

Abstract—The paper addresses the problem of implementing

depth map filtering algorithms optimized for mobile platforms.

Main algorithm being targeted is the bilateral filter and its

implementation on a mobile platform1 has been studied.

Furthermore, an alternative approach of using OpenCL to

control a graphics accelerator2 is explored. Experimental results

of the latter look quite positive.

I. INTRODUCTION

ODERN modern video enhancement algorithms are

considerably complex, and therefore the limitations of

mobile devices have to be taken into consideration when

balancing the needed computational power and the quality

requirements. Bilateral filter has been considered in the

Mobile 3DTV project both for denoising and deblocking of

stereo video and post-filtering of depth maps [1]. The aim of

research reported in this paper has been to explore, what kind

of possibilities for implementation is offered by a platform

corresponding to the level of current devices on the market.

As an alternative, the possibility of using OpenCL in future

mobile products has also been considered. Such devices are

not yet commonly available on the market, but some
3,4

 have

already been published. A GPU of a netbook
5
, considered as a

reasonable substitute for currently missing GPUs supporting

OpenCL on mobile platforms, has been used for performance

testing of the OpenCL implementation.

II. BILATERAL FILTER

The bilateral filter takes into consideration not only the

spatial domain, but also the color information (range) of the

neighborhood when calculating the weights for any given

pixel. This gives it the ability to preserve edges, which would

be smoothed out by a traditional spatial filter such as a

Gaussian [2]. The bilateral filter needs two functions to map

the differences in value to weight values, the spatial

coefficients and range coefficients . Those

functions can be arbitrary, but a suitable candidate is for

instance the Gaussian. For a rectangular 2-dimensional

window W of size around image point , the

1 TI OMAP 3530
2 Nvidia ION GPU
3 TI OMAP5432
4 TI OMAP5430
5 Asus 1201PN

discreet response of the bilateral filter can be expressed as

(1)

where is a normalization

term. The normalization term has to be computed for each

point the filter is applied to, unlike in a purely spatial filter [3].

1) Constant spatial filter

Even though the filter is eventually applied like a regular

convolution, the varying weights of the filter make it

considerably heavy to compute. Three ways to speed up the

processing were introduced by Porikli [3]. The simplest and

fastest of these is that by setting the spatial filter coefficients

 to a constant value (i.e. a box filter), the response of

the filter can be modified into

where is the histogram of the windowed image around

the point . As all spatial locations have the same weight, the

spatial location of the range values no longer matters.

Therefore it is sufficient to form the response by accumulating

over the bins of the histogram, not over single pixels. This

approach has the added benefit of not being sensitive to the

size of the window in terms of performance, assuming the

computation of the histograms is not either. However, the

performance is O(n) in terms of the amount of histogram bins

used.

2) Distributive histograms

Porikli originally suggested integral histograms as the tool

for computing the histograms needed for Eq.(2) [3]. Another

method for this is the distributive histogram proposed by

Sizintsev et al., which has a lower computational cost and

memory requirement. The distributive histogram is based on

the idea that the histograms of two consecutive sliding

windows differ only by the histograms of the)

column segments that are included in one but not the other. If

assuming the sliding window is traveling along the rows, the

new local histogram can be computed from the previous by

adding the histogram of the new column segment and

subtracting the histogram of the column segment leaving the

window. Similarly, computing the histogram of a column

segment is done by respectively subtracting and adding the

value of the two individual pixels that leave and enter the

window from the histogram of the segment above it [4].

Implementation of Depth Map Filtering

Algorithms on Mobile-Specific Platforms

Olli Suominen, Sumeet Sen, Sergey Smirnov, Atanas Gotchev

M

(2)

3) Hypothesis filtering

In our application, we used the bilateral filter as the main

building block of the hypothesis filter for depth map

deblocking [1]. The bilateral filter is applied to filter a cost

volume in order to find the optimal depth value for each pixel.

The color and spatial weights are computed only once and then

applied once for each of the slices of the cost volume. Winner-

takes-all procedure across the slices selects the depth value.

III. IMPLEMENTATION

A. Implementation environment

The implementation environment included two platforms.

The first platform consisted of a pair of ARM and DSP cores,

where we paid special attention on the distribution of the tasks

between the cores, the communications between then and the

memory use. The second platform included a GPU and the

focus was put on the proper parallelization of the algorithms.

The GPU is accessed via OpenCL. Maintained by the same

consortium as, among other things, its graphics counterpart

OpenGL, OpenCL is an open standard for utilizing the

computing power of graphics processors beyond their original

purpose of graphics rendering. It allows the programmer to

access the capabilities more freely in the form of kernels,

special programs written in a modified C-language that are

executed on the graphics hardware in parallel.

While the following comparison is highly volatile in the

sense that GPU performance cannot be simplified to just

counting theoretical operations, it will give some impression of

scale. The GPU used in these experiments has two

multiprocessors running at 1092 MHz each. The SIMD width

of those multiprocessors is 8, so as a rough generalization, it is

capable of executing 17.5 billion effective operations per

second. In comparison, some of the more modern mobile

GPUs mentioned before are ranging from 1 to 16 cores with

SIMD width of 4, running at 200-400 MHz. Depending on

configuration, this would result in anywhere between 0.8 and

25.6 billion operations per second. This extremely coarse

estimate hints that our choice of a mobile GPU substitute is

justified.

For a detailed description of the implementation

environment we refer to [6].

B. Bilateral filter on mobile platform

The basic algorithm was implemented as reported in [1].

First, a pure C implementation was run on the ARM core with

enabled NEON support for simultaneous operations showing a

performance of 20 seconds per frame.

The constant spatial filter implemented on the DSP

performed at 16 seconds per frame with 64 bin histograms. By

modifying the code to allow the compiler to perform some of

the loops in parallel, most importantly the summation

described in Eq. (2), the performance increased to 6 seconds

per frame.

The earlier attempts had only used the ARM core to

initialize the program and for file I/O. While the DSP was

working on the filtering, the ARM was doing nothing. When

building distributive histograms was moved to the ARM, the

simplification of DSP side control structures gave a larger

performance boost than could have been expected from

moving the less computationally expensive histogram

operations to be done in parallel. Some compromises

regarding the accuracy on computation had to be made to

further increase performance. The use of the fixed point

arithmetic library was removed altogether, and all DSP side

computation was converted into half-word (16 bits) integer

operations with simulated decimal accuracy up to 3 decimals.

This in addition with reducing the amount of histogram bins

from 64 to 16 brought the time down to 0.66 seconds per

frame.

C. Bilateral and hypothesis filter on OpenCL

An alternative approach was considered: implementing the

bilateral filter on a GPU. Even though not yet commonly

available on the mobile market, OpenCL can be expected to be

a viable method of exploiting the hardware of next generation

mobile devices. This will give an idea how well the algorithm

deploys to that kind of platform.

The distributive histogram method used in the

implementation in Sub-section III.B is an iterative process. It

would be very poorly suited on a heavily parallelized platform

such as the GPU. Therefore the algorithm implemented in

OpenCL is the direct bilateral filter with both the distance and

range weight functions being arbitrary. The actual shape of the

distribution is irrelevant in terms of speed, as both functions

can be precomputed once at the start of the processing for

necessary values, and used as a lookup table from the OpenCL

constant memory, which is cached to allow fast access.

An OpenCL application was constructed in a way that there

is a thread for each pixel, which computes Eq.(1) for a window

centered at that pixel. Each thread has to access the

surrounding (pixels around its assigned pixel in order

to compute the output of the filter. As the amount of memory

accesses is large and several threads must access the same

pixels, it is reasonable to use an image object to store the input

image instead of a traditional buffer. Image objects are

spatially cached, i.e. memory accesses to the same area of the

image do not have to be retrieved from expensive global

memory, but are available in the device cache. Each thread

loops through the sum in Eq. (1) reading and processing all the

channels for a single pixel on each iteration.

After processing, the image can either be returned to the

CPU for further processing, buffering, saving etc, or using

OpenCL/OpenGL interoperability, sent directly to the display.

IV. EXPERIMENTAL RESULTS

The test material used was a 480x272 YUV420 video

sequence from the Mobile 3DTV project’s video library [5],

which has been impaired with a low quality level DCT

compression, resulting in very clear block boundaries,

although the performance of the used techniques is not

dependant on the amount of degradation in the video.

The choice of color model between RGB and YUV (or CIE-

Lab, as suggested by Tomasi [2]) has an effect on the

computational performance of the filtering, depending on from

which channels the weights are computed and to which

channels they are applied. The ARM+DSP version was not

extended to cover more than the Y channel as it was already

too slow for the purpose with only a single channel.

The OpenCL version uses all three RGB channels for

calculating the weights and applies them to all three channels,

so it gives in a sense the worst-case performance in terms of

channel selection.

A. Bilateral filter on DSP+ARM

The final version of the ARM+DSP implementation of the

bilateral filter processes one frame in 0.66 seconds. The

computation of histograms for all of the window positions

(centered on each pixel) takes approximately 250 ms on the

ARM processor and the application of weights into the image

600 ms. The ARM side does not take advantage of NEON

optimization, but as the bottleneck is the application of

weights on the image and the operations are done in parallel, it

has no effect to the overall processing time. The rest of the

time, approx. 60ms is spent on moving content in memory etc.

The total time can be expected to increase significantly if more

than one channel is taken into account. As this is clearly too

low to even consider a real time application, we did not pursue

a DSP implementation of the hypothesis filter, which would

require several passes of the bilateral on each frame.

In comparison, Porikli achieved 0.06 seconds per frame on

a desktop computer on a 1MB grayscale image with 16 bins

[3]. This performance was roughly matched by running

practically the same implementation on a PC as on the DSP,

with the exception of using floating point arithmetic instead of

fixed point. Further reducing the number of histogram bins

from 16 was found visually disturbing due to the “comic book

effect” caused by reduced color depth.

B. Bilateral and hypothesis filter on OpenCL

The key factor in the performance of the OpenCL

application is the time it takes to transfer the data to the

device, process it, and retrieve it back. Using an OpenCL

specific profiler, it was determined that the 522kB of 32 bits

per pixel image data takes 2.5ms to be transferred to or from

the device, making the memory transfer take 5ms total.

Processing time of the kernel is dependent on the window size.

The cache miss/hit rate decreases steadily when the window

size is increased, going down to 0.2% on the largest tested

window, i.e. only 0.2% of memory accesses have to be done

from the memory, and all the rest come from the fast cache.

This means that the bigger the window, the more use the GPU

gets from the caching properties of the image object. The

results in Figure 1 are given for processing all three color

channels.

Figure 1 – Top: time in milliseconds it takes to process one frame of 480*272

color video in RGB space on the GPU. Bottom: corresponding single video

stream FPS resulting from those times. Window radius is the distance from

the middle pixel to the edge of a square window.

In hypothesis filtering, the weights are applied to a single

channel (depth), but several times per frame. Speed of the

hypothesis filter was evaluated by a visual profiler as equal to

43 ms/frame for filtering with block size of 9x9 pixels. This

accounts for approximately 23 fps which is a good

compromise between spatial improvement of visual quality

and sufficient speed. Figure 2 illustrates the performance in

terms of FPS for different filter sizes for the ‘Bullinger’

sequence. An illustration of filtering results for the ‘Car’

sequence is given in Figure 3.

Figure 2 – Performance of Hypothesis filter for Bullinger (320 x 192)

sequence for varying filter sizes.

V. CONCLUSIONS

The bilateral filter is well suitable for parallel processing, as

there are no dependencies between generating outputs of

neighboring pixel values. The DSP approach gained

significant speed improvement from the utilization of the

device’s SIMD instructions.

However, the performance of the bilateral filter on the

ARM+DSP platform did not reach the objective of processing

view plus depth video in real time. While the implementation

is likely not perfectly optimized, the key factors have been

taken into account. Still, the speed is at least an order of

magnitude slower than needed for a real time application.

Furthermore, it would also not be possible to allocate all the

resources of the platform to video post-processing, as the

decoding and color space conversion also run at the same time.

One can resort to implementing the filter in specialized

hardware, for which the current tests are quite instructive. It

would seem that for the current generation mobile hardware,

this kind of processing is too intensive.

The OpenCL version looks very promising in terms of

computational performance. Even when performing the

filtering on all RGB channels, reasonable speeds are achieved.

With this implementation, a window radius of approximately

4, i.e. 81 pixels in total would be feasible in a real time, full-

color stereo video application. Further improvements are

possible by code-level optimization and taking advantage of

all the properties the GPU hardware is offering. It is also only

using the GPU, leaving the CPU free for other tasks.

Information on those OpenCL compliant, future mobile

platforms is still scarce. Further studies are needed when

samples and development tools are available, but at the

moment, utilizing the GPU seems to be a potential branch of

mobile related research and development in video processing.

REFERENCES

[1] S. Smirnov, S. Sen, A. Gotchev, H. Burst, G. Tech, ‘3D Video

processing algorithms, Part I’, Mobile3DTV tech. report D5.4, Feb.

2010.

[2] C. Tomasi, R. Manduchi “Bilateral Filtering for Gray and Color

Images”. Sixth International Conference on Computer Vision, 1998.

[3] Porikli, Fatih. “Constant time O(1) bilateral filtering”, IEEE Conference

on Computer Vision and Pattern Recognition, 2008. pp. 1-8.

[4] M. Sizintsev, K.G. Derpanis, A. Hogue, “Histogram-based search: A

comparative study,” IEEE Conference on Computer Vision and Pattern

Recognition, 2008

[5] Mobile 3DTV 3D video database, [Online] 2009.

http://sp.cs.tut.fi/mobile3dtv/impaired-videos/

[6] L. Azzari, O. Suominen, S. Sen, A. Gotchev, D. Bugdaici, G. B. Akar,

‘3D Video processing algorithms, Part II’, Mobile3DTV tech. report

D5.6, May 2011. p. 65.

Figure 3 – Car’ sequence, frame no. 90, (a) Original depth (b) Depth encoded with QP = 40 (c) Filtered with block size 9 (d) Filtered with block size 11 (e)

Filtered with block size 13 (f) Filtered with block size 15. The contrast of all frames has been uniformly increased for visualization purposes.

http://sp.cs.tut.fi/mobile3dtv/impaired-videos/

