation. For example, the clock offset process of satellite
20 has an evident quadratic trend and thus the linearization
increases the error in a long term prediction span. However,
the linearization is a trade-off between the model complexity
and its generalizability.

C. Comparison to Other Methods

Empirical tests were repeated using standard Kalman filter
as proposed in [4]. As illustrated in Figure 2, the prediction
accuracy was overall similar to the results computed with the
outlier-robust Kalman filter. However standard Kalman filter
was found to be sensitive to large measurement errors. One
such case is shown in Figure 3 where Kalman filter takes 14
samples to recover from a single outlier. The measurement
error was as large as one millisecond (3 · 105 meters) for
the outlier observed at the 250th epoch. The time-series plot
of the estimation error of the satellite’s clock offset process
illustrates that there are no significant differences between the
estimates of Kalman filter and the outlier-robust Kalman filter
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Fig. 3. Effect of outlier on drift process estimation (left) and clock offset process estimation error (right). Data was collected from satellite 3.

before observing the outlier and after the Kalman filter has
recovered. The drift and clock offset estimates of Kalman filter
become highly oscillating when an outlier is observed and it
takes several time steps for the oscillation to damp out. In
contrast, the outlier-robust Kalman filter performs correctly,
automatically giving less weight to the outlier measurement.

When the measurement was not an obvious outlier, esti-
mates computed with Kalman filter were approximately equal
even though some satellites have a heavy tailed measurement
error distribution. This might be a consequence of the sparse
sampling rate. Since the sampling frequency of one sample
per day is considered in this paper, process noise becomes
the limiting factor of filtering performance. Therefore outlier-
robust Kalman filter could improve the filtering performance
if the filter would receive samples more often. However,
more frequent sampling rate is not usually possible in the
applications of self-assisted GPS but it could be one approach
to make offline estimation of satellite’s clock offset behaviour
when there is lots of data available.

The prediction accuracy of precise ephemerides was found
to be most accurate among the four prediction methods con-
sidered. For example the prediction accuracy of the precise
ephemerides was shown to be seven meters better than the pre-
dictions made with outlier-robust Kalman filter (90% quantile).
Even though the proposed method gives worse predictions
than the predictive polynomials of NGA’s precise ephemerides,
it is worth mentioning that NGA has more data and that
their precise ephemerides are processed offline with also some
knowledge about the upcoming data and so use of precise
ephemeris is not feasible self-assisted GPS.

Huang and Zhang have recently published a method in [9]
to make a GPS satellite’s clock offset estimation less sensitive
to outliers. They present an adaptively robust Kalman filtering
algorithm to control outliers. Their method applies a slightly
different dynamical model with an extra acceleration term dk.
The dynamical model can be expressed in the notation of (1)

as

zk+1 =




τk+1

bk+1

dk+1



 =




1 ∆t 1

2 (∆t)2

0 1 ∆t
0 0 1



 zk + �wk (10)

In their work a connection between the parameters of the
process noise covariance matrix and Hadamard total variance
and Allan variance is described and the parameters are fitted
to match these statistics. The root mean square prediction
accuracy for a two day prediction interval was reported to be
3.48 meters for a single satellite (PRN 28). The outlier-robust
Kalman filter approach presented in this paper was observed
to be accurate up to 5.85 meters (90% quantile) for the whole
constellation. Root mean square error for two day prediction
interval varied from 0.90 meters to 9.11 meters for different
satellites giving root mean square error of 3.63 meters for the
whole constellation and 2.96 meters for PRN 28. Therefore
our method seems to offer accuracy that is comparable to the
recently published method.

V. CONCLUSIONS

An outlier-robust method to improve satellite’s clock offset
prediction was presented. The proposed method was shown to
improve the prediction accuracy with real data. The method
was also shown to be less prone to outliers than the usual
Kalman filter approach. The given model is compact, only
the process noise covariance matrix and the parameters of
Student’s t distribution need be fitted to the data, and no
additional threshold values need to be adjusted.
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