
Dependable Control Systems Design and Evaluation

Pekka Alho
Tampere University of Technology,

Department of Intelligent Hydraulics and

Automation, Finland

pekka.alho@tut.fi

Jouni Mattila
Tampere University of Technology,

Department of Intelligent Hydraulics and

Automation, Finland

jouni.mattila@tut.fi

Abstract

Remote handling (RH) is a key technology in the ITER fusion reactor. The controller

systems used for performing mission-critical RH operations need to be dependable, as the

fundamental requirement for the ITER RH system is a fail-safe and recoverable design.

Additional design challenges include interoperability with systems and platform independence

during ITER life cycle. Contributions are especially needed for development of cost-effective

systems engineering (SE) practices and guidelines for fault-tolerant implementation. This paper

addresses the issues by presenting a survey of industrial best practices and different fault

prevention, tolerance, removal and forecasting methods. Based on the results, key findings to

achieve dependable and cost efficient design include development a SE framework that supports

reuse of components, models and analysis results; non-redundant fault tolerance; and use of

commercial off-the-shelf hardware, operating systems and communication middleware.

1 Introduction

ITER is an experimental nuclear fusion reactor, currently under construction in Cadarache,

France and planned to start operations in 2018. The ITER machine operation is based on remote

handling (RH) maintenance systems that enable the operators to safely, reliably and repeatedly

perform robotic manipulation of items without being in contact with those items. This paper

focuses on systems engineering (SE) development process of dependable RH control systems

that perform mission-critical operations in this demanding environment and presents objectives

of the current research. The research is part of a PhD thesis topic in the Goal Oriented Training

Program on Remote Handling

(GOT-RH) managed by European

Fusion Development Agreement

(EFDA). GOT-RH aim is to train

engineers for activities to support

ITER project. The research in this

paper combines SE and

dependability approaches to fulfil

the ITER RH control system

requirements in a cost-efficient

manner.

A major objective of the ITER

project is to demonstrate that a

fusion energy device can be

maintained efficiently so that the

Fig. 1. Divertor Test Platform 2.

mailto:pekka.alho@tut.fi
mailto:jouni.mattila@tut.fi

plant availability is retained at sufficient level. During the ITER lifetime reactor components

must be inspected and maintained, including replacement of the 9 tonne divertor components.

Reactor operation produces high energy neutrons which are absorbed by components inside the

reactor vessel, leaving them beta and gamma activated. Therefore RH has to be utilized to

perform maintenance tasks instead of manual operations, as there is no human access into

reactor. To test the proof-of-concept designs for the replacement of a divertor, a full scale

prototype environment, designated ‘Divertor Test Platform 2’ (Fig. 1), is operational at Tampere,

Finland. The facility is hosted by VTT and Tampere University of Technology, Department of

Intelligent Hydraulics and Automation (TUT/IHA). TUT/IHA has worked with ITER RH since

1994 developing the ITER divertor maintenance, processes, tools and equipment.

Commonly used fault-tolerance techniques employ redundancy in order to improve

reliability, but usually require significant amounts of resources. Use of these techniques is

mandatory in safety-critical systems that need to keep operating regardless of failures, such as

flight-control or fission reactor management (fail-operate), but in systems that can be guided to a

safe state (fail-safe) the additional costs are more difficult to justify, therefore a balanced

solution is needed. A key difference between ITER and fission reactors is that the energy density

in ITER reactor cannot cause a catastrophic failure, but the economic losses in the case of an

operation failure could be significant nevertheless. Thus the RH system is safety-critical and the

design of a RH control system must be fail-safe or capable of operating in a limp-home mode,

which is a form of fail-operational system.

Application for our RH

control system is a

teleoperated bilateral

master-slave manipulator

system, where the operator

controls a remote

manipulator working in a

hazardous environment (see

Fig. 2). The fundamentals

of implementing such

systems are well-known,

with commercial

manipulators and

components available.

Challenges with developing

and using such systems in

ITER are – in addition to aforementioned environment, dependability, etc. – need for

interoperability and platform independency during ITER life cycle. As a whole, ITER RH aims

to have one master system which is used to control several heterogeneous slave systems that

perform various maintenance tasks, provided by different subcontractors. All these must be able

to work harmoniously, regardless of changes to other systems and technology upgrades.

This paper includes a survey of industrial best practices developed by researchers in

organizations like IEC, NASA, etc. and compares them against ITER requirements. Our overall

target for EFDA GOT-RH is to propose a subset of a generic lean-minded SE framework to

support reuse of artifacts (hardware, software, processes, models, etc.) suitable for ITER.

Additionally we seek a system design that avoids extensively redundant and tightly coupled

Fig. 2. Bilateral teleoperation system.

solutions. A proof-of-concept implementation of the architecture for Fig. 2 system is being

currently developed.

 In the next chapter we introduce research background, starting with dependability

terminology and then covering related research and the research problem. In chapter 3 we

examine how standards together with industry best practices and cost-efficiency affect the

development process when compared to ITER requirements. Chapter 4 approaches the problem

through systems development process, divided into specification, design and architecture,

implementation and evaluation. Finally the conclusions are presented in chapter 5.

2 Background

In the following sections basic dependability concepts, state of the art in dependable systems

and research problem are briefly reviewed.

2.1 Dependability

According to Avizienis et al. dependability is defined as the ability to deliver service that can

justifiably be trusted. It is an umbrella term that consists of several attributes: availability,

reliability, safety, integrity and maintainability. Researchers and the ITER requirements

emphasize especially safety and reliability. However, all attributes need to be addressed in order

to ensure delivery of the correct service – therefore the SE approach is necessary to manage all

dependability-related design aspects. Failures are events where the delivered service deviates

from the correct service. The deviations are called errors and the cause for the error is defined as

a fault. It should be noted that not all errors lead to service failures – this depends from the

structure and behaviour of the system. (Avizienis et al. 2004). As shown in Fig. 3, service

failures can cause new faults for other systems.

Applications that have dependability requirements can be categorized as fail-safe or fail-operate,

depending from if the system can be brought into a safe state or whether it needs to continue

operation in the presence of the faults. (Avizienis et al. 2004). Different means used to attain

dependability can be categorized as fault prevention, removal, tolerance and forecasting

techniques. Fault tolerance techniques, i.e. avoiding service failures in the presence of faults, can

address one or more of the following stages of tolerating faults: error detection, damage

assessment, and recovery and continued service. A review of different techniques can be found

e.g. from NASA report Software Fault Tolerance: A Tutorial (Torres-Pomales 2000). With

software (SW) systems duplication of modules replicates errors as well, so redundant

components need to be diverse. Even though the development costs of N-variant software are

less than N times non-fault-tolerant software (Laprie et al. 1990), it still presents a major cost

increase for the development when compared to basic software or single version fault tolerance

techniques.

2.2 Related work

Increase of complexity and amount of requirements for modern software systems present us

the problem of how to attain and estimate the dependability of these complex systems. Another

Fig. 3. Error propagation (Avizienis et al. 2004).

problem is related to interoperability of systems with long expected lifetimes. E.g. U.S. Navy

intentionally sank the Aegis cruiser Valley Forge after 18 years of service – intended service life

had been at least three decades but the integration costs of new software and weapon systems

were too high (Schneider 2010). Clearly building stovepipe systems, i.e. complex single-purpose

‘soon-to-be-legacy’ systems that consist of inter-related and tightly bound elements, is not a

viable solution. ITER will have several subcontractors providing software and has an expected

life span of several decades, so integration of distributed real-time systems is a critical design

factor.

In software systems service failures can create new faults via causation. To achieve no-

single-points-of-failure goal in a software unit, we would need redundancy (Flammini 2010),

(Hayama et al. 2010), which again increases development costs (Laprie et al. 1990). In fail-safe

systems or systems using graceful degradation, structuring can be used to limit failures inside the

architectural unit. If software safety, i.e. execution within system context without contributing to

hazards, is considered more important than reliability, i.e. low mean time between failures, then

fault tolerance techniques can concentrate on preventing catastrophic failures. Single version

fault tolerance techniques are cost-efficient way to achieve safety with possible compromises to

reliability when compared to multiversion techniques. Examples of single version fault tolerance

include system structuring, atomic actions, error detection and exception handling, among others

(Torres-Pomales 2000).

Dependable architecture designs and fault tolerant control methods tend to be too specific to

be reusable, at least outside their application domain. There has been some earlier research on

generic architectures for real-time dependable systems, e.g. architecture model developed by

Powell et al. (Powell et al. 1999) uses fault containment to deal with faults and is based on the

use of software components. The focus for our research is not in producing architectural design

patterns or domain specific solutions to achieve dependability.

Some architectures have been developed to support use of commercial off-the-shelf (COTS)

components (Powell et al. 1999), (Asterio et al. 2003), but reuse needs to be carefully considered

to evaluate if possible cost benefits outweigh compromising effects on dependability and

possible needs for additional fault tolerance. Based on experiences with the older experimental

reactors, COTS components could be used to implement some parts of the control system in

ITER; for example, in JET (Joint European Torus) results were positive with implementing the

highly critical motion control, and integrating into a uniform control system framework. For fault

tolerance JET employed a large number of error checks, which is one of the basic single-version

fault tolerance techniques. For severe errors the system was put into safe-state by cutting all

power, engaging brakes and opening emergency stop circuit. (Haist & Hamilton 2001).

2.3 Research problem

ITER organization promotes a standardized software-module based design approach and has

an equipment controller (EC) architecture draft to improve cooperation of RH systems and

higher level systems being developed by several different contractors. However, this architecture

only outlines basic features. In addition to standard external safety features, like emergency

stops, it does neither provide nor dictate solutions for fault tolerance.

In Fig. 4 area one presents embedded hard real-time systems, i.e. ‘standard’ solution to

implementing controllers, and area two presents hard real-time systems implemented using

commercial PCs and RT operating systems (OS) which is rarer alternative (Flammini 2010). Our

purpose is to use industrial PCs to test their feasibility in implementing dependable RH systems

with strict performance

requirements. If the use of general-

purpose systems proves to be a

viable alternative, it could be one

way to reduce development costs for

systems with dependability

requirements.

Especially interesting from the

perspective of using open source or

commercial real-time operating

systems (RTOS) in safety-critical

applications is the report (Bishop et

al. 2001) for Health and Safety

Executive: Justifying the use of

software of uncertain pedigree

(SOUP) in safety-related

applications. The report considers the safety assurance of SOUP in the context of IEC61508.

Similar evaluation methods could be used with ITER RH systems.

In dependability research the fault-tolerant approach is often promoted over fault prevention.

The reasoning behind this being that all faults cannot be prevented or removed, so it is better to

concentrate on fault tolerance methods (Elder 2001); or fault prevention is shrugged off being

part of general engineering (Avizienis et al. 2004). However, neglecting of fault prevention is

short-sighted. First, no single mechanism can cope with all faults and anticipation of unexpected

faults can increase costs. Second, the cost of finding and removing faults typically rises by

development phase and finally, faulty specifications are major cause of software faults

(Avizienis et al. 2004). Hence, additional research is needed on use of fault prevention to

minimize the number of faults in the system as early as possible with optimal development

methods. Furthermore, as scientific papers usually focus in one or two of the strategies used to

achieve dependability, there is a need to bridge the gaps between the different models, methods,

and tools that are used to improve the design and the operation of dependable systems, especially

when being adapted to control systems (Bondavalli et al. 2001).

3 Standards and best practices

IEC 61508 is an international safety standard related to functional safety of

electric/electrical/programmable systems with part three related to software requirements (IEC

2010). Most of European standards for safety related control systems refer to IEC 61508, if the

implementation language is C or similar. ITER RH control system will include safety-related

systems and some of the safety functions could be implemented by software – this would be

safety-related software. Safety standards introduce concept of safety integrity level (SIL) (or

performance level, PL), used to present risk reduction offered by safety functions. To achieve

target SIL levels, standards include recommendations and requirements. However, especially

software systems have the problem that SIL estimation is difficult because of systems

complexity.

Even though this paper mostly refers to IEC61508 standard because of its suitable scope and

internationality, there are a number of other well-known standards that can be used to contribute

to system dependability development and evaluation. Software testing has its own standard,

Fig. 2. A classification of critical computer

systems, adapted from (Flammini 2010).

IEEE 829-1998 and some of the American internationally recognized standards include e.g. ISA

84 series and MIL-STD-882D.

One approach to

achieving a tolerable risk is

‘as low as reasonably

possible’ (ALARP),

mentioned e.g. in IEC61508

standard. If the evaluated risk

is smaller than ‘must be

refused altogether’, but larger

than ‘insignificant’, ALARP

principle together with a cost

benefit assessment can be

used to determine areas where

risks need to be decreased, as

shown in Fig. 5. Where the

risks are less significant, the

fewer resources are needed to be spent to reduce them and vice versa. ALARP is one of the

principles used in ITER, and in nuclear project designs in general.

Component reuse and use of commercial off-the-shelf (COTS) components show some

promise for achieving cost reductions in development. Especially use of commercial hardware

components gives the benefit of utilizing performance and energy efficiency of cutting edge

processor technology. Software component reuse has more problems related to it, as there is

usually no guarantee that the components have sufficient quality for mission-critical applications

and may require additional fault tolerance. Instead, use of commercial OSs has the same

potential benefits as hardware, i.e. they include the latest developments in OS technology and

have potentially better quality and less bugs than custom made software because of widespread

use. For example, QNX Neutrino RTOS kernel has been certified to confirm to IEC61508 at

SIL3 (Hobbs 2010) out of maximum level of 4. Even though implementing hard real-time

systems using commercial PCs and real-time OSs is still fairly rare, this could be an interesting

development path to cost-efficient and dependable systems.

Finally, design patterns are reusable general solutions that present best practice knowledge.

They can and should be used to improve fault tolerance, as fault tolerance has patterns of its own

– a classic example is the watch dog pattern (Hanmer 2007). However, possible design pattern

use must be traceable to requirements and patterns should not be introduced without good

reasons as they can add unnecessary complexity to system. A good general rule for architecture

design is to keep it as simple as possible, especially for safety-critical components.

4 Development process for dependability

Development process should combine all possible methods – fault prevention, fault

tolerance, fault removal and fault forecasting – to achieve sufficient level of dependability with

optimal resource use by combining different methods, according to ALARP principles. As stated

earlier, most studies focus on one or two methods and do their research within this limited scope,

whereas efficient approach would be to combine all different approaches. The role of the

development process is similar to quality assurance, i.e. reducing mistakes made by developers

and ensuring product quality.

Fig. 3. As low as reasonably possible (ALARP)

(Melchers 2001).

Typically V model, waterfall and other software life cycle models describe only development

process (see Fig. 6). However, system life cycle also includes installation, operation, and

maintenance. For safety-critical software it is important to also take these phases into

consideration to ensure maintainability

and interoperability, because of the higher

development costs and consequently

longer expected life time of the system.

The development process

considerations presented in this chapter

combine best practices and

recommendations and discuss them in the

ITER RH context. The process analysis is

divided into system definition, design and

architecture, implementation, and

evaluation.

4.1 Specification

Specification, which in this case is considered to cover system analysis and definition,

including hardware and software, has significant role in fault prevention. It is a well-known fact

that errors made in the requirement specification phase of software cause more problems than

coding errors (Pullum 2001). Requirements come from multiple sources and usually change as

the project moves on, and the development process should offer support for this. According to

Pikkarainen, use of agile methods and practices improved communication and management of

requirements, features and project task dependencies (Pikkarainen 2008). However, agile

methods are not necessarily suited for development of safety-critical software as such and may

need additional emphasis on documentation, architectural design and traceability. IEC 61508

part 7 has a list of development methods IEC considers suitable for safety-related software.

Safety requirements are especially interesting from the dependability point of view, as they

contain information about what the system is allowed and not allowed to do, as software should

have indications and contraindications especially if reuse is planned for components. In most

systems there are many opportunities to enhance safety, e.g. by simple value checks, but often

they are not used. Safety requirements could be used to document possible values that can be

used for safety checks, e.g. humidity, dust, vibration etc. (Herrmann 1999).

Hazard/risk identification and analysis should always be carried out for safety-critical

systems, preceding the finalization of system requirements (Douglass 1999). Risk probability

estimates can be made early, even before committing resources to hardware or software (Dunn

2002). Normal methods for risk analysis include fault modes, effects and criticality analysis

(FMEA or FMECA), fault tree analysis (FTA) and risk analysis (RA). First two are qualitative

and RA is quantitative (Dunn 2003). IEC61508 standard presents risk graph and hazardous event

severity matrix as qualitative methods for determination of SILs.

Pre-design hazard identification and measuring reliability of existing system have some

shared methods, e.g. FTA. Hazard identification requires significant resources and participation

of different shareholders to gain accurate and useful results so reuse of methods and previous

results should be considered for cost benefits. For ITER RH systems previously done risk

analyses include e.g. manipulator FMECA and FTA for rescue of failed in-cask equipment.

Fig. 4. Life cycle V model.

4.2 Design and architecture

High-level design is the realization of quality requirements. It is also the first concrete form

of the system that can be analyzed and tested. Architectural choices impact software attributes

like availability, security etc., so the chosen architecture should support dependability

requirements with appropriate fault tolerance techniques and patterns (Bass & Clements 2003).

In addition to using these techniques, the actual system architecture should also be designed as

fault-tolerant (e.g. with layering and error confinement areas). Safety-critical, safety-related and

nonsafety-related software components should be isolated by partitioning the software

(Herrmann 1999). Risk probability estimates for components can be made early and designs

changed before actual commitments to HW and SW are made.

For ITER RH an initial version of the reference architecture has been developed, and after

implementation it will be used as a testing platform for evaluating dependability of PC-based

control systems and different fault tolerance methods. Possible fault tolerance components will

combine patterns and COTS solutions, including QoS manager, network middleware,

partitioning of architecture, use of heartbeat/watchdog and more. Project will make use of

existing knowledge, hardware and software components etc. to maximum reuse of artifacts

across different RH systems and projects.

4.3 Implementation

Implementation methods are generally dictated by development process (iterative, agile etc.),

which defines the routines and support tools used in the project. Use of implementation-related

methods to ensure dependability of the product is also part of fault prevention. Following good

practices and programming methods can prevent generation of faults, e.g. NASA Software

Safety Guidebook (NASA 2004) has comprehensively listed principles for implementation of

real-time software.

4.4 Evaluation

Evaluation of software-based systems includes traditional software testing, V&V methods,

and formal inspections etc., which are considered fault removal techniques from the

dependability point of view. Another way to approach evaluation is from the fault forecasting

standpoint by estimating or predicting reliability of the system. Component reliability is an

important quality measure for system level analysis, but software reliability is hard to

characterize. Post-verification reliability estimates remains a controversial issue (Torres-Pomales

2000).

In a sense, evaluation is risk control – evaluation of the software includes mishap risk

assessment of the current implementation (‘is this safe enough?’) and finally acceptance. Risk

assessment can be supported with data from testing, e.g. detected and corrected defects, and

forecast results. Together these can be used to decide whether additional testing and fault-

tolerance techniques are needed or if the product is ‘good enough’ to be finished.

Targets for evaluation include should be on all levels, including requirements, architecture,

source code, software units and the complete system. In addition to evaluating the system under

development, evaluation can also be done for organization before the project has been started,

based on e.g. the Capability Maturity Model Integration (CMMI). Architecture evaluation

methods like Architecture Tradeoff Analysis Method (ATAM) are used to determine if the

architecture enables realization of key scenarios and identifying of potential risks (Grimán et al.

2007).

5 Conclusions

The research carried out in this paper has compared control system design against the

industrial and scientific best practices developed for safety-critical applications. The paper

presents the results phase-by-phase according to the SE process in Fig. 6. Considered viewpoints

include balancing of requirements (especially dependability vs. cost) and design artefact reuse.

Based on the analysis in this paper, the development process for dependable control system

design and evaluation has to focus in the following:

1) Fault tolerance based on non-redundancy, i.e. single-version fault tolerance. Most of

control systems are not required to be fail operate, so some compromises can be made in

achieving dependability cost efficiently, like implementing fail-safe system with single

version fault tolerance and reuse of components, as per ALARP principles. Standards for

safety-related systems have recommendations about the use of diverse programming

techniques (N-version redundancy), but e.g. in IEC61508-6 even on SIL3 they are still

only ‘recommended’.

2) Avoiding stovepipe systems, i.e. building large custom software, instead developing

systems based on well-tested COTS or open source communication middleware, OSs and

hardware to maximize interoperability, dependability and cost-efficiency. Only business-

critical SW components should be custom built.

3) SE framework that covers requirements, architecture, design and evaluation to support

reuse of software and hardware components, processes, models and analysis results (e.g.

FMECA and FTA).

The next phase of this research consists of developing a proof-of-concept implementation of

the dependable control system design for the bilateral master-slave teleoperation system

presented in Fig. 2, utilizing the developed SE framework. After this the overall target is to V&V

and propose a subset of generic lean SE framework, such as design models, processes, HW&SW

modules, suitable for ITER RH systems.

6 References

Asterio, P., Guerra, C., Mary, C., & Rubira, F., "A fault-tolerant software architecture for

COTS-based software systems." Proceedings of the Joint European Software Engineering

Conference (ESEC) and 11th SIGSOFT Symposium on the Foundations of Software Engineering

(FSE-11) ACM Press, pp. 375-382, 2003.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C., "Basic concpets and taxonomy of

dependable and secure computing." Transactions on dependable and secure computing , 1 (1).

2004.

Bass, L., & Clements, P., Software architecture in practice. Addison Wesley, 2003.

Bondavalli, A., Fantechi, A., Latella, D., & Simoncini, L., "Design validation of embedded

dependable systems." Micro, IEEE , 21 (5). 2001.

Douglass, B., Doing hard time: developing real-time systems using UML, objects,

frameworks, and patterns. Addison-Wesley, 1999.

Dunn, W., "Designing safety-critical computer systems." Computer , 36 (11), pp 40-46,

2003.

Dunn, W., Practical Design of Safety-Critical Computer Systems. Reliability Press, 2002.

Elder, M., Fault Tolerance in Critical Information Systems. University of Virginia, 2001.

Flammini, F., Dependability assurance of real-time embedded control systems. New York:

Nova Science Publishers, 2010.

Grimán, A., Pérez, M., Mendoza, L., & Méndez, E., "A method proposal for architectural

reliability evaluation." ICEIS 2007 - Proceedings of the Ninth International Conference on

Enterprise Information Systems, pp. 564-568, 2007.

Haist, B., & Hamilton, D., "A rational approach to remote handling equipment control

system design." 9th ANS International Topical Meeting on Robotics and Remote Systems. EFDA,

Seattle, 2001.

Hanmer, R., Patterns for fault tolerant software. Wiley, 2007.

Hayama, R., Higashi, M., Kawahara, S., Nakano, S., & Kumamoto, H., "Fault-tolerant

automobile steering based on diversity of steer-by-wire, braking and acceleration." Reliability

Engineering and System Safety , 95, pp 10-17, 2010.

Herrmann, D., Software Safety and Reliability. IEEE, 1999.

Hobbs, C., Using and IEC 61508-Certified RTOS Kernel for Safety-Critical Systems. QNX,

2010.

IEC, IEC 61508 Edition 2.0. 2010.

Laprie, J.-C., Arlat, J., Beounes, C., & Kanoun, K., "Definition and analysis of hardware- and

software-fault-tolerant architectures." Computer , 23 (7), pp 39-51, 1990.

Melchers, R., On the ALARP approach to risk management. Reliability Engineering &

System Safety , 71 (2), 2001.

NASA, NASA Software Safety Guidebook. 2004.

Pikkarainen, M., Towards a framework for improving software development process

mediated with CMMI goals and agile practices. VTT Publications, Espoo, 2008.

Powell, D., Arlat, J., Beus-Dukic, L., Bondavalli, A., Coppola, P., Fantechi, A., et al.,

"GUARDS: a generic upgradable architecture for real-time dependable systems." Transactions

on Parallel and Distributed Systems , 10 (6), 1999.

Pullum, L., Software fault tolerance techniques and implementation. Artech House, 2001.

Schneider, S., What is Real-Time SOA. RTI, 2010.

Torres-Pomales, W., Software fault tolerance: a tutorial. NASA, 2000.

7 Biography

M.Sc. Pekka Alho is a researcher and a doctoral candidate at TUT/IHA working with ITER

RH control systems in EFDA’s GOT-RH trainee program. He graduated with M.Sc. (Eng) in Oct

2009 from TUT. Earlier in 2007-2010 he worked first as research assistant and then as a

researcher at Dept. of Automation Science and Engineering.

Professor, Dr. Tech. Jouni Mattila received M.Sc. (Eng.) in 1995 and Dr. Tech 2000 both

from TUT. He is a TUT program manager in ITER-DTP2-projects on Remote Handling. He is a

coordinator of EFDA GOT-RH trainee program with 10 trainees. His research interests include

machine automation and preventive maintenance, and fault-tolerant control system development

for advanced machines utilizing lean systems engineering framework.

This work supported by European Communities was carried within the framework of EFDA

and financial support of TEKES, which are greatly acknowledged. The views and opinions

expressed herein do not necessarily reflect those of European Commission.

