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Improved Energy Efficiency for Wireless SC MIMO
Through Data-Dependent Superimposed Training

Toni Levanen and Markku Renfors
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P.O.Box 553, FIN-33101, Finland
Email: {firstname.lastname}@tut.fi

Abstract—In this paper, we compare the energy efficiency of a
single carrier multiple-input multiple-output communications in
terms of the energy per data bit required to achieve desired
performance level or throughput. The comparison on energy
efficiency is done between traditional time-domain multiplexed
training and a more recently introduced data-dependent super-
imposed training. We extend our earlier single-input multiple-
output system to the multiple-input multiple-output case and
show how the data-dependent superimposed training based
system can achieve better energy efficiency in small and diversity
enabled multiple-input multiple-output links. In addition, we
present analytical mean squared error results for DDST based
MIMO channel estimation and propose methods to improve their
accuracy when using short channel estimators.

Keywords: data-dependent superimposed training, channel es-
timation, energy efficiency, multiple-input multiple-output com-
munications

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
provide the possibility to increase the throughput of a wireless
link simply by adding transmit-receive (Tx-Rx) antenna pairs.
The capacity of a wireless MIMO link increases linearly with
the number Tx-Rx antenna pairs (assuming independently
fading channels) [1]. The main problem in achieving this
capacity with traditional time-domain multiplexed training
(TDMT) is the fact that we have to allocate more time slots for
the training sequence to enable the estimation of all wireless
channels involved in the MIMO communication link. Thus, as
each Tx-Rx antenna pair increases capacity, it also increases
the amount of training information required to estimate the
channel between the new Tx antenna and all of the Rx
antennas.

Another approach for channel estimation, that has recently
obtained growing interest, is the data-dependent superimposed
training (DDST) based channel estimation (see, for example
[2] and [3]). In DDST, all the time slots are dedicated for the
user data symbols and the training sequence is arithmetically
added on top of the user data symbols. The data-dependent
portion of the training sequence is typically related to the
cyclic mean of the transmitted user data symbols. The removal
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Science and Engineering (TISE), the Nokia Foundation and Academy of
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of the cyclic mean corresponds to removing certain frequency
bins from the discrete Fourier-transform (DFT) of the user
data symbol sequence. Then, the cyclic pilot sequence is
contained in these frequency bins and detected in the receiver
without interference from the user data. In the receiver, the
missing information can be effectively estimated by iteratively
calculating the cyclic mean of the detected symbols [4]. For
an interested reader, superimposed pilot based single carrier
multiuser/MIMO communications, without the data-dependent
component, is studied, for example, in [5] and [6].

In this paper, we compare the energy consumption in terms
of average energy per bit over the one sided noise spectral
density (Eb/N0). We show that with DDST, in single carrier
multiantenna transmission, one can further improve the energy
efficiency in single-input multiple-output (SIMO) scenarios
and in MIMO communications. As we increase the number of
Tx-Rx pairs or the size of the constellation, the performance
gain of the DDST decreases with respect to the TDMT,
because the effective SNR of a data symbol with DDST
decreases as larger portion of average power is removed (due
to increased length of pilot sequence) or the deviation of the
cyclic mean component increases with respect to the symbol
distances (due to increased size of the constellation).

This paper is organized as follows. In Section II the system
model and receiver architecture are introduced as extension
of the SIMO model of [4] without any power constraints. The
channel estimation and related analysis is presented in Section
III. In Section IV we compare the energy efficiency of DDST
and TDMT with different antenna configurations. Furthermore,
we comment on the performance limiting factors of DDST and
try to give an idea of the parameter set in which DDST can
overperform TDMT. Finally, in Section V, our conclusion are
presented.

II. SYSTEM MODEL

The system model originates from a possible future uplink-
direction mobile wireless link. Therefore, most of the signal
processing is located in the receiver side (in the base station).
The conceptual block diagram of the simulated system model
is given in Fig. 1.

In the transmitter side, we have traditional signal processing
blocks, as channel encoder, channel interleaver, symbol map-
per and transmit pulse shape filtering. In the studies considered
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Fig. 1. System model for the single carrier based multiple-input multiple-
output simulations.

in this paper, we have concentrated on spatial multiplexing
and have not considered any space-time codes. In the receiver
side, the maximum number of antennas is limited to four.
The MIMO channel frequency domain equalization is done
with a filter bank based linear equalizer with MSE criteria, as
presented in [7].

The power of the MIMO signal is normalized to unity,
thus each Tx antenna transmits with average power equal
to σ2

s,i = 1/NTx, where i is the index for the transmit
antenna. The received signal-to-noise ratio (SNR), based on
the given energy per bit over the one sided noise spectral
density (Eb/N0), is given as

SNR =
Nb

rNs

Eb

N0
, (1)

where Nb is the number of user data bits per frame, Ns is
the number of symbols per frame and r is the oversampling
factor used in the receiver. Note that in every case the number
of user data bits is bigger with DDST than with TDMT, and
the difference increases as we increase the number of Tx-Rx
pairs. This is because we allocate more symbols for training
in TDMT that leads to less user data symbols per frame.

Given a certain user data symbol sequence di, transmit-
ted from ith Tx antenna, taken from some constellation
di ∈ CN , where N is the length of the sequence, we can
define the symbols after inserting pilots as si = [pT

i dT
i ]T

or si =
√

(1− γ)/(1− 1/Nc)Jdi +
√

γpc,i, for TDMT or
DDST, respectively. We assume that both, the data sequence
di and the cyclic pilot sequence pc,i, have a unit variance
σ2

d = 1 and σ2
pc,i

= 1, respectively. With DDST, γ defines the
fraction of total power allocated to the cyclic pilot sequence
pc,i = 1Nc×1 ⊗ pi, where ⊗ is the Kronecker product and
pi is a certain cyclic shift of the known basis pilot sequence
p, transmitted from the ith Tx antenna. The cyclic mean
of the data sequence is removed by multiplying with matrix
J = I−1/Nc1Nc⊗INp . In this paper we assume that the frame
length is N = NcNp, where Nc is the number of cyclic copies
and Np is the length of the basis pilot sequence p. Note, that

the basis pilot sequence length is now NTx times the channel
estimator length, allowing us to estimate the channels between
all Tx antennas and a single Rx antenna. The signal transmitted
from Tx antenna i with DDST is defined as

xi = HRRC

√
1/NTx

(
√

(1− γ)/(1− 1/Nc)Jdi +
√

γpc,i)⊗ [r 0 . . . 0︸ ︷︷ ︸
r−1 zeros

],

(2)
where HRRC is a circular matrix containing the Tx pulse
shape filter coefficients and is used to calculate the convolution
between the Tx pulse shape filter and the symbol sequence.
The transmitted symbol sequence is normalized with a factor
1/(1 − 1/Nc), to take into account the average power loss
caused by the removal of the cyclic mean component. Kro-
necker product with vector r = [r 0 . . . 0] realizes the r times
oversampling with power normalization.

The used basis pilot sequences, p, are so called chirp
sequences [8], which are shown to be optimal for DDST in [9]
(noted as optimal channel independent (OCI) pilot sequences)
and also for TDMT in MIMO communications [10]. The
same training is used with both, TDMT and DDST. The only
difference is in the ordering of the pilots to each transmitted
frame, in order to obtain a full pilot matrix in the receiver for
MIMO channel estimation.

In the receiver side, we have channel estimation, filter bank
based frequency domain equalization implementing a close-
to-optimal linear MIMO detector with heavily frequency-
selective channels, pilot removal, symbol demapping and
decoding. With DDST, we have a soft iterative loop that is
used to estimate the removed cyclic mean of the user data
sequence, similar to what was proposed in [4]. The signal
received in Rx antenna with index k is defined as

yk = [Hk,1 Hk,2 . . .Hk,NT x
][xT

1 xT
2 . . .xT

NT x
]T + nk, (3)

where Hk,i represents the convolution matrix of the channel
response between ith Tx antenna and kth Rx antenna and nk is
a vector of complex Gaussian noise components with variance
σ2

n = 1/SNR. We have normalized the power response of all
channel realization to unity.

We have assumed two times oversampling in the receiver
r = 2, which allows us to efficiently incorporate the RRC
filtering in the subchannel wise equalization (SCE) used in
the filter bank. The different spatial data streams are obtained
by applying the linear subcarrier wise MIMO equalizer to the
received signal [7]. The number of subbands in the analysis
filter bank is set to 1024 and in the synthesis filter bank it
is then 512, due to r = 2 times down sampling. The used
overlapping factor in the filter bank is equal to 5 and the filter
bank roll-off is equal to 1. More details on the filter bank can
be found, e.g., in [7], [11] and references therein.

After the channel equalization, we remove the training
symbols from the received sequence and normalize the av-
erage power per layer to σ2

d̂
= 1 + σ2

n with TDMT and



to σ2
d̂

= (1 − 1/Nc) + σ2
n with DDST. We have assumed

that the noise variance σ2
n is known by the receiver. With

DDST, after the normalization, we add the first cyclic mean
estimate to the received symbol sequence. This cyclic mean
estimate is based on the hard symbol estimates before channel
decoder, as presented in [2]. Then we proceed to the soft
channel decoder and with DDST we use maximum of 3,
8, or 10 feedback iterations for soft cyclic mean estimation
with 4-, 16-, or 64-QAM modulation, respectively. The soft
cyclic mean estimation at each feedback iteration is based on
the soft symbol estimates generated from the soft coded bit
estimates from the turbo decoder. More details on the soft
symbol mapping and demapping can be found, e.g., in [12].

Finally, after all the iterations, we provide the detected bits
to the bit sink, from which we eventually obtain bit error rate
(BER) and block error rate (BLER) results. We have used
BLER to represent goodness of performance of the desired
training method and not the frame error rate, because we have
defined that each transmitted frame contains q coded blocks,
where q is equal to the number of bits per symbol. Thus, each
binary coded block in a frame with any constellation is of
the same size and corresponds to the number of data symbols
per frame. This way the block wise decoding complexity is
constant with each constellation and the decoding process can
be parallelized in the receiver with larger constellations.

III. CHANNEL ESTIMATION AND MSE ANALYSIS

In this Section, we introduce the used channel estimator
model and derive the related analytic channel estimation
MSE. We have used a LS-LMMSE channel estimator, which
first uses a least-squares (LS) channel estimator to obtain
initial channel estimates and then uses a linear minimum
mean-squared-error (LMMSE) channel estimator, based on the
LS estimate, to obtain improved channel estimates. The LS
channel estimate, for all channels between all Tx antennas
and kth Rx antenna is defined as

ĥLS,k =
PH

r

√
NTx

r2Npσ2
p

m̂y,k = hk +
PH

r HRRCm̂n,k

r2Npσ2
p

, (4)

where hk = [hT
k,1 hT

k,2 . . .hT
k,NT x

]T is the equivalent channel
between all Tx antennas and kth Rx antenna, PH

r is a cyclic
pilot matrix oversampled with factor r = 2 and having basis
pilot vector p as its first column vector, m̂y,k = JRxyk is the
cyclic mean of the received signal vector in antenna k, and
the matrix used to calculate the cyclic mean of the received
sequences is defined as JRx = 1/Nc11×(Nc+1) ⊗ INp . This
matrix is an extended version of the one used in the transmitter,
because the received signal is longer in time because of the
time dispersive channel. Similarly, m̂n,k = JRxnk, is the
cyclic mean of the received noise component of antenna k.
Note, that vector ĥLS,k = [ĥT

LS,k,1 ĥT
LS,k,2 . . . ĥT

LS,k,NT x
]T

contains now the channel estimates from all the Tx antennas
to the kth Rx antenna. See [10] for further details how the
channel estimator is able to obtain channel estimates based
on multiple-input single-output (MISO) principle with TDMT.

The same ideology holds for DDST and has been used for the
results presented in this paper.

In the channel estimator, we approximate the diagonal
correlation matrix C by the instantaneous tap power obtained
from the LS channel estimator as

CĥLS,k
= diag

{
|ĥLS,k(0)|2, |ĥLS,k(1)|2, · · · ,

|ĥLS,k(rNp − 1)|2
}

.
(5)

By assuming the cyclic chirp (OCI) training sequence, the LS-
LMMSE estimator can be reduced to

ĥLS−LMMSE,k =
PH

r

√
NTx

(σ2C−1

ĥLS
+ r2Npσ2

pIrNp×rNp)
m̂y,k.

(6)
The variable σ2 corresponds to the total interference power on
top of the cyclic mean of the received signal and is given as

σ2 = NTx(1/Nc + 1/N2
c )σ2

w‖hRRC‖2. (7)

Let us define an error vector eLS,k = ĥLS,k − hk(Ξ), rep-
resenting the channel estimation error between the estimated
channel and a fraction of the true channel corresponding to the
estimated part. Because we have not estimated the full equiv-
alent channels, we use indexing set Ξ to define the samples
that are included in the channel estimation process. This idea
of short channel estimator was presented in [13], where it was
studied with superimposed training. More discussion on the
numerical values used is given in Section IV. Now, assuming
that the channel taps are i.i.d., the channel estimation mean-
squared-error (MSE) for DDST with LS channel estimator is
defined as

MSELS,k = trE[eLS,ke
H
LS,k] = . . . =

(1/Nc + 1/N2
c )σ2

nNTx

γr
,

(8)
and the average MSE over all spatial channels is defined as

MSELS =
1

NTxNRx

NRx∑

k=1

MSELS,k. (9)

In similar manner, for DDST with the LS-LMMSE channel
estimator, we can define the channel estimation MSE between
all Tx antennas and kth Rx antenna as

MSELS−LMMSE,k

= trE[eLS−LMMSE,ke
H
LS−LMMSE,k] = . . . =

Np∑

l=1

σ4
nσ−4

LS,k(l)

(σ2
nσ−2

LS,k(l) + γr2Np)2
σ2

h,k(l) +
γr2NpNTx(1 + 1/Nc)σ

2
n

(σ2
nσ−2

LS,k(l) + γr2Np)2
,

(10)
,where σ2

h,k(l) = E[|hk(l)|2] is the expected power of the
lth tap in equivalent channel hk and σ2

LS,k = σ2
h,k(l) +

MSELS,k/Np is the expected power of the lth tap from the LS
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Fig. 2. Channel estimation MSE comparison, for DDST with 2 Tx antennas
and 4 Rx antennas, between the simulated MSE and the analytical MSE
obtained from (9), (11), (12), and (13).

channel estimator. The average MSE over all spatial channels
is defined as

MSELS−LMMSE =
1

NTxNRx

NRx∑

k=1

MSELS−LMMSE,k.

(11)
In Fig. 2, we compare the simulated channel estimation

MSE with analytical results based on (9) and (11). In this
case we have used 2 Tx antennas and 4 Rx antennas. As we
can see, there is a error floor in the simulated values which
is not present in the analytical ones. This same phenomenon
was noted also in [13], which it was proposed that the total
MSE of the short channel estimator should include also the
expected power of the non-estimated channel taps. Let us now
define the analytic MSE estimates based on this idea as

Total MSELS = MSELS +
∑

s∈Ψ/Ξ

|hk(s)|2and (12)

Total MSELS−LMMSE = MSELS−LMMSE+
∑

s∈Ψ/Ξ

|hk(s)|2,

(13)
where Ψ = [0, 1, . . . , L − 1] is the indexing set containing
all possible index values of the equivalent channel response
hk. The numerical values for our simulations are defined in
Section IV.

We have plotted also these MSE results in Fig. 2, and have
named them as Total MSELS and Total MSELS-LMMSE, for
the LS and LS-LMMSE channel estimators, respectively. In
[13], the intuition behind the idea is that the channel taps not
estimated by the short channel estimator fold on the estimated
portion in the cyclic mean computation, and therefore cause
the error floor. In our simulations, we have noticed the same
phenomenon also with short channel estimation with TDMT,
in which the MSE error floor corresponds quite accurately to
the expected power of the non-estimated channel taps.

IV. PERFORMANCE COMPARISON BETWEEN DDST AND
TDMT

In this section we compare the performance of the SC based
MIMO communications with DDST and TDMT in terms of
the required average Eb/N0 to achieve BLER = 10−2 or a
predefined rate.

The used channel model is the block fading extended ITU
Ped. B channel profile [14], which is of length 115 samples
with symbol rate fsymbol = 15.36 MHz and sample rate
fsample = 2fsymbol. In addition, the equivalent channel in-
cludes twice the root-raised-cosine (RRC) pulse shape filtering
of order NRRC = 64, making the equivalent channel length
per spatial channel 243 samples long, and the overall channel
response observed in the kth receive antenna is of length
L = 243NTx samples. The used RRC filter has a roll-off
factor equal to 0.1.

With DDST, we have decided to use channel estimators of
length Np = (60NTx) symbols, if NTx = 1, 2, or 4, and
Np = (64NT x) symbols, if NTx = 3. This is to ensure
that Nc = N/Np is an integer. With TDMT the length of
the pilot sequence is Np = (NTx + 1) ∗ 60 − 1. This means
that we estimate only 120 or 128 samples per spatial channel.
This kind of short channel estimator allows us to increase
the maximum throughput of the TDMT and to increase the
number of cyclic copies with DDST. The channel estimation
degradation due to this choice is negligible. As an example, the
indexing set for samples estimated with 1,2 or 4 Tx antennas,
is then given as

Ξ = [1 1 . . . 1]︸ ︷︷ ︸
NT x ones

⊗[NRRC/2 NRRC/2 + 1 . . .

NRRC/2 + 119] + 243[0 1 . . . NTx − 1]⊗ 11×120.
(14)

In other words, in the channel estimation process, we ignore
the first NRRC/2 samples and all the samples after index
NRRC/2 + 119 for each spatial channel.

The used codec in the simulations is a turbo code [15] with
generator matrix G = [1 1 5

1 3 ] and the decoding algorithm is the
max-log-MAP algorithm with extrinsic information weighting
by a factor µ = 0.75 [16]. We have allowed maximum of 5
decoding iterations per code block in the turbo decoder. The
channel interleaver and the interleavers inside the turbo codec
are S-interleavers [17].

The performance of the DDST based transmission depends
on the constellation, number of the cyclic copies of the pilot
sequence and on the code rate R. We have done simulations
with 4-, 16-, and 64-QAM constellations and with code rates
R = 0.5, R = 0.67, and R = 0.75. Let us now discuss on
how the different simulation parameters effect on the DDST
performance.

As we increase the size of the constellation, it becomes more
sensitive to the distortion caused by the removal of the cyclic
mean and to the channel estimation errors. Thus, with bigger
constellation, higher number of cyclic copies is required to
achieve desired level of performance. Increasing pilot power
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Fig. 3. Block error rate performance with 16-QAM constellation with
different MIMO antenna configurations and code rates R = 0.5 and
R = 0.75.

in this case is a two edged blade, because as we improve
the channel estimation MSE, we decrease the effective signal-
to-interference-and-noise ratio in the equalizer output. In our
simulations, we noticed that the value γ = 0.1 works rather
well in all of the cases. As a rule of thumb, one can consider
of allocating the same average power for DDST pilots as is
allocated for TDMT pilots, because it was shown in [2], that
this leads to the same channel estimation MSE with least-
squares type of channel estimators.

The number of cyclic copies depends on the equivalent
channel length, channel estimator length and frame length. If
the equivalent channel is short with respect to the transmitted
frame, we can have higher number of cyclic copies per
frame, and thus improve the performance with DDST through
improved noise averaging in the channel estimation process
and decreased variance of the interference term caused by
the cyclic mean removal. If the expected equivalent channel
has most of its power concentrated in a relatively short time
interval, we can use a short channel estimator that estimates
only the significant portion of the channel. With extended ITU
Ped. B channel model, we can collect 99.86% of the total
power per layer with the used channel estimator of length 120
samples.

Finally, the code rate R affects the performance of the
iterative cyclic mean estimation process. The iterative, soft
feedback scheme is effective especially with larger constel-
lations and with lower code rates. This is because larger
constellations are more sensitive to the cyclic mean estimation
errors and smaller code rates allows the turbo decoder to
provide more new information for the cyclic mean estimation.

With these short explanations on the expected performance
of DDST, we first look at an example of the throughput
performance with 16-QAM modulation in different antenna
configurations, shown in Fig. 3. In the presented cases the
throughput performance of a DDST based system exceeds that
of a TDMT based system when we have receiver diversity. In
the 4× 4 MIMO case DDST is marginally better with coding
rate R = 0.5, but TDMT provides better performance with
R = 0.75. One can notice that the difference between DDST
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Fig. 4. Block error rate performance with 2x4 MIMO antenna configuration
with 4-, 16-, and 64-QAM modulations with code rates R = 0.5, R = 0.67
and R = 0.75.

and TDMT based systems decreases as we increase the number
of Tx-Rx pairs and code rate, and how TDMT eventually
exceeds DDST in the 4×4 MIMO case with R = 0.75. In 6x6
or 8x8 MIMO antenna configurations TDMT would provide
better energy efficiency than DDST, while keeping the other
parameters fixed.

In Fig. 4, we compare the throughput performance with
different training schemes in 2x4 MIMO antenna configura-
tion. As expected, we can see how the TDMT system starts
to achieve the performance of DDST as the constellation
size increases or with higher code rates. From the maximal
throughput point of view, increasing the number of Tx-Rx
pairs and using lower modulation is a more energy efficient
and robust method than using constellations larger or equal to
64-QAM.

In Table IV, we have given the best constellation, antenna
configuration and code rate combination to achieve the given
throughput and the required Eb/N0 for both, DDST and
TDMT. Note that we have simulated discontinuous block
fading channel, so these results should be considered as a
rough estimate of the required Eb/N0 to achieve certain
throughput in a continuous transmission channel. In all of the
cases, the two systems achieve the best Eb/N0 with the same
constellation, code rate and antenna configuration set. We can
notice how the TDMT achieves similar Eb/N0 requirement
with high throughput requirement (≥ 150 Mb/s). If we would
have more Rx antennas, the DDST based system would be
better at even higher throughput rates, given that we could
use smaller constellations or provide reception diversity with
larger ones. In [6], an iterative receiver for superimposed
training was studied, and its performance was compared to
coordinated and uncoordinated TDMT users. Also, in [6],
the performance of the superimposed training based system
was able to compete with the coordinated TDMT based
system, if there was reception diversity available. This results
is comparable with ours, because we have assumed perfect
synchronization for both, DDST and TDMT users. Compared
to the superimposed training considered in [6], DDST based
system is more sensitive to the frame synchronization, as was
shown in [3]. On the other hand, DDST provides better initial



TABLE I
BEST SETUP AND REQUIRED Eb/N0 FOR DESIRED THROUGHPUT

Throughput DDST TDMT

>50 Mb/s 16-QAM, 2x4, R=0.5,
Eb/N0= 4.5 dB

16-QAM, 2x4, R=0.5,
Eb/N0= 6 dB

>100 Mb/s 16-QAM, 3x4, R=0.67,
Eb/N0= 10.5 dB

16-QAM, 3x4, R=0.67,
Eb/N0= 11.5 dB

>150 Mb/s 64-QAM, 3x4, R=0.67,
Eb/N0=18

64-QAM, 3x4, R=0.67,
Eb/N0=18

channel estimates, because the user data does not affect the
channel estimation MSE.

V. CONCLUSION

In this paper, we have proposed an analytic channel estima-
tion MSE for DDST in MIMO communications for the LS and
LS-LMMSE channel estimator and compared its performance
to the simulated channel estimation MSE. In addition, the error
floor noted in the simulated MSE results seems to correspond
to the sum power of the expected channel taps outside the
short channel estimator.

Furthermore, we have compared the required Eb/N0 with
either DDST or TDMT based channel estimation in SC MIMO
communications. We have shown, that DDST can overperform
the traditional TDMT in small MIMO scenarios (less than 4
Tx-Rx pairs) and when sufficient receiver diversity is available.
As typical, there is a complexity penalty to pay for the
improved efficiency. Fortunately, the power consumption of
the added complexity in the receiver hardware will become
smaller than the savings achieved in the transmission power,
as the hardware evolves following the famous Moore’s law.

The scenario, in which DDST overperforms TDMT, de-
pends on the number of antennas, frame length and on the
channel estimator length (or channel length). As long as we
have sufficient number of cyclic copies of the basis pilot
sequence, we do not cause significant interference on the data
symbols and we obtain improved channel estimates through
the noise averaging in the DDST based channel estimation.
Thus, even though the maximum throughput of the TDMT is
significantly smaller in larger MIMO communications (e.g.,
k× k MIMO cases, where k ≥ 4), the interference caused by
removing the cyclic mean with DDST may cancel the possible
throughput benefits, making TDMT a more viable solution in
these cases.
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