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Abtract - The objective of this research is to improve 

reliability and positioning accuracy of a mobile, standalone 
GNSS receiver in personal positioning. We propose a novel 
algorithm that fuses carrier information with code phase 
measurements and uses the additional security feature of 
receiver autonomous integrity monitoring (RAIM) and fault 
detection and exclusion (FDE) in order to detect and exclude 
erroneous measurements. The weighted least squares (WLS) 
method completed with RAIM/FDE is used to compute the GPS 
position and velocity estimates from pseudorange and delta 
range measurements. These estimates are combined in a 
complementary Kalman filter (CKF), which gives the velocity 
smoothed position estimate. 

The performance of the algorithm has been verified with 
pedestrian navigation tests; measurements for the tested 
algorithms were obtained using a SiRF Star II GPS receiver. 
Accuracy of the obtained position solutions was compared with a 
DGPS position solution, recorded using Thales MobileMappers. 
As the measure of accuracy, we used the horizontal distance of 
the standalone position solution from the DGPS track, i.e. the 
cross track error (CTE). The maximum and mean CTE values of 
51.8 m and 6.3 m, respectively, were obtained with least squares 
(LS) position solution. With WLS and RAIM/FDE processed 
position, the maximum and mean errors were 25.2 m and 3.5 m. 
Applying CKF on WLS and RAIM/FDE processed position and 
velocity the values were 8.4 m and 3.1 m. Applying CKF on WLS 
and RAIM/FDE processed position and WLS velocity the values 
were 7.7 m and 2.8 m. Thus, adding the CKF to the WLS + 
RAIM/FDE processing reduces both the maximum and mean 
errors; the CKF has the largest effect on the maximum errors. 

Reports of this type of CKF for fusing GPS carrier and code 
phase information, with the additional security feature by 
RAIM/FDE, do not exist in the open literature. 

 
 

I. INTRODUCTION  
 
To improve positioning accuracy in GNSS based personal 

positioning applications, several special characteristics need 
to be taken into account. The GNSS receiver needs to be 
inexpensive, small and light-weight; therefore only 
standalone GNSS positioning devices are considered in this 
paper. The positioning environment varies as the user moves: 
the amount of signal attenuation and reflections caused by 
constructions and vegetation varies, and signal obstructions 
appear and disappear frequently. The motion state of the user 
varies also, for instance, the user may walk, drive a car or a 
bicycle, or stand still.  Thus the motion of the user is difficult 
to model using just one model.  

In this paper, we propose for a mobile, standalone GPS 
receiver an algorithm that uses complementary Kalman filter 
(CKF) algorithm to fuse carrier information with code phase 
measurements in position domain. To solve positions and 
velocities, the algorithm uses weighted least squares (WLS) 
method with adaptively adjusted weights for measurement 
channels. The additional security features of receiver 
autonomous integrity monitoring (RAIM) and fault detection 
and exclusion (FDE) are used in order to detect and exclude 
erroneous measurements before they are fed to the filter.  

This paper is organized as follows: At first, the previous 
work on different methods to fuse carrier and code 
information is discussed. Next, the design of the algorithm for 
position computation is described in detail. In the 
experimental test results, we compare the proposed algorithm 
with several position computation methods available for 
standalone GPS. The conclusions are given in the last section 
with remarks on future research. 

The novelty in this paper is the combination of RAIM/FDE 
processing to a complementary Kalman filter and application 
of this combination to process data of a standalone, single-
frequency GPS receiver. 

 
II. PREVIOUS WORK 

 
The synergism of code and carrier measurements offers 

possibilities to improve the positioning accuracy of a 
standalone receiver. When compared to a code phase 
measurement, the carrier phase measurement is less noisy, but 
gives only relative information; initial range or phase 
ambiguities need to be solved using code phase 
measurements. Several methods for combining carrier and 
code information have been described in the literature. One 
category of known methods consists of different forms of 
carrier smoothing [1-3]. Another main category of methods 
utilizes centralized Kalman filter with motion models [4, 5]. 
For personal positioning applications, both the carrier 
smoothing and centralized filter with motion model have their 
shortcomings. 

Typically in the carrier smoothing schemes, there is an 
independent filter for each receiver channel. The filter 
performs the smoothing of the pseudorange measurements 
using delta pseudorange or phase range information and 
outputs smoothed pseudorange estimates, from which the 
position estimate is computed. In channel-wise carrier 
smoothing, a loss of phase lock during signal tracking causes 
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re-initialization of the filter: the estimate restarts from the 
accuracy of the code phase measurement and then gradually 
improves if the phase lock is maintained. In urban and 
suburban environments, signal obstructions appear and 
disappear frequently as the user moves. In carrier smoothing, 
these visibility discontinuities cause frequent losses of phase 
lock and thus frequent resets of the filters that are used to 
compute the carrier smoothed pseudorange estimates. 

When centralized Kalman filter in non-complementary 
form is used to combine the information of carrier and code 
measurements, both measurements are fed to the filter as 
measurement updates. The time projection of the state is done 
using motion models, which describe the motion of the user 
as random process. In personal positioning applications, 
motion characteristics of the user may vary a lot. A proper 
model suitable for all possible motion states of the user is not 
easy to find. An attempt to use one motion model to cover all 
the possible motion states may easily lead to a solution that 
does not describe well any of the motion states. Some 
multiple model approach may work properly, as stated e.g. in 
[6], but such approaches would lead to more complex 
algorithm and laborious tuning process of different models 
and model change probabilities. 

To mitigate the problem of frequent filter resets, a fusion 
filter was proposed in [7]. Instead of smoothing pseudoranges 
with carrier measurements, the filter uses carrier based GPS 
velocity estimates to smooth the pseudorange based GPS 
position. With over-determined Weighted Least Squares 
(WLS) solutions of position and velocity, effect of the 
independent channel noises is suppressed. Weights for each 
satellite channel are adjusted adaptively as functions of 
carrier-to-noise ratios (C/N0). The WLS solutions of position 
and velocity are processed with a fusion filter that further 
attenuates the effect of the remaining noises. The filter 
structure is a complementary Kalman filter (CKF): the 
velocity estimate is used to propagate the state. Thus, no 
motion model is required in the filter implementation, i.e. the 
filter design is independent of the motion state of the user. 
The GPS position estimate is fed to the filter as a 
measurement and the output of the filter is the smoothed 
position. With this procedure, the total filter reset occurs only 
when the number of visible satellites drops below four. The 
complementary filter configuration applied to a linear 
problem in [7] is similar to a configuration that was proposed 
for nonlinear problems in [8]. A similar configuration has 
been used also for differential GPS (DGPS) in [9], where the 
filter was used to process information of code and carrier 
double differences. In [10], the configuration was applied to 
GPS/INS integration. 

In the filtering approach, e.g., in [7], the measurement 
weighting and complementary filtering are the only means to 
attenuate measurement noises. This introduces drawbacks in 
urban and suburban environments where both the code and 
carrier measurement may occasionally be deteriorated by 
large errors due to unexpected effects of multipath 
attenuation. Such large errors do not fit to the noise models 
used by the filter, i.e., they are measurement outliers that may 

result into large errors in the filter state if they are allowed to 
affect the filter.  

In this paper, we enhance the algorithm from [7] to include 
also RAIM/FDE for detection and exclusion of the 
measurement outliers before they enter the filtering process. 
If there are redundant pseudorange and delta pseudorange 
measurements available for position and velocity 
computations, the consistency of the measurements is 
examined using the RAIM/FDE procedure. The aim is to 
detect and exclude outliers from the measurement set that is 
used in the computation of position and velocity. The filtering 
part does not require stochastic modeling of the user motion. 
Unlike the previously reported complementary filter 
approaches to GPS positioning, this filter is independent of 
other sources, i.e., it does not require external sensor 
information or information from reference receivers. This 
filter differs from various carrier-smoothing approaches as it 
combines the information of carrier and code phase 
information in position domain instead of channel wise 
processing in line of sight coordinates. 

 
III. OVERWIEV OF THE SYSTEM 

 
The overview of the proposed signal processing system is 

shown in Fig. 1. C/N0 values of the satellite channels are used 
to estimate noise variances of the measurements. The WLS 
method completed with RAIM/FDE is used to compute the 
GPS position and velocity estimates from pseudorange and 
delta pseudorange measurements. The RAIM/FDE processed 
WLS estimate of the position is fed to the complementary 
Kalman filter (CKF) as a measurement signal; the 
RAIM/FDE processed WLS estimate of the velocity is used 
to propagate the state. The states and the output of the fusion 
filter are the smoothed position coordinates of the user.  

 
  

 
Fig. 1. An overview of the proposed signal processing system.   

ψx : Binary position RAIM/FDE output (1=successful, 0=unsuccessful) 
ψv  : Binary velocity RAIM/FDE output (1=successful, 0=unsuccessful) 

 
 
 
 
 



  

IV. ESTIMATION OF MEASUREMENT NOISE VARIANCES 
 
To estimate the uncertainty of the pseudorange 

observations, we used the following equation: 
222
atmtDLL

σσσ ρ +=    (1) 

where σtDLL is the 1-sigma thermal noise in delay lock loop 
(DLL) of the receiver and σatm is 1-sigma value of the 
uncertainties due to the atmosphere. The thermal noise 
component can be written as a function of carrier to noise 
ratio c/n0 [9]: 
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where we used the following parameters: discriminator 
correlator factor F1 = 1, discriminator type factor F2 = 1, 
correlator spacing d  = ½ [chips], code loop noise bandwidth 
Bn = 2 [Hz], predetection integration time T = 2 [ms] and GPS 
propagation constant / code chipping rate λc = 293.05. In [9], 
the error budget of the SPS C/A-code pseudorange gives the 
values 5.0 m and 1.5 m for 1-sigma values of ionospheric and 
tropospheric delays, respectively. Their summed effect is 5.22 
m, which was used as the σatm value in (1). 

The 1-sigma value of phase lock loop (PLL) measurement 
error is a sum of several noise contributions, which depend 
much on the receiver implementation. The 1-sigma values for 
PLL thermal noise can be estimated using the following 
equation [9]: 
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where we used the following parameters: code loop noise 
bandwidth Bn = 18 [Hz], predetection integration time T = 2 
[ms], GPS propagation constant / L-band carrier frequency 
λL1 = 0.1903 [cycles/s]. The delta pseudorange observation 
often includes some low frequency components due to the 
drifts in the measurement process of the receiver and slowly 
changing atmospheric effects. For this reason we 
overestimated the covariance of the errors as  

( )222 1003.0 tDLLσσδ +=    (4) 

The variance estimates 2
ρσ  and 2

δσ  are computed for each 
receiver channel with measurements and these values are used 
as adaptive weights in WLS computation of position and 
velocity. 

 
V. POSITION AND VELOCITY COMPUTATION 

 
A detailed description of position and velocity computation 

using the WLS method is given in [7]. The WLS method to 
solve linear systems with noisy measurements is described 
e.g. in [11], the equations for LS solution of position and 
velocity are given in e.g. [9] and the relation between range 
rate and Doppler frequency can be found in [12]. 

In position equation, the four unknown variables, i.e., three 
position coordinates and clock bias of the receiver are 

arranged to vector x = [xu, yu, zu, −ctu]T. The relation between 
the unknowns and the pseudorange measurements is defined 
by the following:  

uujujujj ctzzyyxx +−+−+−= 222 )()()()(xρ  (5) 

where j is the index of measurement channel, (xj, yj, zj) is the 
position of the jth satellite tracked by the receiver and c is the 
speed of light. If pseudorange measurements of at least four 
satellites are available, the unknown variables can be 
computed using  

∆xxx += *ˆ    (6) 

where x* is the linearization point of the pseudorange 
equations and ∆x is the WLS solution of the linearized 
pseudorange equations, computed using  

( ) ρΣHHΣH∆x ∆= −−− 1
ρ

11
ρ

TT  (7) 

where H is the measurement matrix, also known as design 
matrix, which is a result of the linearization of the 
pseudorange equations (5). The weight matrix is the inverse 
of the diagonal matrix Σρ. The diagonal elements of Σρ are the 
variances of pseudorange measurements, estimated using (1). 
The column vector ∆ρ is the difference between measured 
pseudoranges and estimated pseudoranges, i.e., ∆ρ = ρ(x) - 
ρ(x*). 

In velocity equation, the four unknown variables, i.e., three 
components of the user velocity and clock drift of the receiver 
are arranged to vector [ ]Tutczyx &&&&& −= ,,,x . The velocity 
components of the jth satellite are arranged to vector 

[ ]Tjjjj zyx 0,,, &&&& =x . The WLS solution of velocity is 
computed using  

( ) dHHHx 1-
ρ

11-
ρ

ˆ
&&& ΣΣ=

− TT  (8) 

where H is the same matrix as in (7) and -1
ρ&Σ  is the weight 

matrix based on the error variances of range rate 
measurements, estimated using (4). The elements of the 
column vector d are computed using  

jjjjd xh && +−= ρ  (9) 

where jρ&  is the range rate measurement of the jth satellite. It 
is a function of the Doppler frequency, i.e., the difference 
between the received frequency fj and transmitted frequency 
fTj: ( ) TjTjjj fffc −=− ρ& . The row vector hj is the jth row of 
the matrix H. 

If the observable is the delta pseudorange measurement δρj 
instead of the rate range, the WLS method can be used to 
solve the delta position, i.e., the position change within a 
sampling interval:  

( ) gΣHHΣHxδ 1-
δρ

11-
δρˆ TT −

=  (10) 

where -1
δρΣ  is the weight matrix based on the error variances 

of delta pseudorange measurements, estimated using (4). The 
elements of the column vector g are computed using  
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The delta pseudorange is defined as  
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where tk-1 and tk are the start and end times of the kth 
sampling interval. The integral term in (11) can be 
approximated using the average of the satellite velocities at 
sampling instances: 
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The solution of (10) is readily in the form required by the 
complementary filter for smoothing the position estimate. If 
solution of (8) is used, the delta position must be 
approximated using numerical integration – the simplest 
approximation is obtained by multiplying the velocity 
estimate by ∆t, the length of the sampling instance. In the 
following, we use the word ‘velocity’ to refer to the solutions 
of both (8) and (10), as they both are related to the velocity; 
the first one is approaching instantaneous velocity as it is 
measured over a short time interval, the latter can be scaled to 
represent the average velocity between the sampling 
instances. 

The variances of position, velocity and delta position 
estimates are computed using the following: 

( ) 11 −−= HΣHP T  (14) 

where Σ is the corresponding weight matrix ρρ &ΣΣ ,  or δρΣ . 
 

VI. RELIABILITY MONITORING – RAIM/FDE 
 
Reliability refers to the controllability of observations – the 

ability to detect blunders and to estimate the effects that 
undetected blunders may have on a solution [13]. In this 
paper, reliability monitoring consists of reliability testing, i.e., 
detecting and identifying a measurement error, as in Receiver 
Autonomous Integrity Monitoring (RAIM), e.g., in [14]. 

The advantage in using parameter estimation and actually 
treating the observations as random values rather than 
computing a unique solution from just as many observations 
as necessary is to have access to the redundancy which is the 
basis of both improved precision and quality control. 
Assuming a correct measurement model, observational 
residuals defined as the difference between the estimated 
values of the observations and their corresponding measured 
values indicate the extent to which the measurements agree 
with each other. Residuals are, therefore, useful for 
monitoring the quality of the estimated parameters. When 
redundant observations have been made, least squares 
residuals of the pseudoranges or alternatively pseudorange 
rates can be obtained as 

RyyxHv −=−= ˆˆ    (15) 

where H  is the design matrix, x̂  is the estimate of the 
unknown user parameters (offset from the linearization point 
or user velocity), R  is a projector from the reduced 
observations y  to the least squares (LS) residuals. The 
resulting residual vector, v̂ , is thus the difference between the 
predicted measurements based on the least squares estimate 
and the empirical measurements, and it can be used to test the 
internal consistency among the observations. The vector can 
also be used to check the validity of the assumptions 
underlying the used functional and stochastic models and 
further to detect and identify a potential model error. An a 
posteriori variance factor can be composed based on the 
residuals as 
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where the matrix Σ  represents the covariance matrix of the 
observations, n represents the number of available 
observations, and p denotes the number of unknowns to be 
estimated. The a posteriori variance describes the consistency 
between the estimate and the measurements. The residuals, 
the vector v̂ , can also be standardized as 
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where iv̂  denotes the ith element of the residual vector, and 
( )iiv̂C  denotes the i th diagonal element of the covariance 
matrix of the residuals, vC ˆ . The standardized residuals can be 
used for outlier detection with uncorrelated, normally 
distributed observations in a sense that if the i th observation 
is not an outlier, iw  is normally distributed as ( )10,N~iw  
[13, 15]. The covariance matrix of the residuals is computed 
as follows 

( ) T11T
ˆ HHΣHHΣCv

−−−=  (18) 

Moreover, for the projector matrix, the following equation 
can be derived 

1
vΣCR −= ˆ  (19) 

The trace of this matrix R is the overall redundancy (degree 
of freedom), and, therefore, R is referred to as 'redundancy 
matrix', e.g., [16]. With uncorrelated observations, this matrix 
plays a key role in quality control. The ith diagonal element 
of matrix R, ri, corresponds to the contribution of the ith 
observation to the overall redundancy, but it is also the scale 
factor with which a bias of an observation will be reflected by 
its residual [17]. A balanced adjustment problem would have 
all the diagonal elements of the redundancy matrix 
approximately equal. When ri is close to zero, the ith 
observation contributes very little to the redundancy, which 
also implies that it is hardly controlled by the other 
observations. Thus, very small redundancy numbers are not 
desirable. A zero redundancy number implies an uncontrolled 
observation.  



  

The effect, ii v̂∇ , of an error iy∇  in observation iy  onto 
its corresponding residual is determined by the ith diagonal 
element of R [17], i.e.,  

iiii r yv ∇−=∇ ˆ  (20) 

Since ri is always between 0 and 1 [17, 13], possibly only a 
small part of an error shows up in the residuals, while the rest 
of it will be absorbed in the determination of the unknown 
parameters. An error in an observation that has a large 
redundancy number will affect the corresponding residual 
more directly and is easier to detect. The effect of a gross 
error iy∇  in observation iy  onto the other residuals 

):1,(ˆ njijj =≠v , ji v̂∇ , is determined by the off-diagonal 
elements (rji) of the redundancy matrix R as 

njijr ijiji :1,,ˆ =≠∇−=∇ yv  (21) 

Thus, due to the correlation of the residuals, a gross error in 
an observation might have spread over all of the residuals. If a 
blunder is large enough to cause many reliability test failures, 
resulting in many alternatives, it is essential to ensure that any 
two alternatives are separable [18]. Therefore, in order to 
pinpoint the erroneous observation iy  through examination 
of its corresponding residual iv̂ , the following equation must 
be assessed [17]:  

):1,( njijrr jii =≠>  (22) 

If the above equation does not hold, localization of the 
gross error is difficult. 

 
VII. FAILURE DETECTION AND ISOLATION 

 
To detect a measurement error, the least squares residuals 

can be statistically tested. In a ‘global test’, the null-
hypothesis H0 states that the adjustment model is correct and 
the distributional assumptions meet the reality, as opposed to 
the alternative Ha which states that the adjustment model is 
not correct. If the global test fails, a ‘local test’ with more 
specific alternative hypotheses needs to be performed for 
failure isolation. 

 
A. Global Test 

 
The global test for detecting an inconsistent adjustment 

model is based on the quadratic form vΣv ˆˆ 1T −  which follows 
a central chi-square distribution with (n-p) degrees of 
freedom, if the observation errors are normally distributed as 

),N( Σ0 . The parameter p denotes the number of parameters 
to be estimated. If the test statistic exceeds the threshold 

2
,1 pn−−αχ , where α represents the false alarm rate, H0 is 

rejected in favor of Ha. In this case, an inconsistency in the 
assessed observations is assumed, and the error should be 
identified and mitigated.  

 

B. Local Test 
 
The most likely reason for the rejection of H0 is the 

presence of outlying observations. Strict testing is easy under 
the assumption that there is only one outlier in the current 
epoch. The attempt to identify such an individual 
measurement error may be performed if the redundancy is at 
least two. Each standardized residual iw  is compared to the 
α0-quantile of the standard normal distribution, 

2
1 0

n α
−

, with 

the predetermined false alarm rate α0. The null-hypothesis 
H0,i, which denotes that the ith observation is not an outlier, is 
rejected if iw  exceeds the threshold. The underlying 
assumptions of the local test include that the model and the 
assumption of a normally distributed error vector, i.e., 

),(~ Σ0Nε , are correct except for the single constant bias of 
the ith observation. The standardized residuals are then 
normally distributed with zero expectation when H0,i is 
correct, and with a non-zero expectation otherwise. Thus, the 
local testing is based on the comparison 

2
α

1 0
n

−
≤iw  (23) 

with rejection of H0,i (i.e. recognition of Ha,i) if the critical 
value is surpassed.  

Only if H0 of the global test is rejected, the local test is 
carried out for fault identification, and only the observation 
with the largest value of iw  is tested and possibly rejected. 
This is a reliability testing or outlier detection procedure 
introduced originally by Baarda in 1968 [19]. It is known as 
data snooping. 

The risk level α of the global test must relate to that of the 
local test, α0, together with the probability β of missed 
detection, which is the same for both the global and the local 
tests. An erroneous measurement that causes the global test to 
fail should be indicated by the corresponding local test with 
the same probability. So, only two of the values α, α0, and β 
can be chosen arbitrarily. They are linked by the following 
equations:  
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where λ is the non-centrality parameter of a non-central chi-
square distribution related to the global hypothesis testing and 
δ0 is the expected value of the normal distribution related to 
the local test. 

The assumption of a single outlier seems to be a severe 
restriction. However, it was found that data snooping can also 
cope with multiple blunders if it is performed iteratively. 
After exclusion of an observation, the parameter estimation, 
global and local statistical tests, and possibly the rejection of 
an observation can be repeated for that epoch until no more 
outliers can be identified.  
 



  

C. Fault Detection and Exclusion 
 
If m outliers are suspected, generally, a redundancy of at 

least m+1 is needed in order to possibly identify them. 
However, due to the mutual influence of observations, i.e., an 
error of one observation is absorbed by the residuals of all 
observations, erroneous rejection of a good observation is 
possible, especially with large or multiple biases [20]. In 
degraded signal environments, the redundancy is generally 
poor and, thus, it is desired to retain as many observations as 
possible to obtain an efficient estimate [21-23]. Therefore, if 
more than one observation is being excluded, the iterated 
reliability checking process should include a reconsideration 
of an earlier rejected observation [24].  

The flowchart in Fig. 2 expresses the fault detection and 
exclusion procedure chosen based on the global and local 
statistical testing for the application of this paper, and it is 
called the Forward-Backward FDE. The Forward-Backward 
FDE method involves use of the global test to identify an 
inconsistent solution, and performing the local test to identify 
and exclude the erroneous measurement. The exclusion is, 
however, not performed if there is another observation that is 
more influential than the one subject to assessment. Thus, in 
FDE execution, no other more influential observation may be 
tolerated: when pinpointing the observation i to be excluded, 
it should be excluded from the solution only if the ith 
redundancy number ri follows the equation 

):1,( njijrr jii =≠> . The global test and the local test 

with the additional influentiality check are performed 
recursively until no more erroneous measurements are found 
and the solution is declared as either reliable or unreliable. In 
addition, the reconsideration of an earlier rejected observation 
is included in the Forward-Backward FDE scheme, as 
presented in Fig. 2 [25]. This is performed by reconsidering 
all of the excluded measurements and performing global tests 
to find the measurements that can be implemented back into 
the solution computation. Thus, a measurement that has been 
excluded earlier is used again for the solution computation if 
the global test passes upon its tentative inclusion into the  
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Fig. 2. Forward-Backward FDE 

solution estimation. This is done to ensure that the order of 
the excluded measurements does not cause an unnecessary 
exclusion. Due to the importance of the measurements to the 
geometry of the solution, it is desirable to minimize the 
number of unnecessary exclusions.  

 
VIII. COMPLEMENTARY KALMAN FILTER  

 
There are two different types of measurement sets available 

for computing the smoothed position estimate. The first 
measurement is the RAIM/FDE processed delta position, 
corrupted by white noise: 

)()()(
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1 kx

t

t
k tdttt

k

k

δεxz += ∫
+

&  

)()()( 1 kxkk ttt δεxx +−= +  

)()( kxk tt δδ εx +=  

(26) 

where x is position, tk+1 is the time of the last measurement 
sample, tk is the  time of the previous measurement sample 
and εδx is the measurement noise. The second measurement is 
the RAIM/FDE processed position, corrupted by white noise 
εx: 

)()()(2 kxkk ttt εxz +=  (27) 

The goal of the fusion filter is to blend optimally together 
the information of the two measurements. One obvious 
solution would be a Kalman filter (KF) with position x(t) as 
the state variable and z1 and z2 as the measurement signals. In 
this alternative, the velocity )(tx&  need to be modeled as a 
random process. The problems of this design were discussed 
in section II. To avoid modeling the velocity, we use 
complementary filter configuration proposed in [7], where 
one measurement is used to propagate the state and the other 
provides the measurement update. The filter equations are the 
following: 

Time projection: 

)()(ˆ)(ˆ 11 kkk ttt zxx += −
−  (28) 

)()()( 11 −−
− += kkk ttt QPP  (29) 

Measurement update: 

[ ] 1
)()()()(

−−− += kkkk tttt RPPK   (30) 

( ))(ˆ)()()(ˆ)(ˆ 2 kkkkk ttttt −− −+= xzKxx  (31) 

( ) ( )Tkkkk tttt )()()()( KIPKIP −−= −  

             )()()( kkk ttt KRK+  
(32) 

where Q(tk-1) and R(tk)  are the estimated variances of 
RAIM/FDE processed delta position and position 
measurements, respectively. They are computed using (14), 
and the resulting covariance matrices are multiplied with their 
a posteriori covariance factor, computed using (16). 
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IX. EXPERIMENTAL RESULTS 
 
The performance of the algorithm has been verified with 

pedestrian navigation tests. Test data was collected from a 
circular route, in the campus area of the Tampere University 
of Technology. Two photographs of the environment of the 
route are shown in Fig. 3. The route is shown on the map in 
Fig. 4, where the points of the photographs are marked with 
labels ‘a’ and ‘b’. 

The pseudorange and range rate measurements for the 
testing of the algorithms were obtained using a SiRF Star II 
GPS receiver. Position estimates were computed from the 
measurement data using 11 algorithms composed of different 
combinations of processing alternatives. These combinations 
are shown in Table 1. The position and velocity estimates 
were computed using either LS or WLS algorithm. Both the 
solutions can be processed by RAIM/FDE, independently of 
each other. If CKF processing was used, velocity solution was 
required. 

The covariance matrices Q and R, required by the CKF, are 
computed using (14). In algorithms based on LS solutions, Q 
and R are computed using constant values of 0.052 and 82 in 
the diagonal elements of Σ, respectively. In WLS solutions, 
the diagonal elements of Σ are computed using (4) and (1). If 
the position or velocity is processed by RAIM/FDE, the 
covariances from (14) are multiplied by the a posteriori 
covariance factor, as described previously.  

The processing steps of the CKF are adjusted according to 
the final global test result by the RAIM/FDE processing. 
When the test results do not indicate unreliable solutions, the 
filtering is carried out as described in (28)-(32). When 
RAIM/FDE processed velocity is used and the test result 
  

a) b) 

Fig. 3. Environment of the test route 
 

Fig 4. Test route on the map 

indicates unreliable velocity solution, the projection step of 
the CKF does not change the predicted position estimate, but 
increases the uncertainty of the estimate by 1002. Using the 
large diagonal values of Q in this situation the algorithm 
reflects the design assumptions; without velocity  
 

 
TABLE I  

PERFORMANCE OF THE POSITIONING USING DIFFERENT PROCESSING COMBINATIONS 
 

Processing Performance Solutions found inconsistent by 
RAIM 

Position Velocity 

Algorithm 
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LS
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mean 
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vel 

LS1 x       51.8 6.3 961    
LS2 x  x     53.3 4.4 945 16   
LS3 x   x   x 54.8 6.8 961    
LS4 x  x x  x x 19.6 3.5 858 16 93 6 

LS5 x  x x   x 84.4 5.4 945 16   
WLS1  x      25.2 3.8 961    
WLS2  x x     25.2 3.5 946 15   
WLS3  x   x  x 9.7 2.9 961    
WLS4  x x  x x x 8.4 3.1 813 15 135 2 

WLS5  x x  x  x 7.7 2.8 946 15   
WLS/LS  x x x   x 70.3 3.6 946 15   
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measurement, there is very little information about the motion 
state of the user. In this case, the CKF forgets practically all 
of its information about the user position and restarts the 
filtering process from the accuracy of the position 
measurement. When RAIM/FDE processed position is used 
and the test result indicates unreliable position solution, the 
measurement update step of the CKF does not change either 
position estimate or its uncertainty from the predicted values. 

Accuracy of the obtained position solutions was compared 
with a DGPS position solution, recorded using Thales 
MobileMappers. As the measure of performance, we used the 
horizontal distance of the standalone position solution from 
the DGPS track, i.e. the cross track error (CTE). This 
performance measure was selected because the reference 
solution did not contain time tags, thus making the time 
alignment of the two solutions impossible. 

The results of the tests are shown in Table 1. In the 
performance columns, both the maximum and mean values of 
the CTE are shown. The last four columns show the number 
of epochs that yield a specified result in the final global test, 
i.e. no failures found by RAIM, failures found by position 
RAIM only, failures found by velocity RAIM only and in the 
last column, failures found by both position and velocity 
RAIM. The total number of epochs in the test data was 961. 
Due to their prediction function, the algorithms with CKF 
feature provide position estimate every epoch, even if the 
position or velocity solution or both of them are assessed as 

unreliable and thus not used by the algorithm, which yields to 
the increase of the estimation uncertainty.  

The CTE results of the algorithms LS1-LS5 show clearly 
that best results are gained when RAIM/FDE processing is 
applied on both position and velocity and the results are 
combined using CKF. The increase of the errors from LS4 to 
LS5 indicate that some LS velocity solutions rejected by 
RAIM/FDE in LS4 are indeed erroneous and if accepted for 
time projection of the position estimate, they cause some 
large position errors that are not found even in the plain LS 
solution (LS1). The LS1 and LS4 solutions with the reference 
solution by DGPS are shown in Fig. 5a. 

The effect of the weighting is clear in algorithms WLS1-
WLS5: the errors are significantly smaller than with the 
corresponding LS algorithms. The comparison of the basic LS 
and WLS solution is shown in Fig. 5b. Applying RAIM/FDE 
processing to the WLS position gives only a slight 
improvement to the accuracy, the mean CTE decreases from 
3.8 m to 3.5 m (WLS2). Compared to this, the effect of CKF 
and additional information of the WLS velocity is significant; 
the maximum CTE drops from 25.2 m to 9.7 m and the mean 
CTE drops from 3.8 m to 2.9 m (WLS3). Fig. 5c shows that 
the main improvement by CKF is the decrease of large 
position errors. 

When both the velocity and position are processed by 
RAIM/FDE before CKF (WLS4), the maximum CTE 
decreases further to 8.4 m, while the mean CTE is 3.1 m, 
which is larger than it was without RAIM/FDE processing. 

 

a)  b)  

c) 

 

d)  

Fig. 5. Position estimates using different algorithms 
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When CKF is used to combine WLS velocity, without 
RAIM/FDE processing, and WLS position with RAIM/FDE 
processing (WLS5), the CTE values decrease further; the 
maximum CTE to 7.7 m and the mean CTE to 2.8 m (Fig. 
5d). Table I shows that in WLS4, velocity estimates of 135 
epochs are rejected on the grounds of the RAIM/FDE final 
global test result. As a consequence of this, the CKF restarts 
and the previous accuracy achieved by the filtering is lost: 
135 epochs out of 961 is quite large amount of missing 
velocity solutions for the CKF to work properly.  

To test the effect of the weighting in velocity solution, we 
computed CKF estimates using LS velocity and RAIM/FDE 
processed WLS position (WLS/LS). Using this configuration, 
the maximum CTE increases to 70.3 m. Comparison of this 
result with the results of WLS5 verifies the usefulness of the 
covariance model which is the basis of the weighting.  

 
X. CONCLUSIONS 

 
The pedestrian navigation tests showed that using WLS 

algorithm instead of LS to solve position and velocity, 
RAIM/FDE processing of the solutions and fusing them 
together using CKF improves significantly the accuracy of 
position estimates. With LS solution of the position, the 
maximum and mean CTE values were 51.8 m and 6.3 m, 
respectively. With WLS and RAIM/FDE processed position, 
the maximum and mean errors were 25.2 m and 3.5 m. 
Applying CKF on WLS and RAIM/FDE processed position 
and velocity the values were 8.4 m and 3.1 m. Applying CKF 
on WLS and RAIM/FDE processed position and WLS 
velocity the values were 7.7 m and 2.8 m. Thus, adding the 
CKF to the WLS + RAIM/FDE processing reduces both the 
maximum and mean errors; the CKF has the largest effect on 
the maximum errors. 

In the test with WLS position and WLS velocity, both 
RAIM/FDE processed and combined using CKF, 14% of the 
velocity solutions were rejected by the RAIM final global 
test. This caused frequent resets of the CKF, resulting in 
poorer performance than with CKF using RAIM/FDE 
processed WLS position and WLS velocity without 
RAIM/FDE processing. This suggests that either the 
covariance model of delta pseudorange errors or the 
parameters of RAIM/FDE should be revised. However, the 
weighting of velocity solution using the same covariance 
model proved to be beneficial for the CKF.  
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