
Customized Exposed Datapath Soft-Core Design

Flow with Compiler Support

Otto Esko∗, Pekka Jääskeläinen∗, Pablo Huerta†, Carlos S. de La Lama†, Jarmo Takala∗, and Jose Ignacio Martinez†

∗Tampere University of Technology, Department of Computer Systems, Tampere, Finland

Email: {otto.esko,pekka.jaaskelainen,jarmo.takala}@tut.fi
†Universidad Rey Juan Carlos, Department of Computer Architecture, Móstoles, Madrid, Spain

Email: {pablo.huerta,carlos.delalama,joseignacio.martinez}@urjc.es

Abstract—A popular way to exploit high level programming
languages in FPGA designs is to use a soft-core with ac-
companying software development tools. However, a common
shortcoming with the current soft-core offerings is their limited
software execution capability: the required performance for the
implementation can be often reached only with instruction set
extensions.

In this paper, we propose and evaluate an application-specific
processor design toolset that uses a multi-issue exposed data path
processor architecture template. The main benefit of the archi-
tecture is scalability with respect to instruction-level parallelism
(ILP). The design flow allows the designer to freely customize
the data path resources in the core to exploit the ILP available
in computation intensive kernels. The design toolset includes a
retargetable C compiler and an architecture simulator, making
design space exploration feasible.

The experiments show that a relatively small soft-core tai-
lored with the toolset provides significant speedups on software
execution without using any instruction set extensions. The best
measured speedup in comparison to the major commercial soft-
cores was fourfold in applications from the CHStone benchmark
suite, while the amount of consumed FPGA resources remained
moderate.

I. INTRODUCTION

Custom intellectual property (IP) hardware blocks are often

used for applications requiring high performance and low

power consumption. However, manual IP block design process

tends to be slow and error-prone. In addition, it often requires

specific design skills and knowledge of hardware design.

Methodologies and tools for high level synthesis (HLS) have

gained interest in recent years due to the ever increasing

complexity of new hardware designs [1]. The idea in HLS

is to allow the application designer describe their application

in a high level language (HLL) such as C, SystemC or Matlab

while the HLS tool is responsible for mapping this description

to hardware constructs as efficiently as possible. In addition

to faster time-to-market, another advantage of such design

methodologies is that they usually require less hardware design

expertise, allowing people with software engineering skills to

produce hardware IP with adequate performance.

A popular way of implementing high level synthesis for

FPGAs is to use a soft-core processor based solution. The

mainstream soft-core based programming of FPGAs has in-

volved extending RISC-style soft-cores from the major FPGA

vendors or cores available as open source with application-

specific instruction extensions. A brief survey of the soft-cores

can be found in [2]. The common shortcoming with the current

soft-cores is the fixed-nature of the core with very limited

support for customization. Scalar RISC cores are incapable of

exploiting instruction-level parallelism (ILP), often available

in computation intensive kernels. These cores resort mainly

to instruction set extensions (ISE) and/or co-processors to

achieve the required throughput, requiring substantial manual

or algorithmic work in finding the beneficial ISEs.

In this paper, we propose and evaluate an application-

specific processor (ASP) design flow that uses a multi-issue ex-

posed data path processor architecture template. Main benefit

of the architecture is its scalability with regards to instruction-

level parallelism. The proposed design flow gives the freedom

for the designer to customize the data path resources, such as

function units and register files, to exploit the ILP available

in the compiled software. In addition, the flow supports user

defined custom operations with no limitations to the number of

inputs and outputs nor the latency (thanks to the independent

function unit pipelines).

The CHStone benchmarks evaluated in the paper show up to

fourfold speedups in comparison to FPGA vendor soft-cores

only by adding standard datapath resources to the designed

architecture without using any instruction set extensions.

The rest of the paper is organized as follows. Section II

discusses the related work on soft-core processors and toolsets

used to customize them. Section III introduces the processor

architecture template used in the proposed approach. Sec-

tion IV presents the proposed ASP design flow, and Section V

describes the integrated verification flow. The efficiency of the

architecture and the toolset is evaluated in Section VI. Finally,

section VII concludes the paper and outlines future directions.

II. RELATED WORK

An ASP based on a VLIW soft core with customizable

instructions is described in [3]. The work applies Nios II [4]

instruction set on a 4-way VLIW architecture in order to

exploit ILP. However, the degree of customization is limited;

the core contains fixed set of resources in the data path and

custom instructions are supported by adding units to the core.

CUSTARD is a customizable soft-core proposed in [5] and

development tools include automated search for instruction set

extensions (ISE). CUSTARD supports block and interleaved

multithreading, which improves the throughput for multi-

threaded programs. In our toolset, we support light weight

block multithreading by means of compiler assisted context

switches [6]. In the case of CUSTARD, the architecture tem-

plate is again a simple MIPS-like RISC with custom operation

I/O characteristics limited by MIPS instruction encoding. In

the proposed approach, there are no limitations to the number

of inputs or outputs nor internal pipelining of the custom

operations.

Several HLS tools generating RTL from high level lan-

guages have been commercialized, e.g., Synopsys recently

announced an HLS flow starting from Matlab programs [7].

Our design flow can be considered to belong to the category

of HLS tools as it provides a toolset for supporting gradual

conversion of HLL programs to a customized static multi issue

processor and automatically parallelized code.

A similar architecture and a toolset to ours is presented

in [8] where the designer can customize the number and type

of FUs and RFs in the data path. Clustered VLIW is used to

avoid the register file port bottleneck inherent to VLIWs. In

addition, their forwarding network is customizable to reduce

the interconnection network complexity. However, an impor-

tant and the most complex part of the toolset is missing; there

is no retargetable HLL compiler. The generated processors can

only be manually assembly programmed, making design space

exploration practically impossible.

Finally, the proposed toolset includes a retargetable C com-

piler unlike many other ASP based design toolsets. In addition,

our toolset has been tested with several large applications and

has a fully functional and stable open source release available

for download at [9].

III. TRANSPORT TRIGGERED ARCHITECTURES

VLIWs are considered interesting for applications with

high processing performance requirements [10] and relatively

simple control flow that can be predicated. Transport Trig-

gered Architecture (TTA) is a modular processor architecture

template with similarity to VLIW architectures [11]. TTA

can be described as an “exposed data path VLIW”: instead

of defining which operations are started in which function

units (FU) at which instruction cycles, TTA programs are

defined as data transports between register files (RF) and

FUs of the data path. The operations are started as side-

effects of writing operand data to the “triggering port” of

the FU. The modularity of TTA allows easy customization

of processor designs, making it an interesting architecture

template for automated processor generation. Fig. 1 presents

a simple example of a TTA processor.

The programming model of VLIW imposes limitations for

scaling the number of FUs in the data path. Increasing the

number of FUs has been problematic in VLIWs due to the need

to include as many write and read ports in the RFs as there are

FU operations potentially completed and started at the same

O
U

T
P

U
T

T
R

IG
G

E
R

O
U

T
P

U
T

FU0 FU1

ALU Load/Store

BUS0

BUS1

BUSN

T
R

IG
G

E
R

IN
P

U
T

FU2

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

IN
P

U
T

RF0

32x32Custom Op.

IN
P

U
T

T
R

IG
G

E
R

Fig. 1. Example of a TTA processor.

time. Additional ports increase the RF complexity, resulting

in larger area, critical path delay and power consumption. The

increased RF complexity was perceived as the main limitation

for maximum clock frequency for a VLIW on an FPGA in [3]

and was addressed by a clustered VLIW approach in [8].

Thanks to its programmer-visible interconnection network,

TTA data path can support more FUs with simpler RFs [12].

Because the scheduling of data transports between data path

units are programmer-defined, there is no obligation to scale

the number of RF ports according to the number of FUs [13].

Using multiple simpler RFs instead of a monolithic complex

one is a common design choice for TTA designers.

The second main benefit of TTAs compared to VLIWs

is the customizable interconnection network. Adding an FU

to the VLIW data path requires potentially new bypassing

paths to be added from the FU’s output ports to the input

ports of the other FUs in the data path, which increases

the interconnection network complexity. In addition to the

register file bypasses, the whole data path connectivity can

be tailored according to the application at hand, adding only

the connectivity that benefit the application the most. The

customization of the interconnection network combined with

the possibility to program data transports directly from an

function unit to another (a.k.a. software bypassing) can lead

to notable performance increases [14].

One interesting aspect of TTA is the independence of its

FU pipelines and their independence from the RFs. While in

operation-triggered architectures FUs are tightly coupled to

the connected RFs, in case of TTAs there is no such coupling

thanks to the transport programming. This allows TTAs to

integrate also longer latency co-processors directly to the data

path using the regular FU port interface [15] and it allows

more scheduling freedom for the compiler.

IV. FROM C TO ASP ON FPGA

This section describes the proposed design methodology for

converting C programs to ASPs running parallelized programs

on FPGA (see Fig. 2). The first subsection describes the

basic design flow in which only “basic processor resources”

are customized, the second subsection describes the steps

needed to use instruction set extensions, and finally the third

subsection describes the most important tool: the retargetable

C compiler.

A. Basic Design Flow

The design flow starts with a HLL source code and an

initial processor architecture definition file (ADF). The initial

Retargetable
Instruction Set Simulator

Program Image Generator

Platform Integrator

Processor Generator

Retargetable Compiler

FPGA Synthesis Tools

FPGA
Programming files

HLL
(C, C++, OpenCL)

Platform
Description

(FPGA specific)

Hardware
Database

(FPGA specific)

Designer
(or automated

"explorer")

Processor
Designer Tool

TCE Design Tools

3rd party tools Feedback

Feedback

Fig. 2. TCE design flow from high level language to FPGA.

architecture is usually a processor architecture with a minimal

set of resources that still allow C compilation or another

previously designed generic architecture.

The HLL source code and the ADF are given to the compiler

which produces an assembly program. The compiler is runtime

retargetable thus it adapts automatically to the set of resources

defined in the ADF. The main task of the compiler is to

optimize the input and parallelize it at the instruction level

to exploit the given architecture as efficiently as possible.

The next step is to simulate the program using a retargetable

cycle accurate processor architecture simulator. The simulator

produces profiling info, such as the cycle count and resource

utilization. This feedback is directed back to the designer or,

if fully automated design flow is desired, to an automated

architecture design space exploration tool. Based on the feed-

back, the architecture is customized by adding or removing

FUs, RFs or data path connectivity. Manual customization

is usually done using the Processor Designer tool with a

graphical user interface. The program is recompiled to the

modified architecture and the simulator feedback is again

analyzed. After a satisfactory cycle count is reached, compile-

simulate-customize cycle is finished and the designer proceeds

to processor HDL generation.

At the HDL generation phase, the designer first chooses

implementations for the processor components specified in

the ADF. The FU and RF RTL implementations are stored in

Hardware Databases (HDB) along with their implementation

data. HDBs are libraries of processor components which can

be target platform specific or generic. FPGA-specific HDBs

contain implementations tailored for a certain FPGA platform.

Tailoring is useful, for example, to access the I/O on the FPGA

board through an FU interface, or to implement an RF that uses

FPGA’s internal memories optimally. HDBs can also store cost

data of the implementations that is used by the Cost Estimator

tool (excluded from Fig. 2 for simplification) to estimate the

area, maximum clock frequency, and energy consumption of

the processor implementation before the logic synthesis.

After the architectural components in ADFs are bound to

implementations in HDBs, the processor RTL implementation

Create Custom Operation
Compiler Definition and

Simulation C model

Create Custom Operation
RTL Implementation

Retargetable
Instruction Set Simulator

Retargetable Compiler

Processor
Designer

Architecture
Specification

Add Custom
Operation calls

HLL
(C, C++, OpenCL)

TTA Unit Tester

Feedback Analyze

Fig. 3. Using custom operations.

can be produced using the Processor Generator tool. This tool

collects the chosen FU and RF implementations and generates

the interconnection network and the control unit. The control

unit includes the instruction decoder, optional decompressor

(in case instruction compression is used), and the fetch unit

for loading the instruction words from the instruction memory.

In addition, it creates a generic test bench that can be used in

HDL verification.

The next phase is to generate the instruction and data

memory bit images of the program executable. This is done by

using Program Image Generator which generates the encoding

for the instructions and supports multiple output formats, thus

the designer can choose the most appropriate one for his

platform.

The last tool in the TCE FPGA design flow is the Platform

Integrator. The main purpose of this tool is to connect memory

components and other external IPs to the TTA core. In

addition, the tool creates project files for 3rd party synthesis

tools and performs I/O signal mapping to physical FPGA pins.

The final steps are synthesis, place, and route of the processor

which are performed using 3rd party tools.

B. Custom Operations

In addition to tailoring the processor architecture with “basic

data path resources”, the designer can also create user-specific

instruction set extensions (custom operations) to further accel-

erate the application at hand. Fig. 3 illustrates the phases in

evaluating and using custom operations. In the current toolset

version, automatic ISE search is not supported yet. However,

we have found that the best ISEs are usually found manually

by exploiting a priori knowledge on the algorithmic, instead

of trying to find extension candidates by automatic scanning

of low level program representations.

After a suitable custom operation candidate is found (by

using program profile data, for example) the designer needs

to create a compiler definition for the operation. This definition

tells how many input and output operands the operation has

and whether the operation has any special features such as

internal state or if it accesses memory. In order to simulate

the operation in the architecture simulator, a C/C++ simulation

model, also known as a behavioral model of the operation,

is defined. This model can be usually copy-pasted directly

from the accelerated part of the input program with minor

modifications.

The next step is to add an FU which implements the new

operation to the processor architecture. In order to use the

custom operation from the program, the designer needs to

insert custom operation calls into appropriate places of the

source code. After inserting the custom operation calls and an

FU supporting the custom operation to the architecture, a new

compile-simulate-analyze iteration begins. From the analysis,

the designer decides either to try another custom operation

candidate or to proceed to implementation.

It should be noted that only after the designer has found the

appropriate set of custom operations and reached the desired

cycle count, it is time to create the RTL implementations of

the custom operations. Using high level descriptions of the

operations and C simulation models makes testing custom

operation candidates easy and fast as the hardware implemen-

tations of the operations are not needed until the processor will

be implemented. It should also be noted that the each function

unit has a standard interface, thus the RTL description of a

custom operation is not a complex task.

The implementation of the custom operations in VHDL is

the only manual HDL writing step required at the moment in

the TCE design flow. The implemented special function units

are stored in HDBs which can be reused in the future designs,

potentially removing even this implementation step for new

processor designs.

C. Retargetable C Compiler

As TTA is a statically scheduled architecture with low level

details of execution exposed to the programmer, the runtime

efficiency of the end results produced with the design toolset

depends heavily on the quality of the compiler.

TCE uses the LLVM Compiler Infrastructure [16] in its

compiler tool chain (later referred to as ’TCECC’), thus

benefits from its global optimizations, such as aggressive

dead code elimination and link time inlining. LLVM provides

the frontend, the middle end optimizations, and parts of the

backend. The final phases of TCECC code generation have

been written from the scratch to provide efficient retargetable

instruction scheduling and TTA-specific optimizations.

V. VERIFICATION SUPPORT

Although the proposed ASP design flow is automated, it

is often useful to be able to verify the implementation at the

different stages of the design flow. This section describes the

main ways to verify the generated processor designs: top-down

verification and processor unit testing.

A. Top-Down Verification

The basic idea in top-down verification is to compare the

verification outputs with the ones produced from a previous

stage in the design flow, essentially isolating the point in

the design flow that introduced the detected failure. Top-

down verification is further divided to two different methods

depending on the type of output used as the verification data:

standard output or bus traces.
1) Standard Output: This method relies on C stdio.h func-

tions such as printf(), puts(), and putc() to produce verification

data from the input program itself. The output can be produced

on four different stages in the design flow:

1) Native workstation execution. HLL program is compiled

and ran natively on the designer’s workstation. This

usually produces the known correct output which is used

as the comparison reference for the rest of the stages.

2) Architecture simulation. The HLL program is compiled

with TCECC and executed using the architecture simula-

tor. TCECC stdio implementation uses a custom opera-

tion called “STDOUT” to output characters. The default

simulation model outputs the chars to the simulator’s

console.

3) RTL simulation. The FU containing the STDOUT is

implemented at this stage using the simulation-only

printing functions of VHDL.

4) FPGA execution. Unlike in the previous stage, now

the STDOUT implementation needs to be synthesizable.

Usually the implementation uses JTAG or UART to

output the characters to a console or a display.

2) Bus Trace: A bus trace includes the values in every

transport bus (the buses controlled by TTA programs) at

every clock cycle. The bus traces can be obtained from three

different stages in the design flow:

1) Architecture simulation. This bus trace is used as the

reference for later comparisons.

2) RTL simulation. When generating the processor HDL

designer can enable an option which creates a bus trace

recording module to the processor’s interconnection net-

work. This module is implemented using the VHDL file

I/O API, thus is not synthesizable.

3) FPGA execution. Implementation of the bus trace

recording module in the decoder is changed to a syn-

thesizable design specific to the used FPGA platform.

Using JTAG is an obvious choice for the output.

B. Processor Unit Testing

Processor unit testing enables automated FU and RF imple-

mentation testing. In essence, the idea is to introduce the test-

driven development (TDD) workflow [17], popular in agile

software development, to the processor design flow. Using

processor unit testing, the designer can first create only the

architecture and the C simulation model for a new FU (usually

for a custom operation) and then start implementing the RTL

version until its unit test passes.

Unit testing is implemented with two programs: the TTA

unit test generator, which is included in TCE toolset, and a

3rd party RTL simulator. The test generator takes a processor

implementation description as an input. This file defines all

the FU and RF implementations used in the architecture.

In order to create reference output data automatically, the

unit test generator uses the architecture simulation models of

the tested FUs. Input vectors for the tested FUs are generated

(currently randomly) and the FU simulation models are used to

generate the reference output data vectors. An HDL testbench

is created using the test vectors that feeds input data to the

FUs and compares the produced output to the reference. If

the data differs the testbench issues VHDL assertions. After

the RTL testbench is generated, the unit tester uses an RTL

simulator to simulate the testbench and informs the user about

the errors found.

VI. BENCHMARKS

In order to measure the efficiency of the proposed design

methodology, toolset and the associated processor template

against existing soft-core implementations, a set of applica-

tions were implemented using a TTA designed with the toolset.

No instruction set extensions were used in order to compare

strictly the software execution capabilities of the cores. The

machine used was partially connected, with three cluster nodes

comprising one ALU and one register file each, and a global

bus for direct data transports between different clusters. ALU

operations had a latency of 2 cycles.

Comparison was done against a Nios II/f processor, syn-

thesized on an Altera Stratix II FPGA, and two different

MicroBlaze configurations, with 3- and 5-stage pipelines,

running on a Xilinx Virtex 5 family FPGA. In order to avoid

the effect of different arithmetic emulation libraries, we used

hardware multipliers on all the targets. On the TTA machine,

a multiplier with 4 cycle latency was chosen to increase the

maximum clock frequency.

Test applications were taken from the CHStone benchmark-

ing suite [18], targeted for measuring the efficiency of HLS

tools. Due to the current lack of 64-bit integer support in our

toolset, some of the tests provided by CHStone had to be

excluded from the measurements.

Table I summarizes execution times for the test cases on

each target, as well as maximum achievable frequency for each

platform. It has to be noted that GSM test produced incorrect

results on MicroBlaze, due to unknown causes (our guess is a

compiler error), and was therefore removed from the analysis.

Taking these data into account, performance results are given

in Fig. 4, which shows the speedup of the designed TTA soft-

core against the compared soft-cores.

The worst speedup is produced with the MIPS test, with

nearly two-fold improvement over the MicroBlaze cores but

25% slowdown in comparison to the Nios II/f processors. This

is because the MIPS test is composed of a large number

of small basic blocks. This ruins the possibility to extract

parallelism from the algorithm, and also causes very frequent

conditional branches with very few instructions in those con-

ditional blocks to fill delay slots with. Nios II/f cores have

TABLE I
EXECUTION TIME (µSEC) AND MAXIMUM FREQUENCY (MHZ) FOR EACH

TEST PLATFORM.

Test TTA on

Stratix II

Nios II/f TTA on

Virtex 5

3-stage

mBlaze

5-stage

mBlaze

adpcm 542.0 691.8 422.8 1 098.9 801.5

aes 176.7 396.2 137.8 469.3 376.6

blowfish 5 754.6 7 285.0 4 489.2 11 192.8 8 571.7

gsm 118.5 133.4 92.4 n/a n/a

jpeg 46 826.4 120 817.1 36 529.5 142 344.0 118 529.2

mips 259.6 187.0 202.5 389.2 377.7

sha 3 176.1 4 054.0 2 477.7 10 016.5 7 658.3

fmax 149 175 191 169 195

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

adpcm aes blowfish gsm jpeg mips sha

S
p
e
e
d
u
p

TTA vs. Nios II
TTA vs. 3-stage mBlaze
TTA vs. 5-stage mBlaze

Fig. 4. Speedup of the designed TTA over FPGA vendor soft-core processors.

a built-in dynamic branch predictor which allows them to

outperform other targets in such control-oriented applications.

The best cases are JPEG and AES with about fourfold

speedups. The analysis shows that these algorithms consist of

the largest number of arithmetic and logic operations, and after

unrolling, predication and inlining end up composed of large

unconditional basic blocks, thus providing better utilization for

the multi-ALU TTA core.

The comparison of FPGA resource usage is given in table II.

These numbers show that the area utilization of the TTA

core is roughly three times larger compared to the reference

soft-core processors. This is a moderate increase in FPGA

utilization when considering the significant speedups and the

fact that these speedups were produced merely by using

basic TTA resources and no custom operations. In addition,

it is important to notice that in these benchmarks we used

a single generic TTA tailored towards the demands of the

most computation intensive programs in the benchmark set. In

case better performance/resource consumption ratio is desired

for each separate program, it would be trivial to simplify the

TTA by removing datapath resources for the cases with lower

computational demands.

Naturally, for a VLIW-like architecture such as TTA, one

significant aspect is the instruction memory usage. Due to

the need to encode NOPs, the width of a TTA instruction

tends to be big in comparison to the scalar RISC archi-

TABLE II
SYNTHESIS RESULTS FOR ALTERA STRATIX II AND XILINX VIRTEX 5

FPGAS.

Stratix II Virtex 5

TTA Nios II TTA mBlaze

(3 stage)

mBlaze

(5 stage)

LUTs
5 218 2 322 5 024 1 537 1 889

% of all 3.6 % 1.6 % 7.3 % 2.2 % 2.7 %

Registers
2 785 1 896 3 485 1 318 1 841

% of all 1.9 % 1.3 % 5.0 % 1.9 % 2.7 %

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

adpcm aes blowfish gsm jpeg mips sha

10% Virtex

10% Stratix

20% Virtex

30% Virtex

20% Stratix

K
b
it
s

%
 o

f
B

lo
c
k
R

a
m

 u
ti
liz

a
ti
o
n

mBlaze
Nios II

TTA

Fig. 5. Instruction memory usage of MicroBlaze, Nios II/f and TTA without
instruction compression

tectures. Instruction memory requirements of the benchmark

applications are presented in Fig. 5. Although the instruction

memory usage of TTA is notably larger on some applications,

the total memory usage is still moderate compared to the

amount of available memory in the current FPGAs. In case

instruction memory usage becomes a problem, TCE supports

using instruction compression which can drastically lower the

TTA instruction memory size. However, when compression

is used, the instruction decompressor module, including the

dictionary in case of dictionary compression, increases the

FPGA resource usage. Therefore, it depends on the type of

available FPGA resources when instruction compression is

feasible.

VII. CONCLUSION AND FUTURE WORK

We have proposed an application-specific processor (ASP)

design flow based on the use of an exposed data path ar-

chitecture. The main advantages of the design flow are its

runtime retargetable C/C++ compiler, free customization of

the data path resources including the connectivity, and the easy

verification of the designs.

In the CHStone benchmarks, a simple soft-core produced

with the toolset outperformed implementations based on soft-

core processors provided by the major FPGA vendors, even

without the use of any instruction set extensions tailored

for each application. The measured FPGA resource usage

increase was moderate compared to the achieved increase in

performance.

In the future we plan to implement algorithms for auto-

matic instruction set extension search, improve the instruction

scheduler’s efficiency with sparsely connected machines, and

add support for generating multicore ASPs.

ACKNOWLEDGMENT

This research was partially funded by the Academy of

Finland. The 2nd author thanks the Foundation of Nokia

Corporation for financial support.

REFERENCES

[1] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
Design & Test of Computers, IEEE, vol. 26, no. 4, pp. 18–25, July-Aug.
2009.

[2] J. Tong, I. Anderson, and M. Khalid, “Soft-core processors for embedded
systems,” in Proc. Int. Conf. Microelectronics, Dhahran, Saudi Arabia,
Dec. 16–19 2006.

[3] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An FPGA-
based VLIW processor with custom hardware execution,” in Proc.

ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, Monterey,
CA, USA, 2005, pp. 107–117.

[4] Altera Corp., “Nios II processor reference handbook,” 2009.
[5] R. Diamon, O. Mencer, and W. Luk, “Application-specific customisation

of multi-threaded soft processors,” IEE Proc. - Comput. Digit. Tech., vol.
153, no. 3, pp. 173–180, May 2006.

[6] P. Jääskeläinen, P. Kellomäki, J. Takala, H. Kultala, and M. Lepistö,
“Reducing context switch overhead with compiler-assisted threading,”
in Proc. IEEE/IFIP Int. Conf. Embedded and Ubiquitous Computing,
Shanghai, China, Dec. 17–20 2008, pp. 461–466.

[7] C. Eddington, “Synthesizing algorithms from MATLAB and model-
based descriptions: Introduction to Synphony HLS,” Synopsys, Inc.,
Tech. Rep., 2009.

[8] M. A. R. Saghir, M. El-Majzoub, and P. Akl, “Datapath and ISA
customization for soft VLIW processors,” in Proc. IEEE Int. Conf.
Reconfigurable Comput. FPGA’s, San Luis Potosi, Mexico, Sept. 20–22
2006, pp. 1–10.

[9] “TCE: TTA-based codesign environment.” [Online]. Available: http:
//tce.cs.tut.fi

[10] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K.
Rodman, “A VLIW architecture for a trace scheduling compiler,” in
Proc. Int. Conf. Architectural Support for Programming Languages
Operating Syst., Palo Alto, CA, Oct. 5–8 1987, pp. 180–192.

[11] H. Corporaal, Microprocessor Architectures: From VLIW to TTA.
Chichester, UK: John Wiley & Sons, 1997.

[12] ——, “TTAs: missing the ILP complexity wall,” J. Syst. Architecture,
vol. 45, no. 12-13, pp. 949–973, 1999.

[13] J. Hoogerbrugge and H. Corporaal, “Register file port requirements
of Transport Triggered Architectures,” in Proc. Annual Int. Symp.
Microarchitecture, San Jose, CA, Nov. 30–Dec. 2 1994, pp. 191–195.

[14] V. Guzma, P. Jääskeläinen, P. Kellomäki, and J. Takala, “Impact of
software bypassing on instruction level parallelism and register file
traffic,” in Embedded Computer Systems: Architectures, Modeling, and
Simulation, ser. Lecture Notes in Computer Science, M. Bereković,
N. Dimopoulos, and S. Wong, Eds. Heidelberg, Germany: Springer,
2008, vol. 5114, pp. 23–32.

[15] P. Jääskeläinen, H. Kultala, T. Pitkänen, and J. Takala, “Reducing the
overheads of hardware acceleration through datapath integration,” in
Proc. SPIE Multimedia on Mobile Devices, vol. 6821, Jan. 27–31 2008,
pp. 6821R–1 – 10.

[16] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Genera-

tion Optimization, Palo Alto, CA, March 20–24 2004, p. 75.
[17] K. Beck, Test Driven Development: By Example. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.
[18] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quanti-

tative analysis of the CHStone benchmark program suite for practical C-
based high-level synthesis,” Journal of Information Processing, vol. 17,
pp. 242–254, 2009.

