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ABSTRACT  
 
An integrity monitoring/failure detection and 
identification approach for GNSS positioning that is 
based on Bayesian model comparison theory is 
introduced. In the new method the user defines models for 
no-failure/failure cases and the most plausible model is 
chosen and used to estimate position. If a channel is 
contaminated and the corresponding model is chosen then 
the effect of this channel on the position estimate is 
attenuated. The posterior probability odds of two models 
can be used as a measure of how well the models can be 
distinguished from each other. In the proposed RAIM-
technique if none of the model plausibilities stands out 
from the others, the user is made aware of the situation as 
the case might be that the effect of a good channel is 
attenuated and the contaminated one is modeled as a good 
one. The performances of traditional RAIM/FDE and the 
new method are compared via simulations. Results of a 
test with real GPS data are also presented. 
 
INTRODUCTION  
 
Quality monitoring and control techniques are important 
parts of any position estimation algorithm. As a result, 
receiver autonomous integrity monitoring (RAIM) has 
become a basic part of personal positioning receiver 
architectures [3,8,10]. Integrity of a positioning system 
refers to the ability of the system to warn the user when a 
given position estimate cannot be trusted. Autonomous 

means that the integrity monitoring is carried out using 
only the signals received by the system. Furthermore 
RAIM techniques have been enhanced to provide not only 
valuable information on the quality of the position 
estimate but also to offer means for detecting satellite 
failures and enable the exclusion of blunder observations.  
 
Traditional RAIM methods are based on conventional 
frequentist hypothesis testing, a theory that has been 
criticised for its convoluted approach and for logical 
inconsistencies [2]. In frequentist hypothesis testing, one 
seeks to reject the null hypothesis based on the 
improbability of the data given that the null hypothesis is 
true. But often what we are really interested in is whether 
one hypothesis is better that the other given the data.  
 
Bayesian model comparison allows us to think in this 
more direct fashion: we compare the probabilities of a 
model being true given the data and select the model that 
best describes the data. Bayesian techniques have been 
used in integrity monitoring by Ober [10] who introduced 
mixture error models which lead to exact position-domain 
results in addition to performing data-based integrity 
monitoring. However, the method introduced relies on 
improper prior probability densities which should not be 
used in the particular case of mixture estimation. 
 
We propose to use Bayesian model comparison as an 
autonomous integrity monitoring/fault detection 
technique. We refer to it as BRAIM in the rest of this 
article. The main advantage of the new proposed method 
is the natural interpretation of the results which appear as 
odds or probabilities of an assumption being true. Also, 
the algorithm is computationally light. 
 
We compare the performance of the proposed method to 
the reliability testing method by [1], which has been often 
applied to RAIM [5,9]. The technique was designed to be 
used as a statistical reliability testing procedure in 
geodetic networks but can be used also in positioning to 
detect and exclude a failure among the observations. The 
method performs two tests. First, a global test is carried 
out to detect a failure by a RAIM method known as least 
squares RAIM. Second, if the global test detected a 
failure, a local test is used to identify the faulty 
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observation, after which it can be excluded from the 
measurement set. Hence the method is sometimes referred 
to as RAIM/failure detection and exclusion (RAIM/FDE) 
[8] and we adopt this acronym in this article. 
 
In this article we first introduce briefly the concept of 
Bayesian model comparison problem, after which we 
describe Bayesian model comparison-based BRAIM 
method. We compare the performance of RAIM/FDE and 
BRAIM using simulations and a test with GPS data and 
present conclusions. 
 
BAYESIAN MODEL COMPARISON 
 
This section summarizes general Bayesian model 
comparison theory, see for example [11] for details. 
Suppose that we have models Mi all of which we consider 
to be reasonable for the problem we are interested in. 
Note that we don't necessarily believe that any of the 
models is the truth. The goal is to choose the most 
plausible model given the data. We assume that the 
problem is not new to us so that using our knowledge of 
the underlying situation, we can assign prior probabilities 
for the models P(M0),…,P(Mn). The posterior probability 
of a model Mi being the model that produced data D is 
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which we use to compute the posterior ratio of two 
models 
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The factor Pij 
is the prior odds ratio of Mi to Mj. This a 

priori information represents our personal opinion about 
the relative plausibility of the models given the 
background information. Often the prior probabilities for 
two models are taken to be equal (Pij = 1), representing 
the case where we don't favor one model over another, but 
this is not necessary. The second factor Bij, called the 
Bayes factor represents the evidence in favor of Mi as 
opposed to Mj [7]. The evidence for model Mi is 
 
 ( ) ( ) ( )di i i i i iP D M p D M p Mθ θ θ| = | , |∫  (3) 
 
where θi is a vector of unknown parameters in the model 
Mi. The prior probability densities p(θi | Mi ) are needed to 
compute the evidence. This sometimes could cause a 
problem as this information may not be available. On the 
other hand in many problems some a priori knowledge is 
available, for example in dynamic problems where 
models for the evolution of θi are readily available. Prior 
probabilities are a powerful tool for incorporating that 
information into the model. The posterior odds ratios are 
used to make decisions. The choice of a meaningful scale 

depends on the area of application. Jeffreys [6] suggests 
the following scale for general scientific investigations  
 

Oij log10Oij Probability for Mi against Mj  
[1,3.2) [0,0.5) Not worth more than a mention 
[3.2,10) [0.5,1) Substantial 
[10,31.6) [1,1.5) Strong 
[31.6,100
)

[1.5, 2) Very strong 
[100,∞) [2,∞) Decisive 

 
Table1. Scales for odds of probability for Mi as 
suggested by Jeffreys [6]. 
 
BAYESIAN INTERGRITY MONITORING 
TECHNIQUE 
 
In this section we apply the Bayesian model comparison 
theory described in the previous section to develop an 
integrity monitoring/failure detection identification 
technique for GNSS positioning. For the sake of 
simplicity and possibility of analytical formulations we  
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where ei is the ith  column of n×n  identity matrix, x0  is 
the parameter of m state variables (position, velocity, etc.) 
and bi is the bias. Model M0 corresponds to the situation 
of no failure component in any of the measurements and 
in each model Mi the ith measurement has an unknown 
bias bi which is taken to be independent of x0.  In general 
form the measurement equation under the model Mi is 
 i iy H x v= +  (5) 
If the prior of the parameter xi is normal with mean μi and 
covariance Pi and the measurement error has a normal 
distribution with mean 0 and covariance R, we can write 
the evidence as 

 
* *

( ) ( ) ( )d

                    exp( ( ))

i i i i i i

i i i

P y M p y x M p x M x

c g z

| = | , |

=

∫
 (6)  

where 
 i i iz y H= − μ  (7) 
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Introducing S=HPx0HT+R, the constant ci
* can be written 

as 
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Using the above notation, the Bayes factor for the ith 
model can be computed as  

 exp( ( ) ( ))i
ij i i j j

j

c
B g z g z

c
= × −  (12) 

As an example, compared to the null model, the Bayes 
factor for ith model is 
 0 exp( ( ))i i i iB c g z=  (13) 
when the mean of the bias bi is zero.  
 
To compute the posterior odds ratio Oij we still need to 
model the prior odds ratio Pij. We assume that a 
measurement from a particular channel is contaminated 
with probability ε and clean with probability 1- ε and the 
quality of one channel is independent of another. The 
models that we have constructed in this section 
correspond to ones with 'no bad channels' and 'exactly one 
bad channel'. In our model, different channels are 
contaminated with the same probability so that all the 
ratios Pij=1, i,j > 0. Prior odds ratios Pi0 can be computed 
as 
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and the posterior odds ratio Oi0 can be expressed 
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The most plausible model can be found by comparing 
posterior odds, as for most plausible model M: Oij ≥ 1, for 
all j. 
 
We can analyze further the properties of the posterior 
odds Oij. First of all, the maximum odds for O0i = Oi0

-1, 
for all i is achieved when y = H0y0. Thus 
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If inequality (16) holds for all i then M0   is the most 
plausible model and the odds for it against any other 
model are at least 1/T. 
 
For simplicity assume that μ0 is close to the actual 
unknown x0. Then given that M0 is the most plausible 
mode, the size of a bias Δ in the kth measurement is 
bounded as  

 ( )2 1 1 2
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A larger bias in kth observation causes one of the i odds 
Oi0 > 1. Because of this Oi0 can be used to detect whether 
there is a blunder observation among the observation set 
and the odds Oi0 are a sensible measure of quality of the 
null model in a practical sense. 
 
Similar analysis can be carried for all the models. We 
focus on the posterior odds of a correct model that is the 
posterior odds for model Oij when there is a bias 
component in the ith measurement. From the equation (14) 
we see that the odds depend on bias as  

( ) ( )2 21 1
2

1 2 1 2( ) ( ) ii ij
i i j i
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g e g e
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We want that a larger bias in ith observation would cause 
Oij to be larger, however from (17) using the fact that S-1 
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is a symmetric positive definite matrix it can be shown 
that this can be guaranteed only if  
 1 1 ,ii ijS S j− −> ∀  (18) 
If this holds, we can identify a blunder in ith if it is large 
enough. And because the odds for the correct model 
increase quadratically with the size of the realized bias 
element, the odds are a sensible measure of the 
correctness of the model choice. 
 
We assume that integrity will be attained if a model 
corresponding to a contaminated channel is selected and 
that the effect of a contaminated measurement is thereby 
attenuated. The decision of integrity is therefore based 
solely on the model space and not on the resulting 
positioning space. As a result the BRAIM method is 
based on posterior odds ratios that one model stands out 
as the best model. The test is declared inconclusive if 
none of the models stands out. The test is a failure if (18) 
does not hold and M0 is not the most plausible model 
because in this case there is no guarantee that the most 
plausible model handles the correct observation as a 
blunder. Otherwise the system is assumed to be working 
within prescribed standards. The threshold T for posterior 
odds for different situations can be based on Table 1. The 
BRAIM algorithm is illustrated in Figure 1. 
 

 
 
Fig.1. Diagram of the proposed BRAIM method. 
 
Once a model is selected, the information about the state 
is contained in the normal posterior distribution 
p(xi | y, Mi) = N(mi,Ci), where 
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In the case of models Mi, i > 0, the state vector xi contains 
the bias element in addition to other state variables. This 
means that it will be estimated along with other 
parameters. 
 
Note that in the case of warning or failure the resulting 
model does not necessarily result in particularly bad 
position estimate.  It is important to note that the only 
conclusion that can be drawn is that none of the compared 
models stand out as the best one given the data.  Instead 
of issuing a warning or failure message, one could 
proceed to further data analysis, expanding the set of 
models until one model does stand out. This expansion 

could be for example models with more than one 
contaminated channel but this is left for future study. 
 
 
TESTS 
 
The performance of the new proposed method is now 
compared to that of the classic method of RAIM/FDE as 
it is discussed for example in [8] in a special case of only 
one possible outlying observation at a time. Positioning 
scenarios with various numbers (n) of satellites and sets 
of measurements with different noise variances are 
generated. We generate all the observation noises from 
N(0,102) for the duration of 10 epochs and after that one 
randomly selected satellite generates contaminated 
observations for the next 10 epochs. The contaminated 
observation noise has distribution N(0,σc

2)  (Table 2) 
 

Test n σc
2 

A1,A2 5 1002,2002

B1,B2 6 1002,2002 
C1,C2 7 1002,2002 

 
Table2. Test parameters. 
 
The track of the target was generated using a constant 
velocity model [4] using σc

2 = 0.01 with an initial state 
(0,0,0,1,0,0)T. The satellites were generated uniformly on 
a rectangle [-105,105]×[-105,105]×[105,105+102] . 
 
The prior probability distribution for x0, which contains 
position and velocity were propagated using two different 
motion models from the posterior probability distribution 
p(x0 | Mk, y) obtained in previous epoch. The model Mk 
refers to the most plausible model in that epoch. The prior 
probability for bi is always taken to be independent of 
position and velocity and distributed as N(0,σb

2). The 
motion models can be written as 

 1
0 0 , 1, 2

0
k k

j

I I
x x Q j

I
+ = + =⎛ ⎞

⎜ ⎟
⎝ ⎠

 

where Q1=1002I  is large in the sense that it results in a 
prior that influences the results very little and Q2=I  is 
smaller so that the resulting prior does have an influence. 
 
The parameters of the methods α, β (probabilities of Type 
I and II errors in RAIM/FDE), ε and σb

2 are varied and the 
performance is reported as the fraction of epochs in which 
correct faulty channel was identified vs. the fraction of 
epochs in which no good channels were identified as 
faulty. 
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Fig.2. Method performance, more informative prior 
and smaller observation noise. 
 
 
 

 
 
Fig.3. Method performance, more informative prior 
and larger observation noise. 
 
 
 

 
 
Fig.4. Method performance, less informative prior and 
smaller observation noise. 
 

 
 
Fig.5. Method performance, less informative prior and 
larger observation noise. 
 
The results of the simulations are given in Figures 2 - 5 
which correspond to different scenarios. Figures 4 and 5 
indicate that if prior information for BRAIM is not taken 
advantage of, the methods have similar performance when 
there are 6 or more satellites.  On the other hand if use of 
prior information is made, then the BRAIM can perform 
significantly better than the traditional method, as can be 
seen from Figures 2 and 3. 
 

 System OK (%) Warning (%) Failure (%) 
Correct decision 74 26 0 
Wrong decision 33 67 0 

 
Table3. Test C1 results with T=10, σb

2=802, ε=0.6 
(small-variance prior for parameters). 
 

 System OK (%) Warning (%) Failure (%) 
Correct decision 69 31 0 
Wrong decision 33 67 0 

 
Table4. Test C1 results with T=10, σb

2=802, ε=0.6 
(large-variance prior for parameters). 
 
The rates of BRAIM algorithm issuing system OK and 
warning flags are given in Tables 3 and 4 in the cases 
where correct or wrong identification were made. The 
results show that when correct model is chosen, the 
system is most often recognized to be working properly 
and almost no false warning flags are given. When wrong 
model is chosen, system most often issues a warning in 
these particular tests with reported parameters. 
 
The new method was also applied to a real GPS-data test 
drive in Tampere. The 800 epochs long test route was in 
an urban area with a relatively clear view of the sky. The 
test was carried out by including data from at most one 
satellite with a poor carrier-to-noise ratio (C/N). Although 
poor C/N of a measurement does not mean that the 
measurement from that particular satellite is contaminated 
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and high C/N does not mean that a observation is of good 
quality this situation can be close to the at-most-one bad 
observation situation that we are considering in this 
article. The error of the estimated position is illustrated by 
Figure 6 where the error of the BRAIM estimate and 
ordinary Kalman filtered position are given. Several 
significant errors are excluded when the BRAIM method 
is used. 
 
 

 
 
Fig.6. Errors of Kalman filtered position estimate 
versus the error given by the BRAIM method on a real 
GPS data vehicular test. 
 
 
CONCLUSIONS 
 
In the current report we applied Bayesian model 
comparison theory to GNSS integrity monitoring problem 
and introduced Bayesian receiver autonomous integrity 
monitoring technique (BRAIM). It was shown through 
simulations that the new proposed method obtains similar 
performance to traditional RAIM/FDE processing 
method. Better performance can be achieved if good prior 
information for the unknown parameters is available. The 
clearest advantage of the new proposed method is its 
foundations in Bayesian statistics, so that method 
parameters can be interpreted more easily than the 
traditional concepts of significance, power of the test etc.  
Drawback of the method is the requirement to have prior 
distributions for parameters and prior odd ratios for the 
models, but on the other hand this can be considered an 
advantage as this information may well be available (e.g. 
through filtering) and Bayesian theory enables to use this 
information.  
 
 The method can be developed further by formulating 
more realistic models than the current ones based on 
normal distributions and the generalization of the method 
to handle more than one faulty channel. In this paper we 
have not discussed position-domain integrity information; 
such information could be obtained by computing 
credibility regions, as is standard in Bayesian statistics 
[10,11]. 
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