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Abstract – This paper studies the mobile tracking
problem in mixed line-of-sight (LOS) and non-line-of-
sight (NLOS) conditions, where the statistics of NLOS
error is Gaussian with fixed but unknown mean and
variance. A Rao-Blackwellized particle filtering and pa-
rameter learning method (RBPF-PL) is proposed, in
which the particle filtering with optimal trial distri-
bution is first applied to estimate the posterior den-
sity of sight conditions, then the decentralized extended
Kalman filter (EKF) is used to estimate the mobile
state. In the parameter learning step, using the conju-
gate prior distribution on the unknown parameters, the
posterior distribution of unknown parameters is further
updated according to the sufficient statistics. Simula-
tion results show the RBPF-PL method is effective to
infer the unknown NLOS parameter and could achieve
good tracking performance using small number of par-
ticles.

Keywords: mobile tracking, non-line-of-sight, particle
filtering, Rao-Blackwellized, parameter learning

1 Introduction
Precise positioning in non-line-of-sight (NLOS) con-

ditions is a tough task for many wireless positioning
systems. In typical NLOS circumstances, like urban
canyons, the direct path between transceiver has been
blocked by buildings and other obstacles. The propaga-
tion waves’ path may be lengthened due to reflection,
refraction and scattering. Based on the measurement
of the scattered signals, huge localization errors will be
introduced.

Methods proposed to deal with the NLOS problem
in mobile tracking applications generally exploit the
measurements in time series to mitigate the NLOS er-
rors. To name a few, these methods include two-step
Kalman filtering techniques for smoothing range mea-
surements and mitigating NLOS errors [1], a Kalman
based interacting multiple model (IMM) smoother [2],
grid based Bayesian estimation [3], particle filtering

(PF) [4], a modified extended Kalman filter (EKF)
bank [5], the improved Rao-Blackwellized particle fil-
tering (RBPF) [6], joint particle filter and unscented
Kalman filtering (UKF) method [7], etc. A posterior
Cramér-Rao lower bound is further investigated in [8].

Prior research assumes a complete knowledge of
statistics of NLOS errors, including the statistical pa-
rameters. The exact knowledge of the error statistics,
and especially the parameters is not a plausible assump-
tion in many practical situations .

In this study, we consider the mobile tracking prob-
lem in the mixed LOS/NLOS conditions under the
assumption that the statistics of LOS error (usually
treated as the measurement noise) is known and con-
forms to zero mean Gaussian distribution, while the
statistics of NLOS error is Gaussian with its mean and
variance fixed static but unknown.

To tackle the problem of sequential state estimation
with the inference of unknown but static parameters,
Liu and West assumed an artificial dynamic evolution
for the unknown parameter vector, which could be fur-
ther included in the state vector [9]. However, such
treatment would enlarge the estimation (co)variance of
the unknown parameter. Djurić et al [10] suggested
the use of density-assisted particle filters (DAPFs) as
a viable alternative to jointly estimate the sequential
state and the parameter without introducing an arti-
ficial dynamic model for the static parameters. How-
ever, in our situation, because of the Markov property
of the sight condition, the derivation of the density up-
date function for all the state variables and the static
parameter is not an easy task. Storvik [11] proposed
to marginalize the static parameters out of the poste-
rior distribution such that only the state vector needs
to be considered. We shall adopt this way of treat-
ing the static parameters in the sequential estimation
and propose a Rao-Blackwellized particle filtering with
parameter learning (RBPF-PL) method, which applies
particle filter to estimate the posterior density of sight
conditions, then uses the analytical method to estimate



the mobile state. Based on the above two-step esti-
mation, the distribution of the unknown parameters is
updated by sufficient statistics.

The paper is organized as follows: Section 2 presents
the system model and formulates the problem of mobile
tracking in the mixed LOS/NLOS conditions. Section 3
considers the problem within the Bayesian framework.
In Section 4, the RBPF-PL method is further described
in detail. Numerical results and performance compari-
son are presented and discussed in Section 5. Section 6
draws some conclusions.

2 System model
Assume a mobile of interest moves on a two-dimensional
Cartesian plane. The state at time instant tk is defined
as the vector xk = [xk, yk, ẋk, ẏk]T , where [xk, yk]T cor-
responds to the east and north coordinates of the mobile
position; [ẋk, ẏk]T are the corresponding velocities. The
mobile state with random acceleration can be modeled
as [12]:

xk+1 = Φkxk + wk, (1)

where the transition matrix Φk models the state kine-
matics. The random process wk is a white zero mean
Gaussian noise, with covariance matrix Q.

We consider the tracking problem in the context of
mobile cellular systems and assume the range is mea-
sured by time-of-arrival (TOA) method. Under pos-
sible NLOS propagation condition between the mobile
station (MS) and the base station (BS), the distance
measured at time tk is

zi,k = di,k + v(si,k), (2)

where di,k
△
= hi,k(xk) =

√

(xk − xbsi
)2 + (yk − ybsi

)2,
represents the true distance between the mobile posi-
tion [xk, yk]T and the location of the ith BS [xbsi

, ybsi
]T ,

i ∈ {1, 2, . . . , M} and M is the number of BSs.
Boolean variable si,k ∈ {0, 1} represents LOS/NLOS

condition between the MS and BSi, with si,k = 0 for
LOS and si,k = 1 for NLOS. In mobile tracking, the
sight conditions undergo dynamical transitions, which
can be further modeled as a time-homogeneous first-
order Markov chain si,k ∼ MC(πi, Ai) with initial prob-
ability vector πi and the transition probability matrix

Ai =

[

p0 1 − p0

1 − p1 p1

]

,

where p0 = P(si,k = 0|si,k−1 = 0) and p1 = P(si,k =
1|si,k−1 = 1).

Assume that the measurement noise in the LOS con-
dition conforms to zero mean Gaussian distribution
N(0, σ2

n), while the NLOS error is modeled as a biased
Gaussian distribution N(µNLOS, σ2

NLOS) [1, 2, 5]. Thus,
v(si,k) ∼ N(m(si,k), R(si,k)) and

m(si,k) = si,kµNLOS

R(si,k) = σ2
n + si,kσ2

NLOS.
(3)

In this work, we assume that σn is known, while
{µNLOS, σ2

NLOS} are fixed static but unknown.

3 Mobile tracking and parame-

ter learning within Bayesian

framework
Denote the total observation sequence up to time tk as

z1:k, where zk
△
= [z1,k, z2,k, . . . , zM,k]T . For brevity, let

η
△
= σ2

n + σ2
NLOS and θ = {µNLOS, η}. The problem

of mobile tracking in the unknown NLOS conditions is
to simultaneously infer the mobile state xk, the sight
condition sk and NLOS noise θ from the observation
sequence z1:k, which corresponds to computing the joint
posterior p(xk, sk, θ|z1:k). The analytical solution to
the posterior requires high-dimensional integrals. Here,
we resort to sequential Monte Carlo method.

Denote yk = {xk, sk}. Consider the sequential esti-
mation p(y1:k, θ|z1:k) within the Bayesian framework:

p(y1:k, θ|z1:k) ∝ p(zk|yk, θ)p(y1:k, θ|z1:k−1)

= p(zk|yk, θ)p(yk|yk−1)

· p(θ|y1:k−1, z1:k−1)p(y1:k−1|z1:k−1)

Suppose at time tk−1 we have samples constituting an
approximation to p(y1:k−1|z1:k−1), i.e,

p(y1:k−1|z1:k−1) ≈
N

∑

j=1

wj
k−1δ(y1:k−1 − y

j
1:k−1) (4)

With the reception of measurement zk, we wish to ap-
proximate p(y1:k, θ|z1:k) with a new set of samples. If
the importance density is chosen to factorize such that

q(y1:k, θ|z1:k) = q(yk, θ|y1:k−1, z1:k)q(y1:k−1|z1:k−1)

and based on the samples in (4), the new particles at
time tk are sampled according to

{yj
k, θj} ∼ q(yk, θ|yj

1:k−1, z1:k)

then the weight can be updated as

wj
k ∝

p(yj
1:k, θj |z1:k)

q(yj
1:k, θj |z1:k)

=
p(zk|y

j
k, θj)p(yj

k|y
j
k−1)p(θj |yj

1:k−1, z1:k−1)

q(yj
k, θj |yj

1:k−1, z1:k)
wj

k−1

(5)

In standard particle filtering, transition priors are
utilized as the proposal distribution:

q(yk, θ|yj
1:k−1, z1:k)

= p(xk|x
j
k−1)p(sk|s

j
k−1)p(θj |yj

1:k−1, z1:k−1).

Thus, the weight update equation (5) can be simplified
as:

wj
k ∝ wj

k−1p(zk|y
j
k, θj).



4 Rao-Blackwellized particle fil-

tering with parameter learning
In standard particle filtering, since {xk, sk, θ} consti-
tutes a high dimensional state estimation space, a large
number of particles should be used to achieve good es-
timation results, which is computationally expensive.
Additionally, using the transition prior as the proposal,
which fails to consider the information of current mea-
surements, would easily suffer from “particle impover-
ishment” problem.

In this section, we present a RBPF-PL method,
which only uses particle filtering method to estimate
the posterior of sight condition sk while applying an
analytical method to estimate the mobile state xk and
updating the parameters of NLOS distribution θ by suf-
ficient statistic information. Since the estimation of
{xk, θ} largely depends on the accuracy of sk, in the
particle filtering we use the optimal trial distribution
to sample the particles. The method is described as
follows.

Factorize the posterior p(xk, sk, θ|z1:k) according to
Bayes’ rule:

p(xk, sk, θ|z1:k) = p(xk|sk, θ, z1:k)p(sk, θ|z1:k). (6)

If p(sk, θ|z1:k) is represented by a set of weighted sam-
ples {sj

k, θj , wj
k}

N
j=1, i.e.,

p(sk, θ|z1:k) ≈

N
∑

j=1

wj
kδ(sk − s

j
k)δ(θ − θj), (7)

then the marginal density p(xk|z1:k) can be approxi-
mately expressed by a mixture of densities:

p(xk|z1:k) ≈

N
∑

j=1

wj
kp(xk|sk, θ, z1:k)δ(sk − s

j
k)δ(θ − θj)

=
N

∑

j=1

wj
kp(xk|s

j
k, θj , z1:k),

(8)

where the mixture component p(xk|s
j
k, θj , z1:k) approx-

imately conforms to Gaussian distribution N(x̂j
k, P̂j

k),
where

x̂
j
k = x̂

j
k|k−1 +

M
∑

i=1

Kj
i,k(zi,k − ẑj

i,k|k−1) (9)

P̂j
k =

[

(P̂j
k|k−1)

−1 +
M
∑

i=1

(Hj
i,k)T R(sj

i,k)
−1

Hj
i,k

]−1

(10)
x̂

j
k|k−1 is the predicted mean of x

j
k−1:

x̂
j
k|k−1 = Φx̂

j
k−1 (11)

and P̂j
k|k−1 is the corresponding predicted covariance:

P̂j
k|k−1 = Φk−1P̂

j
k−1Φ

T
k−1 + Q (12)

The predicted mean of measurement ẑj
i,k|k−1 is

ẑj
i,k|k−1 = hi(x̂

j
k|k−1) + m(sj

i,k) (13)

The Kalman gain is

Kj
i,k = P̂j

i,k(Hj
i,k)T R(sj

i,k)
−1

(14)

and Hj
i,k = ∂hi

∂x
|
x=x̂

j

k|k−1

. In LOS conditions, m(sj
i,k) =

0 and R(sj
i,k) = σ2

n, while in NLOS, m(sj
i,k) = µj

NLOS

and R(sj
i,k) = ηj .

Conditioned upon s
j
k−1,x

j
k−1 and zk, to sample

{sj
k, θj} from p(sk, θ|z1:k), we choose the following trial

distribution:

q(sk, θ|sj
k−1,x

j
k−1, z1:k)

= P(sk|s
j
k−1,x

j
k−1, θ, zk)p(θ|sj

k−1,x
j
k−1, zk−1)

=
p(zk|sk,xj

k−1, θ)P(sk|s
j
k−1)

p(zk|s
j
k−1,x

j
k−1, θ)

× p(θ|sj
k−1,x

j
k−1, zk−1)

(15)

where p(zk|sk,xj
k−1, θ) can be further approximated as:

p(zk|sk,xj
k−1, θ) =

∫

p(zk|sk,xk, θ)p(xk|x
j
k−1)dxk

≈

∫

p(zk|sk,xk, θ)δ(xk − x̂
j
k|k−1)dxk

= p(zk|sk, x̂j
k|k−1, θ)

(16)

Based on the independent transition of the M sight con-
ditions and using the same point approximation method
in (16), the trial distribution for sk in (15) can be fur-
ther expressed as

P(sk|s
j
k−1,x

j
k−1, θ, zk)

=

∏M
i=1 p(zi,k|x̂

j
k|k−1, si,k, θ)P(si,k|s

j
i,k−1)

p(zk|s
j
k−1,x

j
k−1)

,
(17)

The likelihood p(zi,k|x̂
j
k|k−1, s

j
i,k, θ) conforms approx-

imately to a Gaussian distribution with mean
ẑj

i,k|k−1 (13) and covariance:

Σ̂j
i,k|k−1 = Hj

i,kP̂j
k|k−1(H

j
i,k)T + R(sj

i,k). (18)

The corresponding importance weight can be calculated



as

wj
k ∝ wj

k−1p(zk|s
j
k−1,x

j
k−1, θ)

= wj
k−1

∑

sk

[

p(zk|sk,xj
k−1, θ)P(sk|s

j
k−1)

]

≈ wj
k−1

∑

sk

[

M
∏

i=1

p(zi,k|x̂
j
k|k−1, si,k, θ)P(si,k|s

j
i,k−1)

]

.

(19)

To infer the parameter θ, we first specify on them the
Gaussian inverse chi-square prior, which is conjugate
prior distribution and has computational convenience
[13].

Suppose at time tk−1, p(θ|sj
k−1,x

j
k−1, z1:k−1) =

N−Inv − χ2(µ̆j
k−1, κ̆

j
k−1, ν̆

j
k−1, η̆

j
k−1), that is,

p(µNLOS|η, sj
k−1,x

j
k−1, z1:k−1) = N(ŭj

k−1, η/κ̆j
k−1)

p(η|sj
k−1,x

j
k−1, z1:k−1) = χ−2(ν̆j

k−1, η̆
j
k−1)

(20)

At the end of time tk, the trial sampling density for θ
is updated according to

p(θ|xj
k, sj

k, z1:k) ∝ p(zk|θ,x
j
k, sj

k)p(θ|xj
k−1, s

j
k−1, z1:k−1)

= N−Inv − χ2(µ̆j
k, κ̆j

k, ν̆j
k, η̆j

k)
(21)

where the hyperparameters {µ̆j
k, κ̆j

k, ν̆j
k, η̆j

k} can be ex-
plicitly derived in terms of the prior parameters and the
sufficient statistics of the data:

µ̆j
k =

κ̆j
k−1

κ̆j
k−1 + nj

k

µ̆j
k−1 +

1

κ̆j
k−1 + nj

k

nj
k

∑

i=1

ϵj
i,k

κ̆j
k = κ̆j

k−1 + nj
k

ν̆j
k = ν̆j

k−1 + nj
k

ν̆j
kλ̆j

k = ν̆j
k−1λ̆

j
k−1 +

nj
k

∑

i=1

(ϵj
i,k − ϵ̄j

k)2

+
κ̆j

k−1n
j
k

κ̆j
k−1 + nj

k

(ϵ̄j
k − µ̆j

k−1)
2

ϵj
i,k = (zi,k − hi(x

j
k)) · δ(sj

i,k − 1)

ϵ̄j
k =

1

nj
k

nj
k

∑

i=1

ϵj
i,k

(22)

and nj
k is the number of the NLOS in s

j
k.

In brief, the particle filtering is first applied to get
the density estimation of sight condition, in which sj

k is
sampled by the optimal trial distribution to achieve the
minimum conditional variance of importance weight.
Then, the decentralized EKF method is used to get

the mean x̂
j
k and covariance P̂j

k. In the parame-
ter learning step, the posterior for the unknown pa-
rameter p(θ|xj

k, sj
k, z1:k) is further updated based on

p(θ|xj
k−1, s

j
k−1, z1:k−1),x

j
k, sj

k, and zk. The proposed
method of RBPF with parameter learning (RBPF-PL)
is summarized in Algorithm 1.

Algorithm 1: RBPF-PL

for k = 1, 2, . . . do
for j = 1, 2, . . . , N do

Compute predicted mean x̂
j
k|k−1 and covariance

P̂j
k|k−1 using (11),(12) and new weight wj

k us-

ing (19).
end for
Resample particles {wj

k, sj
k−1, x̂

j
k|k−1, P̂

j
k|k−1, µ̆

j
k−1,

κ̆j
k−1, ν̆

j
k−1, η̆

j
k−1, θ

j}N
j=1 using new weights wj

k to

obtain {wl
k, sl

k−1, x̂
l
k|k−1, P̂

l
k|k−1, µ̆

l
k−1, κ̆

l
k−1, ν̆

l
k−1,

η̆l
k−1, θ

l}N
l=1, where w(l)

k = 1
N

.
for l = 1, 2, . . . , N do
1. Sample sl

k according to (17).

2. Update {x̂l
k, P̂l

k}
N
l=1 according to (9)-(14).

3. Update hyperparameters {µ̆l
k, κ̆l

k, ν̆l
k, η̆l

k}
according to (22).

4. Sample θl according to (21).
end for

end for

5 Simulation results
The mobile trajectories are generated according to

the motion model described in Section 3. Signals from
three BSs are assumed to be received at every epoch.
The random acceleration σx, σy are both chosen to
0.5 m/s2. The simulated trajectory has L = 1600 time
samples, and the sample interval ∆t = 0.5 s. The mea-
surement data are generated by adding the measure-
ment noise and the NLOS noise to the true distance
from MS to each BS. The measurement noise is as-
sumed to be a white random variable with zero mean
and standard deviation σn = 150 m, whereas the NLOS
measurement noise is also assumed to be a white ran-
dom variable but with positive mean µNLOS = 513 m
and standard deviation σNLOS = 409 m [14]. The mode
transition probability is chosen by p0 = p1 = 0.8. The
LOS or NLOS mode between the MS with each BS is
generated by sampling from the transition probability
of the Markov chain, and is changed every 10 samples in
each transition case. The initial estimation of the mode
probability are set to p(si,0 = 0) = p(si,0 = 1) = 0.5,
where i = 1, 2 and 3. The initial value for the hyper-
parameters are set as {µ̆0 = 1000, κ̆0 = 1, ν̆0 = 1, η̆0 =
(5σn)2}, which represents very ‘vague’ prior informa-
tion on NLOS parameter θ. All the simulation results



are obtained based on nMC = 20 Monte Carlo realiza-
tions with the same parameters.

We compare the performances of the proposed
RBPF-PL and the standard particle filtering with pa-
rameter learning (PF-PL) mentioned in Section 3. To
evaluate the performances that could be achieved, we
also give the estimation results under the following
two assumptions: (1) by assuming the sight conditions
known for the whole trajectory, RBPF-PL is used only
to infer {xk, θ} (RBPF-PL(sk known)). (2) by assum-
ing NLOS parameters θ known, RBPF method is used
to infer {xk, sk}, which would not consider the param-
eter learning step. For PF-PL, 1000 particles are used,
while for other algorithms only 10 particles are used.

Define root square error (RSE) as RSE
∆
=

√

(x̂k − xk)2 + (ŷk − yk)2, the position root mean

square error (RMSE) at time tk as: RMSEk
∆
=

√

1
nmc

nmc
∑

m=1
[(x̂k,m − xk)2 + (ŷk,m − yk)2]. We present

the cumulative distribution function (CDF) of RSE in
Fig. 1, the RMSE in Fig. 2 and one realization of pa-
rameter learning in Fig. 3.

From Fig. 1-3, RBPF-PL with sk known has the best
performance. The reason is that, in the proposed algo-
rithm, the sufficient statistics for updating θ and the
mobile state inference for xk are largely dependent on
the density estimation of sk. When the sight conditions
are known during the whole trajectory, the algorithm
could have more accurate estimation on NLOS param-
eter θ, which further improves the estimation for the
mobile state .

RBPF has better performance than RBPF-PL, which
is reasonable, since in RBPF, the NLOS parameter is
known and the parameter learning step is not included.
But, the improvement is slight, as shown in Fig. 1 and
2. Combined with the results of Fig. 3, it is clear that
the proposed RBPF-PL could effectively estimate the
unknown mean and variance to their true value.

Although using 100 times more particles and having
the most computation complexity, the PF-PL has the
worst accuracy among all the algorithms, which sug-
gests that the prior transition as the trial sampling dis-
tribution is not effective to get the fittest particles in
mobile tracking and parameter learning.

From the simulation results, it can be concluded that
the accurate estimation of sight condition has an impor-
tant effect on the ultimate precision of mobile track-
ing and parameter learning. By applying the optimal
trial distribution to sample the posterior distribution of
the sight conditions, the RBPF-PL method is effective
to infer the unknown NLOS parameter and achieves a
good tracking performance with small number of par-
ticles.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

58.1

99.1

73.6

145.6

60.3

104.3

42.1

72.1

CDF

Root Square error (m)
 

 

RBPF(10)
PF−PL(1000)
RBPF−PL(10)
RBPF−PL(sk known, 10)

Figure 1: CDF of RSE
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Figure 3: One realization of parameter learning

6 Conclusions
A RBPF-PL method is proposed to track mobility in
the mixed LOS/NLOS conditions, where the statisti-
cal parameter of NLOS error is unknown. The method
first estimates the sight condition using particle fitlers.
In order to achieve the minimum weight conditional
variance of importance weight and get more accurate
estimation of sight condition, the optimal trial distri-
bution is used. Then, by applying decentralized EKF



method, the mobile state could be analytically com-
puted. In the parameter learning step, the posterior of
the unknown parameter is further updated according to
the measurement and the estimation on the sight con-
ditions and mobile state. Simulation results show that,
using 10 particles, the RBPF-PL method could achieve
a good tracking performance and the NLOS parameters
can be effectively inferred.
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