
 

 

Abstract—The paper addresses the problem of implementing 

depth map filtering algorithms optimized for mobile platforms. 

Main algorithm being targeted is the bilateral filter and its 

implementation on a mobile platform1 has been studied. 

Furthermore, an alternative approach of using OpenCL to 

control a graphics accelerator2 is explored. Experimental results 

of the latter look quite positive.   

I. INTRODUCTION 

ODERN modern video enhancement algorithms are 

considerably complex, and therefore the limitations of 

mobile devices have to be taken into consideration when 

balancing the needed computational power and the quality 

requirements. Bilateral filter has been considered in the 

Mobile 3DTV project both for denoising and deblocking of 

stereo video and post-filtering of depth maps [1]. The aim of 

research reported in this paper has been to explore, what kind 

of possibilities for implementation is offered by a platform 

corresponding to the level of current devices on the market.   

As an alternative, the possibility of using OpenCL in future 

mobile products has also been considered. Such devices are 

not yet commonly available on the market, but some
3,4

 have 

already been published. A GPU of a netbook
5
, considered as a 

reasonable substitute for currently missing GPUs supporting 

OpenCL on mobile platforms, has been used for performance 

testing of the OpenCL implementation. 

II. BILATERAL FILTER 

The bilateral filter takes into consideration not only the 

spatial domain, but also the color information (range) of the 

neighborhood when calculating the weights for any given 

pixel. This gives it the ability to preserve edges, which would 

be smoothed out by a traditional spatial filter such as a 

Gaussian [2]. The bilateral filter needs two functions to map 

the differences in value to weight values, the spatial 

coefficients  and range coefficients . Those 

functions can be arbitrary, but a suitable candidate is for 

instance the Gaussian. For a rectangular 2-dimensional 

window W of size  around image point  , the 
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discreet response of the bilateral filter can be expressed as 

 
(1) 

where  is a normalization 

term. The normalization term has to be computed for each 

point the filter is applied to, unlike in a purely spatial filter [3].  

1) Constant spatial filter 

Even though the filter is eventually applied like a regular 

convolution, the varying weights of the filter make it 

considerably heavy to compute. Three ways to speed up the 

processing were introduced by Porikli [3]. The simplest and 

fastest of these is that by setting the spatial filter coefficients 

 to a constant value  (i.e. a box filter), the response of 

the filter can be modified into   

where  is the histogram of the windowed image around 

the point . As all spatial locations have the same weight, the 

spatial location of the range values no longer matters. 

Therefore it is sufficient to form the response by accumulating 

over the bins of the histogram, not over single pixels. This 

approach has the added benefit of not being sensitive to the 

size of the window in terms of performance, assuming the 

computation of the histograms is not either. However, the 

performance is O(n) in terms of the amount of histogram bins 

used.  

2) Distributive histograms 

Porikli originally suggested integral histograms as the tool 

for computing the histograms needed for Eq.(2) [3]. Another 

method for this is the distributive histogram proposed by 

Sizintsev et al., which has a lower computational cost and 

memory requirement. The distributive histogram is based on 

the idea that the histograms of two consecutive sliding 

windows differ only by the histograms of the ) 

column segments that are included in one but not the other. If 

assuming the sliding window is traveling along the rows, the 

new local histogram can be computed from the previous by 

adding the histogram of the new column segment and 

subtracting the histogram of the column segment leaving the 

window. Similarly, computing the histogram of a column 

segment is done by respectively subtracting and adding the 

value of the two individual pixels that leave and enter the 

window from the histogram of the segment above it [4].   
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3) Hypothesis filtering 

In our application, we used the bilateral filter as the main 

building block of the hypothesis filter for depth map 

deblocking [1]. The bilateral filter is applied to filter a cost 

volume in order to find the optimal depth value for each pixel. 

The color and spatial weights are computed only once and then 

applied once for each of the slices of the cost volume. Winner-

takes-all procedure across the slices selects the depth value. 

III. IMPLEMENTATION 

A. Implementation environment 

The implementation environment included two platforms. 

The first platform consisted of a pair of ARM and DSP cores, 

where we paid special attention on the distribution of the tasks 

between the cores, the communications between then and the 

memory use. The second platform included a GPU and the 

focus was put on the proper parallelization of the algorithms.  

The GPU is accessed via OpenCL. Maintained by the same 

consortium as, among other things, its graphics counterpart 

OpenGL, OpenCL is an open standard for utilizing the 

computing power of graphics processors beyond their original 

purpose of graphics rendering. It allows the programmer to 

access the capabilities more freely in the form of kernels, 

special programs written in a modified C-language that are 

executed on the graphics hardware in parallel. 

While the following comparison is highly volatile in the 

sense that GPU performance cannot be simplified to just 

counting theoretical operations, it will give some impression of 

scale. The GPU used in these experiments has two 

multiprocessors running at 1092 MHz each. The SIMD width 

of those multiprocessors is 8, so as a rough generalization, it is 

capable of executing 17.5 billion effective operations per 

second. In comparison, some of the more modern mobile 

GPUs mentioned before are ranging from 1 to 16 cores with 

SIMD width of 4, running at 200-400 MHz. Depending on 

configuration, this would result in anywhere between 0.8 and 

25.6 billion operations per second. This extremely coarse 

estimate hints that our choice of a mobile GPU substitute is 

justified. 

For a detailed description of the implementation 

environment we refer to [6].  

B. Bilateral filter on mobile platform 

The basic algorithm was implemented as reported in [1]. 

First, a pure C implementation was run on the ARM core with 

enabled NEON support for simultaneous operations showing a 

performance of 20 seconds per frame.  

The constant spatial filter implemented on the DSP 

performed at 16 seconds per frame with 64 bin histograms. By 

modifying the code to allow the compiler to perform some of 

the loops in parallel, most importantly the summation 

described in Eq. (2), the performance increased to 6 seconds 

per frame.  

The earlier attempts had only used the ARM core to 

initialize the program and for file I/O. While the DSP was 

working on the filtering, the ARM was doing nothing. When 

building distributive histograms was moved to the ARM, the 

simplification of DSP side control structures gave a larger 

performance boost than could have been expected from 

moving the less computationally expensive histogram 

operations to be done in parallel. Some compromises 

regarding the accuracy on computation had to be made to 

further increase performance. The use of the fixed point 

arithmetic library was removed altogether, and all DSP side 

computation was converted into half-word (16 bits) integer 

operations with simulated decimal accuracy up to 3 decimals. 

This in addition with reducing the amount of histogram bins 

from 64 to 16 brought the time down to 0.66 seconds per 

frame. 

C. Bilateral and hypothesis filter on OpenCL 

An alternative approach was considered: implementing the 

bilateral filter on a GPU. Even though not yet commonly 

available on the mobile market, OpenCL can be expected to be 

a viable method of exploiting the hardware of next generation 

mobile devices. This will give an idea how well the algorithm 

deploys to that kind of platform.  

The distributive histogram method used in the 

implementation in Sub-section III.B is an iterative process. It 

would be very poorly suited on a heavily parallelized platform 

such as the GPU. Therefore the algorithm implemented in 

OpenCL is the direct bilateral filter with both the distance and 

range weight functions being arbitrary. The actual shape of the 

distribution is irrelevant in terms of speed, as both functions 

can be precomputed once at the start of the processing for 

necessary values, and used as a lookup table from the OpenCL 

constant memory, which is cached to allow fast access. 

An OpenCL application was constructed in a way that there 

is a thread for each pixel, which computes Eq.(1) for a window 

centered at that pixel. Each thread has to access the 

surrounding ( pixels around its assigned pixel in order 

to compute the output of the filter. As the amount of memory 

accesses is large and several threads must access the same 

pixels, it is reasonable to use an image object to store the input 

image instead of a traditional buffer. Image objects are 

spatially cached, i.e. memory accesses to the same area of the 

image do not have to be retrieved from expensive global 

memory, but are available in the device cache. Each thread 

loops through the sum in Eq. (1) reading and processing all the 

channels for a single pixel on each iteration. 

After processing, the image can either be returned to the 

CPU for further processing, buffering, saving etc, or using 

OpenCL/OpenGL interoperability, sent directly to the display.  

IV. EXPERIMENTAL RESULTS 

The test material used was a 480x272 YUV420 video 

sequence from the Mobile 3DTV project’s video library [5], 

which has been impaired with a low quality level DCT 

compression, resulting in very clear block boundaries, 

although the performance of the used techniques is not 

dependant on the amount of degradation in the video. 

The choice of color model between RGB and YUV (or CIE-



 

Lab, as suggested by Tomasi [2]) has an effect on the 

computational performance of the filtering, depending on from 

which channels the weights are computed and to which 

channels they are applied. The ARM+DSP version was not 

extended to cover more than the Y channel as it was already 

too slow for the purpose with only a single channel. 

The OpenCL version uses all three RGB channels for 

calculating the weights and applies them to all three channels, 

so it gives in a sense the worst-case performance in terms of 

channel selection.  

A. Bilateral filter on DSP+ARM 

The final version of the ARM+DSP implementation of the 

bilateral filter processes one frame in 0.66 seconds. The 

computation of histograms for all of the window positions 

(centered on each pixel) takes approximately 250 ms on the 

ARM processor and the application of weights into the image 

600 ms. The ARM side does not take advantage of NEON 

optimization, but as the bottleneck is the application of 

weights on the image and the operations are done in parallel, it 

has no effect to the overall processing time. The rest of the 

time, approx. 60ms is spent on moving content in memory etc. 

The total time can be expected to increase significantly if more 

than one channel is taken into account. As this is clearly too 

low to even consider a real time application, we did not pursue 

a DSP implementation of the hypothesis filter, which would 

require several passes of the bilateral on each frame. 

In comparison, Porikli achieved 0.06 seconds per frame on 

a desktop computer on a 1MB grayscale image with 16 bins 

[3]. This performance was roughly matched by running 

practically the same implementation on a PC as on the DSP, 

with the exception of using floating point arithmetic instead of 

fixed point.  Further reducing the number of histogram bins 

from 16 was found visually disturbing due to the “comic book 

effect” caused by reduced color depth.  

B. Bilateral and hypothesis filter on OpenCL 

The key factor in the performance of the OpenCL 

application is the time it takes to transfer the data to the 

device, process it, and retrieve it back. Using an OpenCL 

specific profiler, it was determined that the 522kB of 32 bits 

per pixel image data takes 2.5ms to be transferred to or from 

the device, making the memory transfer take 5ms total. 

Processing time of the kernel is dependent on the window size.  

The cache miss/hit rate decreases steadily when the window 

size is increased, going down to 0.2% on the largest tested 

window, i.e. only 0.2% of memory accesses have to be done 

from the memory, and all the rest come from the fast cache. 

This means that the bigger the window, the more use the GPU 

gets from the caching properties of the image object. The 

results in Figure 1 are given for processing all three color 

channels.  

 

 

 
 

Figure 1 – Top: time in milliseconds it takes to process one frame of 480*272 

color video in RGB space on the GPU. Bottom:  corresponding single video 

stream FPS resulting from those times. Window radius is the distance from 

the middle pixel to the edge of a square window.  

 

In hypothesis filtering, the weights are applied to a single 

channel (depth), but several times per frame. Speed of the 

hypothesis filter was evaluated by a visual profiler as equal to 

43 ms/frame for filtering with block size of 9x9 pixels. This 

accounts for approximately 23 fps which is a good 

compromise between spatial improvement of visual quality 

and sufficient speed.  Figure 2 illustrates the performance in 

terms of FPS for different filter sizes for the ‘Bullinger’ 

sequence. An illustration of filtering results for the ‘Car’ 

sequence is given in Figure 3. 

 

 
Figure 2 – Performance of Hypothesis filter for Bullinger (320 x 192) 

sequence for varying filter sizes.  

V. CONCLUSIONS 

The bilateral filter is well suitable for parallel processing, as 

there are no dependencies between generating outputs of 

neighboring pixel values. The DSP approach gained 

significant speed improvement from the utilization of the 

device’s SIMD instructions. 

However, the performance of the bilateral filter on the 

ARM+DSP platform did not reach the objective of processing 

view plus depth video in real time. While the implementation 



 

is likely not perfectly optimized, the key factors have been 

taken into account. Still, the speed is at least an order of 

magnitude slower than needed for a real time application. 

Furthermore, it would also not be possible to allocate all the 

resources of the platform to video post-processing, as the 

decoding and color space conversion also run at the same time. 

One can resort to implementing the filter in specialized 

hardware, for which the current tests are quite instructive. It 

would seem that for the current generation mobile hardware, 

this kind of processing is too intensive.    

The OpenCL version looks very promising in terms of 

computational performance. Even when performing the 

filtering on all RGB channels, reasonable speeds are achieved. 

With this implementation, a window radius of approximately 

4, i.e. 81 pixels in total would be feasible in a real time, full-

color stereo video application. Further improvements are 

possible by code-level optimization and taking advantage of 

all the properties the GPU hardware is offering. It is also only 

using the GPU, leaving the CPU free for other tasks. 

Information on those OpenCL compliant, future mobile 

platforms is still scarce. Further studies are needed when 

samples and development tools are available, but at the 

moment, utilizing the GPU seems to be a potential branch of 

mobile related research and development in video processing. 
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Figure 3 – Car’ sequence, frame no. 90, (a) Original depth (b) Depth encoded with QP = 40 (c) Filtered with block size 9 (d) Filtered with block size 11 (e) 

Filtered with block size 13 (f) Filtered with block size 15. The contrast of all frames has been uniformly increased for visualization purposes. 

http://sp.cs.tut.fi/mobile3dtv/impaired-videos/

