
Tampere University of Technology

Author(s) Viitanen, Timo; Kultala, Heikki; Jääskeläinen, Pekka; Takala, Jarmo

Title Heuristics for Greedy Transport Triggered Architecture Interconnect Exploration

Citation Viitanen, Timo; Kultala, Heikki; Jääskeläinen, Pekka; Takala, Jarmo 2014. Heuristics for

Greedy Transport Triggered Architecture Interconnect Exploration. Proceedings of the
2014 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, October 12-17, 2014, New Delhi, India. ACM. 1-7.

Year 2014

DOI http://dx.doi.org/10.1145/2656106.2656123

Version Post-print

URN http://URN.fi/URN:NBN:fi:tty-201412081609

Copyright © ACM 2014. This is the author's version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in Proceedings
of the 2014 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, http://dx.doi.org/10.1145/2656106.2656123.

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

Heuristics for Greedy Transport Triggered
Architecture Interconnect Exploration

Timo Viitanen Heikki Kultala Pekka Jääskeläinen Jarmo Takala
Tampere University of Technology, Department of Pervasive Computing, Finland
{timo.2.viitanen, heikki.kultala, pekka.jaaskelainen, jarmo.takala}@tut.fi

Abstract
Most power dissipation in Very Large Instruction Word (VLIW)
processors occurs in their large, multi-port register files. Transport
Triggered Architecture (TTA) is a VLIW variant whose exposed
datapath reduces the need for RF accesses and ports. However, the
comparative advantage of TTAs suffers in practice from a wide
instruction word and complex interconnection network (IC). We
argue that these issues are at least partly due to suboptimal de-
sign choices. The design space of possible TTA architectures is
very large, and previous automated and ad-hoc design methods of-
ten produce inefficient architectures. We propose a reduced design
space where efficient TTAs can be generated in a short time us-
ing excecution trace-driven greedy exploration. The proposed ap-
proach is evaluated by optimizing the equivalent of a 4-issue VLIW
architecture. The algorithm finishes quickly and produces a pro-
cessor with 10% reduced core energy product compared to a fully-
connected TTA. Since the generated processor has low IC power
and a shorter instruction word than a typical 4-issue VLIW, the re-
sults support the hypothesis that these drawbacks of TTA can be
worked around with efficient IC design.

Categories and Subject Descriptors C.3 [Special-purpose and
application-specific systems]

General Terms Transport Triggered Architecture, Interconnec-
tion Network, Register File

Keywords TTA, VLIW, design space exploration, port sharing

1. Introduction
Very Long Instruction Word (VLIW) processors are widely used for
digital signal processing. A typical bottleneck for VLIW processor
scaling is the large, many-port register file (RF). There is a large
body of literature on optimizing RF power. One main approach is
to partition the RF into a multi-banked [2] or clustered [16] de-
sign; another is to exploit the fact that most values are short-lived
and need not be saved to the RF. These can be transported through
the forwarding network whose original purpose is to eliminate data
hazards. Bypass aware compilers [19] eliminate RF accesses by
scheduling them so that they are eliminated by the forwarding
logic. For greater effect, the ISA can include finer-grained control
over the forwarding network, leading to exposed-datapath architec-
tures such as the Transport Triggered Architecture (TTA) [1], which
may remove as many as 80% of RF writes and 60% of reads [9].
However, various sources report that much of the saved RF power
is transposed into a complex, power-hungry interconnection net-
work (IC) and a wide instruction word, reducing the appeal of this
architecture [3, 9]. The code density drawback is particularly se-
vere, given that memory access power is scaling less efficiently than
computation logic.

We were unable to find an intrinsic reason in the TTA architec-
ture for the reported code density and IC complexity drawbacks,
and there is no comparative study on the subject. As noted in [1],
the architecture is sufficiently flexible to represent the topologies
of conventional RISC and VLIW processors. In this case, the IC
should be no more complex than the forwarding network of the
RISC or VLIW counterpart since there is no need for runtime by-
pass detection. Our working hypothesis which we investigate in this
article is that the IC and code density drawbacks are, rather than in-
trinsic features of the architecture, artifacts of inefficient IC design.

TTA design is complicated by the large design space of possi-
ble interconnection network topologies. A moderately large TTA
analyzed later in the paper has 2132 possible IC networks, many
of which are inefficient or nonfunctional. Existing automated TTA
design flows start from a fully connected IC where every bus is
connected to every port. This type of IC exhibits a harmful kind
of redundancy. For example, in a 8-bus fully-connected IC, any
instruction may be rearranged in 8! = 40320 different ways
which all have the same effects but different encodings. Several
research TTAs opt to use a fully-connected [5, 9] or nearly fully-
connected [17] ICs.

In this paper, we attempt to lay out a practical TTA IC design
algorithm, and to measure the effects of IC optimization on power
consumption. This is approached by limiting the design space to a
subset similar to VLIW processor ICs.

This paper makes the following contributions:

• We propose to simplify the TTA design space by starting from
a VLIW-like configuration and merging transport buses.

• Based on said design space, an automated TTA design flow is
proposed that exploits execution trace information and a greedy
algorithm to give a very fast runtime.

• We compare the instruction word and power consumption ef-
fects of an optimized IC to a fully-connected TTA. To our best
knowledge this is attempt to experimentally quantify the effects
of IC design on TTA power.

This article is structured as follows. Section 2 is a brief discus-
sion of related work. Section 3 describes the proposed design flow.
In Section 4, the algorithm is evaluated by generating and synthe-
sizing processors. Section 5 concludes the article and proposes fu-
ture works.

2. Related work
Transport Triggered Architecture A TTA design space explo-
ration flow described in [13] concentrates on selecting FUs and
RFs, but includes an IC optimization pass which starts from a fully-
connected IC and removes connections in a round-robin fashion
from each bus, choosing the connection with least effect on pro-
gram runtime. The algorithm appears to produce sparce ICs, at the

(a) (b) (c)

Figure 1: RF port sharing topology classification from [6]. (a) A baseline VLIW has idle ports, especially with software bypassing. (b) An
example direct connection topology shares 3 RF ports between 6 FU ports so that each FU port is only connected to one RF port. (c) A
complete connection gives better instructions per clock (IPC) than (b) since there are fewer resource conflicts, but is less energy-efficient due
to IC overhead.

cost of a very long runtime. In [17], a C-to-FPGA ASIP design
flow is proposed including a TTA design space explorer. Focus is
again on exploring the number of function units and RFs. The IC
is only optimized by removing entire buses or completely unused
connections. The resulting ICs are almost fully connected.

Several studies propose to optimize the TTA instruction word
through code compression, most recently dictionary based com-
pression [10]. The MOVE-Pro TTA processor [9] reaches a code
density similar to RISC despite its small fully-connected IC by
means of a hand-optimized instruction encoding with separate in-
struction modes for, e.g., long immediates and jump addresses.

VLIW and exposed-datapath exploration Our simplified design
space is similar to the problem of allocating function units to issue
slots in a VLIW architecture, except finer-grained, since individual
function unit ports are allocated separately. This is regarded in the
literature as an difficult optimization problem. For example, Hek-
stra et al. explore FU allocation with a combination of design space
partitioning, exhaustive search of significant variables, and greedy
random variation of less-significant variables, over a runtime of two
weeks [11]. This suggests that, though our simple greedy algorithm
gives results close to prior art, more expensive global optimization
might yield significant improvements. Due to the cost of FU allo-
cation, Lapinskii et al. separate it into a later design stage, while
earlier stages exploring e.g. clustering topology and the number of
FUs use a coarse FU allocation model [15]. Lapinskii et al. over-
provision each issue slot with every possible FU, followed by a
machine shrinking optimization that removes FUs [14]. This ap-
proach is inapplicable here due to the possibility of placing ports of
the same FU in separate slots.

Another conceptually similar technique in high-level synthe-
sis is resource sharing, which merges resources that are never in
simultaneous use. There is a large literature on the NP-complete
graph-theoretic problem of finding maximal cliques of exclusively
used resources which, e.g., e.g., Witte et al have applied to RF shar-
ing [20]. In our problem space it is often a good tradeoff to merge
resources that are used, e.g., 1% of the time and reschedule the
program, so this technique was not used.

A recent study by Goel et al. characterizes the design space of
RF port sharing, bypass-aware VLIWs [6]. They classify ICs into
complete, partial and direct connections as shown in Figure 1. A
full connection gives the best instructions per clock (IPC), but has
worse energy efficiency than direct connection due to the overhead
of the IC logic. Their results show significant performance dif-
ferences between direct connection topologies, but no systematic
method is suggested for finding an efficient topology.

Hoang et al. use design space exploration to prune the IC
network in the FlexCore exposed-datapath architecture [12]. The
crossbar IC of FlexCore is similar to our VLIW-TTA starting point.

The algorithm first removes all unused links, i.e., crossbar multi-
plexer inputs, then proceeds to greedily remove least-used links, for
significant core energy savings. The approach is complimentary to
our algorithm, which would reduce the number of multiplexers in
the crossbar-like IC and, therefore, control signals in the instruction
word.

3. Exploration algorithm
In the proposed algorithm, we rely on the fact that conventional
VLIW datapaths can be closely represented as TTA ICs; Fig. 2
shows an example. This kind of a TTA-VLIW datapath has favorable
properties which make it interesting as a starting point for explo-
ration. Since each function unit port is only connected to one bus,
the encoding has no redundancy: there is only one way to transport
data, e.g., from RF to LSU-ALU or back. This also simplifies the
IC network logic: transports in a general TTA IC would be routed
through two multiplexers, one for the bus and one for the input port,
while TTA-VLIW requires only one.

However, a TTA-VLIW is inefficient in a different way: the
register file has unnecessarily many ports and, since most operands
are bypassed, the writeback buses are underutilized. Pruning bypass
connections as in [12] is an unsatisfactory reduction step from this
starting point since it has little effect on either issue. We instead
shrink the baseline in by merging buses: we select two buses that
are infrequently active on the same clock cycle, and combine them
into a single bus with the connections of both. Redundant RF ports
are removed after the merge. For example, if the first two buses
in Fig.1(b) were merged, the LSU address and data ports would
share a single RF port, and only one of these could be written in
the same clock cycle. The instruction word is consequently shorter
by one RF index. This yields a design space similar to the direct
connection topologies in [6], except that input and output ports
may be merged in the same bus. This may not have much effect
on hardware complexity, but simplifies the instruction word.

This combination of a VLIW-TTA starting point and bus merges
forms a small design space compared to the space of all possible
TTAs. A natural way to traverse this space is using a greedy algo-
rithm which, at each step, merges the buses with the least impact on
performance. Due to the O(n2) complexity of evaluating the per-
formance costs of each bus pair, we approximate them using execu-
tion traces. The proposed explorer computes a covariance matrix of
bus activities based on the previous round of simulation, and picks
the bus pair with the lowest covariance, according to the following
IC pass algorithm:

1: while busCount > 1 do
2: busCov← []
3: for p = 1 to benchmarkCount-1 do
4: partialBusCov← []

(a) (b)

Figure 2: (a) 4-issue VLIW datapath with bypassing, similar to the default configuration of the HP VEX architecture [4]. Computational
resources include four arithmetic-logic units (ALU), two multipliers (MUL), a load-store unit (LSU), a jump unit (JU) and a multi-port
register file (RF), grouped into four issue slots. (b) Corresponding TTA architecture used as baseline for exploration. The first eight buses
represent the ”bypass network” while the next four buses represent ”writeback”. The ”ALU+JU” issue slot is represented as three separate
units in the TCE toolset: the general control unit (GCU) handles call and jump instructions and the boolean RF (BOOLRF) is used to
implement all conditional behavior.

5: cycleCount, executions← simulate(p)
6: for k = 1 to instrCount do
7: for i = 1 to busCount-1 do
8: if hasMove(k,i) then
9: for j = i + 1 to busCount do

10: if hasMove(k,j) then
11: partialBusCov[ı][]+=cycleCount
12: end if
13: end for
14: end if
15: end for
16: end for
17: busCov+=partialBusCov/cycleCount
18: end for
19: busA, busB← minarg(busCov)
20: merge(busA, busB)
21: end while

In the algorithm, the simulate(p) procedure performs cycle-
accurate simulation on the pth benchmark program and produces
an execution trace executions[k] as output: this tells the number
of times the kth instruction in the program image was executed.
The procedure hasmove(k,j) queries whether that instruction has a
data transport on the jth bus. This information is used to compute
the bus activity covariance matrix partialBusCov. If there are mul-
tiple benchmark programs, their covariance matrices are averaged
together into busCov, whose lowest element selects the bus pair to
be merged.

The algorithm always merges exclusively used bus pairs if avail-
able; otherwise the merge may cause performance degradation. In
principle, the degradation is between 0..busCov. At worst every in-
struction with simultaneous activity has to be split into two instruc-
tions, but usually the schedule has some slack, and some of the
displaced operations can be moved to earlier clock cycles or differ-
ent buses without degrading performance. Practical compilers are
not guaranteed to produce optimal schedules, so the actual effect
on performance may be larger than busCov or even negative.

One challenge in this approach is immediate coding. The re-
search platform used here [3] understands bus-specific short im-
mediates, which are placed in the source field of a bus instruc-
tion slot, and long immediates, which replace one or more bus in-
struction slots, and are read from the immediate unit. Good per-
formance requires access to abundant immediates of varying sizes,

however, providing these in short immediates inflates the instruc-
tion word. An efficient design seems to require a long immedi-
ate, the placement of which is a nontrivial optimization problem.
We co-optimize long immediate positioning with the IC network
by constructing the initial machine with an unconnected dummy
bus whose instruction slot hosts the immediate. A long immediate
counts as a move on the bus hosting it, and transfers to the result
when that bus is merged.

Greedy methods are simple and fast but may end up stuck in lo-
cal optima. This effect is evident in the proposed method: if the
greedy process has produced a well-balanced four-bus machine
with the same amount activity on each bus, the next step must pro-
duce a three-bus machine with 50% activity on one bus and 25% on
the others, which is clearly inefficient. This effect appears to be the
most pronounced in very small machines, which might be feasible
to handle using exhaustive search. The number of possible n-bus
configurations reduced from k original buses is equivalent to the
number of n-bin partitions of a k-element set, which may be com-
puted using Stirling numbers of the second kind [7]. For example,
a 3-bus machine reduced from a 2-issue TTA-VLIW with 7 buses
has S(3)

7 = 301 possible configurations. Exhaustive search quickly
becomes intractable for larger machines: a 6-bus machine reduced
from 13 buses has S(6)

13 = 9321312 configurations. Consequently,
some form of global optimization such as simulated annealing may
be interesting as future work.

After the IC pass, though some RF ports are reduced, each bus
still has at least one dedicated port. These are poorly utilized since
most moves are bypasses. Therefore, we run a RF pass which
computes covariance matrices of RF port accesses, and merges
ports with low covariance. The algorithm is similar to the IC pass
algorithm, except the merge procedure joins RF ports instead of
buses. Moreover, we prohibit merging write ports with read ports.

3.1 Design flow
We implement an automated design flow based on the IC pass
and RF pass algorithms as a design space explorer plugin in the
TTA-based Codesign Environment [3]. The toolset has been used
to implement most recent research TTAs such as [5]. Some of
the toolset’s components of interest are a GUI-based TTA design
tool ProDe, a retargetable LLVM-based compiler tcecc, a cycle-
accurate simulator ttasim, a modular design space exploration tool
explore, and a processor RTL generator ProGe.

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1,4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
yc

le
 c

o
u

n
t

(n
o

rm
al

iz
e

d
)

Iterations

IC pass, fast RF pass, fast IC pass, slow RF pass, slow

(a)

0

2

4

6

8

10

12

14

0

50

100

150

200

250

0 5 10

R
F

p
o

rt
s

In
st

ru
ct

io
n

 w
o

rd
 s

iz
e

 (
b

it
s)

Iterations

Instruction
(IC pass)

Instruction
(RF pass)

RF ports
(IC pass)

RF ports
(RF pass)

(b)

Figure 4: Exploration process in terms of (a) cycle count and (b) hardware complexity. Output configurations of each pass are emphasized.

Figure 3 shows the implemented design flow. The designer first
specifies an initial machine configuration using ProGe and chooses
a benchmark. If the benchmark includes multiple programs, these
are weighed equally when measuring performance. After this, the
explorer plugin processes the configuration first by repeated IC
passes and then by repeated RF passes. The plugin repeatedly
modifies the architecture through a C++ plugin API, compiles the
benchmark for the changed architecture using tcecc, and performs
traced simulation using ttasim. The produced architectures and
simulation results are stored in a emphdesign database, and can be
processed into synthesizable RTL, including a testbench for power
estimation, using ProGe.

Figure 3: Proposed design flow.

The only decision points in the implemented design flow are
switching to the RF pass and writing out the final configuration.
These may be done manually by, e.g., running the IC pass until only
one bus is left, plotting the resulting configurations as in Figure 4,
and choosing a promising configuration. Another approach is to use
a treshold to target a specific bus or port count, or to limit perfor-
mance degradation with a cycle count threshold. These terminating
conditions are somewhat unsatisfactory given that the designer is
interested in finding a good tradeoff between IC simplification and
performance penalty, which is likely to require manual trial and er-
ror. In the future it would be interesting to integrate the TTA power
model of Pitkänen et al. [18] into the flow and automatically search
for an energy-optimal configuration.

4. Evaluation
In this section the proposed design flow is evaluated by generat-
ing a sample processor starting from a 4-issue TTA-VLIW base-
line, based on a subset of the CHStone high-level synthesis bench-
mark [8]. The following tests were used:

aes AES encryption and decryption.

adpcm ADPCM decoder and encoder.

blowfish Blowfish encryption and decryption.

gsm GSM linear predictive coding

jpeg JPEG image decompression

motion MPEG-2 motion vector decoding

sha Secure hash algorithm

The design flow gives equal weight to each of the benchmark
programs. We omitted the softfloat and mips benchmarks which
are more interesting in high-level synthesis than as actual embed-
ded processor workloads. When evaluating custom hardware, one
source of uncertainty is the compiler: if the explorer manages to
prune much of the VLIW datapath without degrading performance,
this might be simply because the compiler is optimized for smaller
IC, and generates poor code for the full VLIW. In order to increase
confidence in the results, we used a baseline VLIW architecture
close to the 4-issue default configuration of HP’s VLIW Exam-
ple (VEX) architecture [4], and compared cycle counts to the high
quality VEX compiler. The baseline TTA is shown in 2.

The main decision in the proposed design flow is when to switch
from IC pass to RF pass and when to halt. In this evaluation, we
use a 15% cycle count threshold for both: exploration halts when
a produced architecture gives an average execution time over all

(a) (b)

Figure 5: Optimized TTAs: (a) our method and (b) round robin explorer [13].

benchmarks that is over 15% worse than the original configuration,
and the previous architecture is returned.

Another question is whether the trace-based heuristics in the
IC sweep and RF sweep algorithms are good approximations of
performance. This was investigated by implementing a ’slow’ op-
tion in the explorer plugin which measures the performance of each
possible bus or RF port merge through simulation instead of using
heuristics, according to the following algorithm:

1: while busCount > 1 do
2: penalty← []
3: for p = 1 to benchmarkCount-1 do
4: partialPenalty← []
5: originalCycleCount, executions← simulate(p)
6: for i = 1 to busCount-1 do
7: for j = i + 1 to busCount do
8: merge(i, j)
9: cycleCount, executions← simulate(p)

10: partialPenalty[ı][]←
11: cycleCount/originalCycleCount
12: undoMerge()
13: end for
14: end for
15: penalty+=partialPenalty/benchmarkCount
16: end for
17: busA, busB← arg minı, penalty[ı][]
18: merge(busA, busB)
19: end while

The algorithm accumulates the cycle count penalties of each
possible merge into the penalty matrix. The undoMerge function
rolls back speculative merges. The actual implementation uses a
originalCycleCount saved from the previous iteration. Many more
simulation runs are performed than in the heuristic algorithm.

4.1 Exploration
Exploration with the trace-based plugin finished in 58 minutes (35
min for the IC pass and 23 min for the RF pass) and required 24
simulation runs. Optimization progress is shown in Fig. 4 and the
generated processor in Fig. 5a. In this case, the IC is reduced from
13 to 6 buses before hitting the threshold. The four writeback buses
are eliminated first, with negligible effect on performance. At very
small bus counts, the cycle count begins to grow steeply. The IC
pass results in a 6-bus configuration with 9 RF ports remaining (6
read, 3 write), which the RF port pass reduces to 4 (3 read, 1 write)
before crossing the cycle count threshold. The optimized processor
has a 115-bit instruction word as opposed to 128 bits for the VEX.

The ’slow’ plugin finished in 780 minutes and 324 simulation
runs. As shown in Figure 4, it generates higher-performance pro-
cessors than the trace-based heuristic, but the difference is modest:
on average 2,1% and at most 4%. For very small machines of 1..3

buses the slow method is actually worse, presumably due to the
load balancing issue of the greedy algorithm.

Fig. 6a shows a per-program cycle count breakdown for the op-
timized processors, a fully-connected TTA the size of the final pro-
cessor, and VEX. The results are mixed: our overall performance
is better than VEX by a large factor, but much of the difference
is due to our conditional execution support, which speeds up the
branch-heavy inner loops in AES and Motion. We perform worse
in the Blowfish test where the tcecc compiler fails to scalarize an
often-referenced array into registers. Nevertheless, it appears that
sufficiently high-quality code is generated.

4.2 Comparison
The processors generated by [17] are very close to fully connected.
In order to obtain a better point of comparison, we reimplemented
the round-robin IC optimizer in [13], and ran it on a fully-connected
TTA the size of our optimized processor: 6 buses and 4 RF ports. A
run in this configuration took 50 hours and 1410 simulation runs,
and removed 119 connections. Figure 6b shows a comparison be-
tween the proposed method and round-robin. Several of the gener-
ated configurations have less connections and approximately 3.5%
faster cycle count than the proposed method, however, exploration
takes two orders of magnitude more time to run. The circled con-
figuration was selected for comparison and is shown in Figure 5b.

The most visible difference is that the proposed method always
connects each FU input port to exactly one transport bus, and each
bus to at most one RF read port. This feature prevents replication
of opcode information between instruction slots, which appears to
have a small beneficial effect on code density: the RF sweep result
has 3 less instruction bits than round-robin despite the sparser IC
of the latter.

4.3 Synthesis
Intuitively, the improved fetch, RF, and IC power of the optimized
TTA should compensate for the small decrease in IPC. In order to
evaluate energy savings, we synthesized the TTA-VLIW and fully
connected baselines and the optimized processor cores on a 1.5V
130nm ASIC technology and performed RTL power estimation.
gsm was used as the power estimation workload since it appears
representative of the averaged benchmark suite in Fig. 6a, and has a
moderately high IPC. A low-IPC workload such as jpeg would give
overly optimistic results since the 4-issue VLIW is overprovisioned
for it in the first place, reducing the performance penalty incurred
by shrinking the machine.

Instruction memory power was estimated using the CACTI tool.
We assume that all the accesses fall in a 128-word L1 cache, which
is divided into 4-7 32-bit banks and synthesized as 90nm low power
SRAM, which is the coarsest technology supported by CACTI.
These assumptions are optimistic so as to obtain a lower bound.

2,63

2,19 2,26

0,60

0,80

1,00

1,20

1,40

1,60

adpcm aes blowfish gsm jpeg motion sha average

N
o

rm
al

iz
e

d
 c

yc
le

 c
o

u
n

t

TTA-VLIW IC sweep RF sweep FC TTA VEX

(a)

95

100

105

110

115

120

125

130

0 5

N
o

rm
al

iz
e

d
 c

yc
le

 c
o

u
n

t
(%

)

Iterations

0,9

0,95

1

1,05

1,1

1,15

1,2

50 60 70 80 90 100 110 120 130 140

C
yc

le
 c

o
u

n
t

(n
o

rm
. t

o
 F

C
)

Connections

Round robin IC pass RF pass

(b)

Figure 6: Cycle count comparisons: (a) TTA against VEX and (b) proposed explorer against the round-robin explorer in [13].

Data memory is not modeled since its utilization does not vary
significantly between configurations, as the 64-word register file
is sufficiently large to eliminate most spills into memory. Power
estimation results are shown in Fig. 7a. The estimated power was
multiplied by program runtime on each processor to obtain an
energy breakdown, shown in Fig. 7b.

Approximately half the power in each configuration is dissi-
pated on fetching and decoding instructions. The TTA-VLIW base-
line suffers from a large RF and very poor code density, partly
caused by the separate 32-bit immediate field but mostly by ineffi-
cient encoding. The fully connected machine has a more reasonable
instruction word and a small RF, but its decoder and IC consume
enough power to almost catch up with the TTA-VLIW.

The execution trace shows approx. 1 RF read and 0.5 RF writes
per operation for TTA-VLIW, so the shown RF power is already
reduced to roughly one-half by software bypassing. It seems likely
that a straightforward VLIW would dissipate 15mW in the register
file, so even the fully-connected machine may be an improvement.
The optimized processors (RF pass and round robin) have small
RFs, relatively short instruction words and lightweight ICs. Taking
cycle count into account, both optimized processors dissipate 10%
less energy per run than the fully-connected TTA.

5. Conclusion
We proposed a trace-based TTA design flow that generates archi-
tectures with efficient, sparse ICs two orders of magnitude faster
than prior work, at the cost of a slightly lower IPC for the resulting
processor. The design flow operates in a VLIW-like design space
and might, therefore, be applicable to topology exploration for con-
ventional VLIW RF port sharing.

Synthesis results support our hypothesis that the reported IC
complexity and disadvantages of TTAs can be ameliorated by good
IC design. A fully-connected TTA has a long instruction word
relative to a comparable VLIW, and dissipates more power power in
the IC than in the register file. The optimized TTAs have instruction
word slightly shorter than a typical 4-issue VLIW. IC power is
reduced by 44% (prior work) or 64% (proposed method).

The overall energy savings of 13% are modest since a large
fraction of power is dissipated on fetching and decoding instruc-
tions. We are now working on wide-SIMD TTA processors where
larger savings are expected, since the fetch and decoding logic is
amortized across many data items and becomes insignificant. Wide-
SIMD LIW processors are recently popular in radio baseband pro-

cessing, and one recent wide-SIMD processor [21] dissipates 30%
of power in the vector register file.

We also plan to optimize the instruction encoding for this new
type of network. We estimate that better encoding would reduce
the instruction bits of a TTA-VLIW by 30% and the optimized pro-
cessor by 20% with little impact on performance. After these im-
provements, TTAs might become preferable to VLIWs in terms of
code density, at least in dense inner loops. Moreover, we are exper-
imenting with pruning bypass connections using an optimization
pass similar to [12]. This might yield noticeable energy savings
since the IC is on most critical paths.

Acknowledgments
This work was funded by the Academy of Finland (funding de-
cision 253087), the Finnish Funding Agency for Technology
and Innovation (project ”Parallel Acceleration”, funding decision
40115/13) and the ARTEMIS joint undertaking under grant agree-
ment no 641439 (ALMARVI).

References
[1] H. Corporaal. Microprocessor Architectures: From VLIW to TTA. John

Wiley & Sons, Chichester, UK, 1997.

[2] J.-L. Cruz, A. González, M. Valero, and N. P. Topham. Multiple-
banked register file architectures. In Proc. Int. Symp. Comp. Arch.,
pages 316–325, Vancouver, BC, Canada, 2000.

[3] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. I. Martinez. Customized exposed datapath soft-core design flow
with compiler support. In Proc. Int. Conf. Field Programmable Logic
and Applications, pages 217–222, Milano, Italy, 2010. .

[4] J. A. Fisher, P. Faraboschi, and C. Young. Embedded computing: a
VLIW approach to architecture, compilers and tools. Elsevier, 2005.

[5] A. Ghazi, J. Boutellier, J. Hannuksela, S. Shahabuddin, and O. Sil-
ven. Programmable implementation of zero-crossing demodulator on
an application specific processor. In IEEE Workshop on Signal Pro-
cessing Systems, pages 231–236. IEEE, 2013.

[6] N. Goel, A. Kumar, and P. R. Panda. Shared-port register file architec-
ture for low-energy VLIW processors. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 11(1):1, 2014.

[7] H. Gould et al. The q-stirling numbers of first and second kinds. Duke
mathematical journal, 28(2):281–289, 1961.

[8] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis. Inf. Media Tech., 4(4):740–
752, 2009.

5,62
3,21 4,01 3,21

7,45

5,45
6,79

5,45

1,41

1,42

3,97

2,20

7,05

6,81

7,38

6,52

7,59

3,07

3,18

3,11

0,00

5,00

10,00

15,00

20,00

25,00

30,00

TTA-VLIW After RF pass Fully connected Round Robin

P
o

w
er

 (
m

W
)

IMEM Fetch, Decode IC ALU, LSU RF

(a)

153
104 118 104

203

176
199

177

38

46

116

71

192

221

216

211

207

99

93

101

0

100

200

300

400

500

600

700

800

TTA-VLIW After RF pass Fully connected Round Robin

E
n

er
g

y
 (

n
J

)

IMEM Fetch, Decode IC ALU, LSU RF

(b)

Figure 7: Estimated (a) power and (b) energy breakdowns in the gsm benchmark.

[9] Y. He, D. She, B. Mesman, and H. Corporaal. MOVE-Pro: a low
power and high code density TTA architecture. In Proc. Int. Conf.
Embedded Comp. Syst.: Arch. Modeling Simulation, pages 294–301,
Samos, Greece, 2011.

[10] J. Heikkinen, J. Takala, and H. Corporaal. Dictionary-based program
compression on customizable processor architectures. Microproces-
sors and Microsystems, 33(2):139 – 153, 2009.

[11] G. J. Hekstra, G. La Hei, P. Bingley, and F. Sijstermans. Tri-
Media CPU64 design space exploration. In Computer Design,
1999.(ICCD’99) International Conference on, pages 599–606. IEEE,
1999.

[12] T. T. Hoang, U. Jälmbrant, E. der Hagopian, K. P. Subramaniyan,
M. Sjalander, and P. Larsson-Edefors. Design space exploration for
an embedded processor with flexible datapath interconnect. In IEEE
Int. Conf. Application-Specific Syst. Arch. Proc., pages 55–62, Rennes,
France, 2010.

[13] J. Hoogerbrugge and H. Corporaal. Automatic synthesis of transport
triggered processors. In Proc. First Ann. Conf. Advanced School for
Computing and Imaging, Heijen, The Netherlands, 1995.

[14] R. Jordans, R. Corvino, L. Jozwiak, and H. Corporaal. Instruction-set
architecture exploration strategies for deeply clustered VLIW ASIPs.
In Mediterranean Conf. Embedded Computing, pages 38–41. IEEE,
2013.

[15] V. S. Lapinskii, M. F. Jacome, and G. A. De Veciana. Application-
specific clustered vliw datapaths: Early exploration on a parameterized
design space. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 21(8):889–903, 2002.

[16] R. Leupers. Instruction scheduling for clustered VLIW DSPs. In Proc.
Int. Conf. Parallel Architectures and Compilation Techniques, pages
291–300. IEEE, 2000.

[17] T. Patyk, P. Salmela, T. Pitkänen, P. Jääskeläinen, and J. Takala. De-
sign methodology for offloading software executions to FPGA. J. Sig-
nal Process. Syst., 65(2):245–259, 2011.

[18] T. Pitkänen, T. Rantanen, A. Cilio, and J. Takala. Hardware cost
estimation for application-specific processor design. In Embedded
Comp. Sys.: Architectures, Modeling, and Simulation, pages 212–221.
Springer, 2005.

[19] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalom. Exploit-
ing data forwarding to reduce the power budget of VLIW embedded
processors. In Proc. Conf. and Exhib. Design, Automation and Test in
Europe, pages 252–257. IEEE, 2001.

[20] E. M. Witte, A. Chattopadhyay, O. Schliebusch, D. Kammler, R. Leu-
pers, G. Ascheid, and H. Meyr. Applying resource sharing algorithms
to adl-driven automatic asip implementation. In Proc. IEEE Int. Conf.
Computer Design, pages 193–199. IEEE, 2005.

[21] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti,
R. Bruce, D. Kershaw, A. Reid, M. Wilder, et al. From SODA to

scotch: The evolution of a wireless baseband processor. In IEEE/ACM
Int. Symp. Microarchitecture, pages 152–163. IEEE, 2008.

