Reducing the Overheads of Hardware Acceleration Through
Datapath Integration

Pekka Jaaskelainen*, Heikki Kultala, Teemu Pitkanen, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland

ABSTRACT

Hardware accelerators are used to speed up execution of specific tasks such as video coding. Often the purpose
of hardware acceleration is to be able to use a cheaper or, for example, more energy economical processor for
executing the majority of the application in software. However, when using hardware acceleration, new overheads
are produced mainly due to the need to transfer data to and from the accelerator and signaling the readiness
of the accelerator computation to the processor. We find the traditional mechanisms suboptimal for fine-grain
hardware acceleration, especially when energy efficiency is important.

This paper explores a technique unique to Transport Triggered Architectures to interface with hardware
accelerators. The proposed technique places hardware accelerators to the processor data path, making them
visible as regular function units to the programmer. This way communication costs are reduced as data can
be transferred directly to the accelerator from other processor data path components and synchronization can
be done by polling a simple ready flag in the accelerator function unit. Additionally, this setup enables the
instruction scheduler of the compiler to schedule the hardware accelerator like any other operation, thus partially
hide its latency with other program operations.

The paper presents a case study with an audio decoder application in which fine-grain and coarse-grain
hardware accelerators are integrated to the processor data path as function units. The case is used to study
several different synchronization, communication, and latency-hiding techniques enabled by this kind of setup.

Keywords: hardware acceleration, processor architectures, Transport-Triggered Architectures, synchronization,
communication

1. INTRODUCTION

Accelerating software by means of adding extra hardware blocks to run the core functions of the algorithm faster
is a common technique to reach the realtime requirements of the application without the need of a more powerful
processor to run the application software. Hardware acceleration is widely used in embedded mobile applications
in which it is often desirable to use a cheap general purpose processor that consumes little power and is adequate
for the most frequent tasks required from the device. In such devices, hardware accelerators are used to reach
the high performance requirements of, for example, video decoding.

However, hardware acceleration comes with added costs due to the additional communication and syn-
chronization of the execution with the main processor and the accelerators. This paper evaluates a case in
which fine-grain and coarse-grain hardware accelerators are integrated to the processor data path in order to
reduce the hardware accelerator interfacing costs. Such integration is natural for a class of processors called
Transport Triggered Architectures (TTA) in which operand writes and result reads of data path operations are
programmer-visible, thus their timing is fully decided by the programmer/compiler. The contribution of the
paper is a discussion and evaluation of several interfacing techniques this kind of integration enables.

* pekka.jaaskelainen@tut.fi
*Copyright 2008 SPIE and IS&T.

This paper was published in Proceedings of Multimedia on Mobile Devices and is made available as an electronic
reprint with permission of SPIE and IS&T. One print or electronic copy may be made for personal use only. Systematic
or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in
this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



The rest of this paper is organized as follows. Following subsections introduce the background of the overheads
and common interfacing methods of hardware acceleration, give a brief introduction to the Transport Triggered
Architectures, and look into some previous work related to this paper. Section 2 discusses the technique of
integrating hardware accelerators to the TTA data path. Section 3 presents the setup we used to benchmark
the different interfacing techniques, and the evaluated interfacing methods itself. Section 4 provides the results
from the benchmarks, and Section 5 concludes the paper with a look into some ideas we have for further work
in this area.

1.1 About the Overheads of Hardware Acceleration

Several overheads incurred by hardware acceleration are related to the fact that the accelerators are components
external to the processor core and the use of accelerators itself is often not accounted for in the processor design.
Therefore, several additional overheads due to the need to synchronize the accelerated function calls with the
software running in the processor are produced when compared to executing basic instruction set instructions.

One of the overheads is due to communication. Transferring the input and output data between the accel-
erators and the CPU can become expensive. In data-intensive applications it is usual that the data transports
become the bottleneck to the system throughput. This overhead is sometimes avoided with a shared memory
design as one can use pointers to communicate the location of input/output thus often avoiding extra copying
of data. However, a shared memory design requires either a multiported memory or memory arbitration, which
complicates the hardware design further. Further complexity of cache coherency is added in case a data cache is
used.!

In case of coarse-grain acceleration, the execution time of the accelerated function call can be relatively long,
and the waiting time would be better used for something beneficial by the CPU. A popular method to hide
long latencies is multithreading. The idea in multithreading is to allow other threads to use the idle processor
resources while long latency operations are being executed in other threads. Support for multithreading has
been implemented in processor hardware level, for example, Simultaneous Multithreading (SMT) is a popular
technique for implementing multithreading on superscalar processors to hide memory latencies and to increase
throughput.? However, to get benefit from multithreading the executed application must be multithreaded, i.e.,
there has to be other threads to switch to. This is sometimes not the case in lower-end embedded systems that
execute only a single application in the CPU and do not include multitasking operating systems. In such cases
the application must be (partially) rewritten to take advantage of multithreading.

When fine-grain acceleration is used, it is sometimes possible to hide most of the accelerator latency with
succeeding instructions from the program stream using an instruction scheduler in the processor hardware or
in the compiler. Hiding the latency using an instruction scheduler requires the scheduler to know the latencies
of the accelerated functions. This is often not the case when the processor and the accelerators are designed
separately and are independent IP blocks in the system.

Finally, regardless whether multithreading is used or not, the processor needs to be signalled of the completion
of the accelerated task so it can proceed executing code that uses the results of the accelerated function. Interrupt
is one of the most popular synchronization mechanism. The accelerator, once completed its function, asserts an
interrupt signal which makes the CPU save its current execution context and switch execution to an interrupt
handler which acknowledges the interrupt flag, reads the produced results, or something similar.

The overhead of interrupts is due to the context switch which requires many of the processor’s registers
to be saved to memory before and restored after the execution of the interrupt handler. In addition, when the
memory hierarchy includes a cache, the interrupt handler execution is probable to induce more cache misses, thus
introducing additional less apparent overheads to the program execution.? The cache miss overhead increases as
the speed gap between the processor and memory grows. In modern processors, the cost of missing the lowest
level of the cache hierarchy can be in hundreds or even thousands of processor cycles. This overhead can be
reduced to some extent by using techniques such as dynamic scheduling, prefetching or speculative execution. %
However, the added runtime complexity of these methods often results in higher energy consumption, thus makes
them less attractive for mobile embedded systems.



Function Unit Register File Control Unit

Connection

Figure 1. Simple Transport Triggered Architecture processor.

In many cases interrupting the processor after completion of the accelerator function is unnecessary as the
application might not require immediate knowledge of the completion of the task. In such a case polling might
be a more suitable synchronization mechanism: the processor can go on executing something unrelated to the
accelerated function, for example, an another thread, and at a suitable spot query the accelerator whether
the task has completed or not. In order to save energy, the processor can switch itself to a low power mode
while waiting for the task to complete, waking up once in a while to poll for readiness. This leads to another
common way of synchronizing the CPU and the accelerator: simply lock the whole processor when starting the
accelerated function call and let the accelerator unlock it after finishing. Clearly, this kind of synchronization
might be inefficient with regards to execution speed as the CPU is stalled while it could do something useful.

1.2 Transport Triggered Architectures

Transport Triggered Architectures (TTA) is a class of processors derived from the VLIW-paradigm.” TTA
improves on traditional VLIW architectures mainly through the reduced requirements for register file ports,
higher level of modularity, and additional compiler instruction scheduler freedom.®

Figure 1 presents a simple TTA with 2 transport buses, one register file (RF), and two function units (FU). The
modularity of TTA is visible in this picture: FUs and RF's are connected through a programmable interconnection
network through sockets and buses, which form an indirection separating the FU and RF interfaces from each
other. That is, when one adds new FUs to the design, no new RFs or RF ports need to be added, like is often the
case with VLIW architectures. The most important difference of TTAs in comparison to VLIWSs in the point of
view of this paper is that TTAs are programmed by defining data transports between the data path components
of the processor, including FUs and RF's, while in VLIW processors the programmer defines which operations are
executed in each function unit without having explicit control to the required data transports. That is, registers
are read and written implicitly when operations are executed.

1.3 Related Work

Integrating hardware accelerators to a VLIW processor data path is discussed by Busd, Werf and Bekoojie.”
Their idea is very similar to the principle of this paper: the accelerator is visible as a custom operation to the
processor and the instruction scheduler is able to schedule it along with other data path instructions. Their
paper concentrates on scheduling the input and output data to the coarse grained operation by means of a
scheduling method that takes into account the timeshape of the coarse-grained operation to enable transporting
data to and from the operation during its execution. One of the main differences in our paper is that we use a
TTA processor, thus can exploit software bypassing and the additional scheduling freedom. In addition, their
paper seems to assume the latency of a “coarse-grained” hardware accelerator operation is in tens of cycles, thus
suitable for a scheduling method they present (their case study uses a 26 cycle operation). In our work, we aim
to support hardware accelerators with latencies in tens of thousands of cycles. In such a case, the instruction
scheduler is usually not sufficient as such to hide the latency, but requires additional latency-hiding methods
such as light-weight threading, which we also evaluate in this paper.



Several concepts related to the ones explored in this paper were published by Lau, Pritchard and Molson in
their 2006 paper.'® Their paper presents techniques involved in extracting hardware accelerators from C proce-
dures semiautomatically. The presented tool is capable of generating the interfacing code (“a driver function”)
for controlling the accelerator from the main processor. The two most common interfacing options, polling and
interrupts, are supported. Their compiler is capable of hiding memory latencies due to communicating data
to/from the accelerator and schedule the accelerator control code along with the surrounding application code.
However, their work does not seem to include concepts to hide the latency of the accelerator itself. In case the
polling option is chosen, the main processor executes a do-nothing loop while waiting for the accelerator. On
the other hand, they state that the interrupt synchronization version allows parallel execution of the processor
and multiple accelerators by means of a multiprocess realtime operating system (OS). We consider the use of
a multiprocess OS sometimes to be overkill especially for embedded mobile applications because the additional
software layers of the OS increase energy consumption.'’ One of the major conceptual differences in their ap-
proach compared to ours is that they separate custom operations and hardware accelerators. We do not make
such a distinction: hardware accelerators are abstracted like custom operations which just might have very long
execution latencies. Additionally, we do not force the use of shared data address space between the accelerators
and the main processor. In our case, the designer of the system can choose to use a local memory in the ac-
celerator, which involves communication through the FU ports or shared registers, or to share the data address
space, which enables communication using pointers to the shared memory.

2. DATAPATH INTEGRATED HARDWARE ACCELERATION WITH TTA

The availability of programmer-controlled data transfers in TTA opens new possibilities. One of the key points
that lead us to experiment with data path integration of hardware acceleration with TTAs is that in case of
traditional, so called operation-triggered architectures, the time instant the results of an operation are transported
to the register file is fixed by the operation latency, while in case of TTA the result transport time is freely chosen
by the programmer. In addition, as the bypass network of TTAs is fully programmable, programmed bypassing
of the register file is possible (an optimization called “software bypassing”!?). These capabilities are exploited
in this paper for low overhead interfacing between hardware accelerators and the master processor to avoid the
need for expensive communication and synchronization mechanisms such as shared memory and interrupts.

In our system we treat hardware accelerators with very long latencies just like other function units in the
data path: the coprocessor functions are executed like any simple instruction set operation such as addition.
The main additional challenge for the compiler from these “very long latency operations” used to access the
coarse-grain hardware accelerators is latency hiding. Instruction scheduler of the compiler does a satisfactory
job when hiding relatively short latencies, from a couple of cycles up to tens of cycles, but the enormous latencies
of the coarse-grain accelerator operations are in practice impossible to hide only with instructions from the scope
of the instruction scheduler. Therefore, one of our experiments included the use of very light-weight co-operative
threads to hide the accelerator latency.

As a conclusion, in our proposed system, the efficiency of hardware acceleration is improved mainly through
the following means:

1. Transport data from the data path operations producing it directly to the hardware accelerator through
function unit ports.

e Avoids the need for a data memory connection in the hardware accelerator.

e Potential for exploiting software bypassing by not storing the intermediate values to general purpose
registers, but writing them directly to the hardware accelerator.

2. Treat the hardware accelerator as a processor operation.

e Allows hiding the accelerator latency (at least partially) by the compiler instruction scheduler.

e Allows scheduling the data transports required by the accelerator call using a single load-store unit
in the processor.



3. Exploit the additional scheduling freedom of TTA.

e The program can read results from the accelerator FU when it sees fit. That is, the program is free
to execute any code, including another thread, to hide the accelerator latency before reading the
results without the fear of the FU overwriting general purpose registers implicitly after it finishes the
computation.

3. EVALUATION SETUP

We evaluated several different techniques to communicate and synchronize between hardware accelerators and
the TTA processor. The main focus on the study was the effect of the different hardware accelerator interfacing
methods to the total cycle count and the energy consumption. Cycle counts were produced using a cycle-accurate
TTA processor simulator of our TTA toolset called TTA-Based Codesign Environment (TCE).!® The simulator
provides cycle counts for the processor core and assumes a static memory latency.

Energy consumption was estimated to be directly proportional to the count of active instruction cycles and
the count of data memory accesses in the main processor. This coarse approximation gives rough estimates for
comparing the energy efficiency of the different interfacing methods. Naturally, the accurate energy consumption
numbers depend on many factors, such as the implementation of the processor components and the accelerators,
the used process technology and the memory hierarchy.

3.1 The Benchmark Application and the Hardware Configuration

The application chosen for the case study was an open source fixed point implementation of Ogg Vorbis audio
decoder called Tremor.'* The Tremor source code was modified to use hardware accelerated execution of the
modified discrete cosine transform (MDCT).!5

Two different acceleration cases were evaluated. The first case used a short latency accelerator for evaluating
the use of the compiler instruction scheduler to hide shorter accelerator latencies. In this version, we added a
custom operation to compute two outputs yg and y; with a simple butterfly operation defined as follows

yo = xoTo + 171 5 y1 = w11 — 2170 (1)

where the variables xy and x; are input operands and Ty and 77 are constants obtained from a lookup table.
The custom operation is extensively used in the MDCT code.

The BUTTERFLY custom operation has four inputs and two outputs. This type of operand counts are rarely
seen in traditional architectures, which are often limited to single output and two input instructions. Another
“TTA-speciality” in this operation is that its execution timing is fully visible to the compiler, which allows for
more detailed scheduling of data transports. In this case the two outputs are ready at different time instants
of the custom operation execution. The computation of yg takes four cycles while y; is ready after eight cycles.
Passing this information to the compiler enables scheduling the first result data transport while the second result
is being computed.

In the second acceleration case, we experimented with long latency hardware acceleration by executing the
whole MDCT algorithm in an hardware accelerator. Some refactoring was done to the code to allow parallel
decoding of both the channels in a stereo stream. The parallel operation was used to experiment with hiding the
accelerator latency with two lightweight co-operative threads sharing the same accelerator.

TCE allows selecting all resources for the designed TTAs freely. We used this capability to design a simple
but realistic TTA processor for running the software parts of the audio decoder in the two acceleration cases.
Resources of the used TTA processor are listed in Table 1.

The MDCT accelerator FU provides opcodes for starting all the different MDCT transform sizes used by
Tremor. In addition, opcodes are provided for transferring the input and output data to and from the accelerator.
This way shared memory is not required and the accelerator communication can be scheduled by the compiler.

The latencies for the different transformation sizes in our implementation are given in Table 2. They are
estimations based on results a straightforward implementation of the MDCT accelerator. The accelerator was
implemented quickly as another TTA processor without spending much time on optimization.



Table 1. Relevant resources in the simulated TTA-processor.

resource quantity
Integer ALU 2
Integer multiplier 1
MDCT accelerator FU 1

BUTTERFLY accelerator FU 1
32-bit general purpose registers 128

Register file read ports 4
Register file write ports 1
Transport buses 4

3.2 Experimented Interfacing Methods

The test application was used to evaluate several different mechanisms for interfacing with hardware accelerators.
The different cases are summarized in Table 3 and are explained in more detail below.

Methods for interfacing with fine-grain accelerators:

Zero latency. A computational case for evaluating the effectiveness of the instruction scheduling to hide
the latency of the fine-grain accelerators. This version assumes that the use of fine-grain accelerators produces
no additional overhead to the system except for the data transports. That is, the operation latency is zero.

Differing result latencies. The two results of the BUTTERFLY operation are ready at different times
(the first result after four cycles and the second result after eight cycles). This information is provided to the
compiler so it can schedule the data transports more efficiently.

Equal result latencies. Both results of the BUTTERFLY are assumed to be ready at the same time, after
eight cycles. That is, the additional benefit of TTA scheduling freedom is not fully utilized in the result data
transports.

Methods for interfacing with coarse-grain accelerators:

Polling. Poll the MDCT FU output and busy loop. This alternative keeps the processor active, executing
the useless task of a do-nothing loop while waiting for the accelerator task to complete.

Interrupts. Interrupt the CPU after completion of the MDCT. A busy loop is still executed, but the
processor is interrupted at the completion of the accelerator task. In addition to the overheads of the polling
method, this adds the overheads of the interruption.

This is a computational case as our TTA template does not currently support hardware interrupts. We
approximate the cost of an interrupt to consist only of saving and loading all general purpose registers to
memory. The latency of a memory access is assumed to be two cycles. Thus, the total overhead due to saving
and loading all the registers per interrupt is: 2 % 2 % 128 = 512 cycles. This is a vast underestimation because

Table 2. Latencies of different MDCT transformation sizes.

MDCT size || latency (cycles)
64 1200

128 2700

256 6000

512 13000
1024 28000
2048 60000
4096 131000
8192 282000




Table 3. Evaluated methods for hardware accelerator interfacing.

fine-grain acceleration

case synchronization latency hiding

no hardware acceleration (baseline) none needed none needed

zero latency (unrealistic comparison case) | compiler none needed

differing result latencies (4/8 cycles) compiler instructions from the basic block

equal result latencies (8 cycles) compiler instructions from the basic block
coarse-grain acceleration

case synchronization latency hiding

polling poll FU output and busy loop none

interrupts interrupt CPU after completion none

CPU locking lock CPU while waiting surrounding code

polling and threading poll FU output and switch thread | code from other threads

in architectures such as TTAs, the context of the processor is not limited to the general purpose registers, but
includes also the pipeline registers of function units, etc.

CPU locking. Lock the CPU while waiting. This is a more sensible alternative to the previous ones energy-
wise. The processor is locked by the accelerator until the computation has finished. Some energy should be
saved as no instructions need to be fetched from the instruction memory and executed for nothing. In addition,
runtime might be improved as the accelerator operation looks like a zero latency operation to the instruction
scheduler, thus it is better able to parallelize it with surrounding code.

Polling and threading. Poll FU output as in polling, but switch threads always if the result is not ready,
thus hide latency with instructions from other threads. In the Tremor case we have two threads, both decoding
one channel in the stereo audio stream. This allows executing the software parts of the second channel while the
first channel is using the MDCT FU.

Datapath integration. Data is written to the accelerator directly from the producer of the data and read
to the consumer of the data, instead of being copied into memory. Several of the previously mentioned methods
are combined with this one.

4. RESULTS

The fine-grain acceleration was benchmarked by executing the 2048-point MDCT with the code accelerated with
the BUTTERFLY operation. Table 4 lists the cycle counts of the different cases. The result table includes a
percentage number indicating the slowdown (increase in cycle count) when compared to the optimal case with
the zero latency operation.

This benchmark shows that the detailed knowledge of the operation execution timing in the compiler is very
beneficial. In the differing result latencies case, the compiler instruction scheduler is able to hide most of the
custom operation latency (4/8 cycles) with other code from the same basic block. The ability to schedule the
first result data transport 4 cycles earlier in this case seems to help quite a bit, as comparison with the case equal

Table 4. Results for the fine-grain acceleration cases.

’ case cycle count \ slowdown ‘
zero latency 92 296
differing result latencies | 93 570 1.4%
equal result latencies 103 938 12.6%
no acceleration 121 634 31.8%




Table 5. Results for the coarse-grain accelerator cases. Cycle count of decoding a 2.7 sec vorbis file

case cycle count TTA active cycles | data memory accesses
software only 96 727 535 (1.00) | same 19 910 620
interrupts (estimated) | 87 848 318 (0.91) | same 11 744 095
polling:

data from memory 87 669 118 (0.91) | same 11 654 495
data path integration | 84 378 329 (0.87) | same 10 714 097
CPU locking:

data from memory 87 354 490 (0.90) | 74 022 490 11 655 195
data path integration | 84 139 964 (0.87) | 70 807 964 10 714 097
co-operative threading:

data from memory 79 134 509 (0.82) | same 11 770 794
data path integration | 78 746 124 (0.81) | same 10 934 360

result latencies shows. In this version, the cycle count is increased by 12.6% from the optimal which makes the
1.4% increase of the differing result latencies case seem negligible.

Results for the coarse-grain acceleration benchmarks are given in Table 5. The cycle count column gives the
total count of cycles required to decode the test sample. This number includes also the cycles when the TTA
was locked. TTA active cycles is the count of cycles the TTA was executing instructions, thus the locked cycles
are not included in this number. This number together with the total count of data memory accesses should
give indication of the energy efficiency of each alternative. All alternatives are compared to the software only
case with the ratio in parenthesis.

Data path integration removes the need to transfer some of the intermediate results to the memory, resulting
in a both faster and more energy-effective system in all three main alternatives; polling, locking and threading.
None of the cases show very large improvement in cycle count through data path integration. The best results
from data path integration are in case of polling with four percent unit better speedup and 8% memory access
reduction compared to acceleration without data path integration.

Co-operative threads hide the accelerator latency about 6 percent unit better than the polling and locking
versions which simply wait until the result is ready. However, with more aggressive organization of the decoding
code to threads, more benefit from threading could be gained. Locking the processor while waiting for the results
produces about 15% reduction in active processor cycles. The combination of co-operative threads and data path
integration gives only a very slight performance increase over the threaded code without data path integration,
but on the assumed energy savings from the reduced count of memory accesses the difference is somewhat bigger:
7.1% of memory accesses could be eliminated.

The latency hidden by the threading can be calculated from the performance difference of the polling version
and the threaded version The reduction in cycle count in the threaded version is directly the number of accelerator
execution that could be hidden by executing other threads. When data path integration was not used, both the
pre- and post-filters that were executed before and after the transform could be executed in parallel with the
transfer, and 64% of the accelerator latency could be hidden. When data path integration was used, the first
post-filter following the transform could not be exected in parallel with the transform as it was reading the data
from the accelerator unit, so there was less code to be executed in parallel with the transform. In this case 42%
of the accelerator latency could be hidden with threading.

5. CONCLUSIONS AND FUTURE WORK

This paper explored several interfacing methods for fine-grain and coarse-grain hardware acceleration enabled
by data path integration using Transport Triggered Architectures (TTA).

The results show that the detailed programming of data transports in TTAs allows hiding fine-grain hardware
accelerator latencies efficiently. In our benchmark only 1.4% cycle count increase was measured in comparison to



the zero latency baseline when a fine-grain hardware accelerator was used. The latency of the custom operation
was hidden efficiently by means of our compiler instruction scheduler that is able to exploit operation execution
timing information.

In the case of the coarse-grained acceleration the data transfers to and from the accelerator can consume
noticeable time and energy and by transporting the data directly between the producer operations, the accelerator
function unit, and the consumer operations, the overhead can be largely eliminated. The concept of co-operative
threads as a way of hiding long accelerator latencies was proven to be beneficial performance-wise. However, the
data path integration did not produce large additional execution time benefits on top of co-operative threading.
We identified the main benefit of data path integration with coarse-grain accelerators to be practical: the
accelerator data transports are done through the processor data path thus avoiding the need for a data memory
connection from the accelerator.

In the future, we will look into compiler assisted techniques for low overhead threading to hide coarse-grain
accelerator latencies automatically. One idea for improving the hiding of accelerator latencies is to implement
a global instruction scheduler that is able to move the accelerator calls above loops and function call sites.
This type of optimizations are enabled by the unique programmability of TTAs which allows free placing of the
operation result reads.

ACKNOWLEDGMENTS

This work has been supported by the National Technology Agency of Finland under research funding decision
40153/05 and Academy of Finland project number 205743.



10.

11.

12.

13.

14.

15.

REFERENCES

. R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon, “Implementing a cache consistency
protocol,” in ISCA ’85: Proc. 12th annual int. symp. on computer architecture, pp. 276-283, IEEE Computer
Society Press, (Los Alamitos, CA, USA), 1985.

. D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: maximizing on-chip paral-

lelism,” in ISCA ’95: Proc. 22nd annual int. symp. on Computer architecture, pp. 392-403, ACM, (New

York, NY, USA), 1995.

D. Tsafrir, “The context-switch overhead inflicted by hardware interrupts (and the enigma of do-nothing

loops),” in ExpCS ’07: Proc. 2007 workshop on Experimental computer science, ACM, (New York, NY,

USA), 2007.

J. C. Mogul and A. Borg, “The effect of context switches on cache performance,” in ASPLOS-IV: Proc. 4th

int. conf. on Architectural support for programming languages and operating systems, 26, pp. 75-84, ACM

Press, (New York, NY, USA), April 1991.

. K. Gharachorloo, A. Gupta, and J. Hennessy, “Hiding memory latency using dynamic scheduling in shared-
memory multiprocessors,” in ISCA ’92: Proc. 19th int. symp. on Computer architecture, pp. 22-33, ACM,
(New York, NY, USA), 1992.

. A. Pajuelo, A. Gonzélez, and M. Valero, “Speculative execution for hiding memory latency,” in MEDEA

’04: Proc. 2004 workshop on MEmory performance, pp. 49-56, ACM, (New York, NY, USA), 2004.

J. A. Fisher, “Very long instruction word architectures and the ELI-512,” in ISCA ’83: Proc. 10th int.

symp. on Computer architecture, pp. 140-150, IEEE Computer Society Press, (Los Alamitos, CA, USA),

1983.

H. Corporaal, Microprocessor Architectures: from VLIW to TTA, John Wiley & Sons, Chichester, UK,

1997.

. N. G. Busd, A. van der Werf, and M. Bekooij, “Scheduling coarse-grain operations for VLIW processors,”

in ISSS ’00: Proc. 13th int. symp. on System synthesis, pp. 47-53, IEEE Computer Society, (Washington,

DC, USA), 2000.

D. Lau, O. Pritchard, and P. Molson, “Automated generation of hardware accelerators with Direct Memory

Access from ANSI/ISO standard C functions,” FCCM ’06: 14th IEEE symp. on Field-Programmable Customn

Computing Machines , pp. 45-56, 2006.

T. Rintaluoma, O. Silven, and J. Raekallio, “Interface overheads in embedded multimedia software,” Em-

bedded Computer Systems: Architectures, Modeling, and Simulation , pp. 5-14, 2006.

H. Corporaal and J. Hoogerbrugge, “Code generation for Transport Triggered Architectures,” in Code

Generation for Embedded Processors, pp. 240-259, Springer-Verlag, Heidelberg, Germany, 1995.

P. Jdaskeldinen, V. Guzma, A. Cilio, and J. Takala, “Codesign toolset for application-specific instruction-

set processors,” in Proc. Multimedia on Mobile Devices 2007, pp. 65070X-1 — 65070X-11, 2007. http:

//tce.cs.tut.fi/.

The Xiph Open Source Community, “Tremor - the reference ogg vorbis decoder.” WWW.  See

http://xiph.org/vorbis/.

T. K. Truong, P. D. Chen, and T. C. Cheng, “Fast algorithm for computing the forward and inverse MDCT

in MPEG audio coding,” Signal Process. 86, pp. 1055—-1060, May 2006.



