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Abstract— Clapp oscillator output power is analyzed in
closed form using a novel quasi-linear transistor model
where the transadmittance is a function of base-to-emitter
voltage amplitude. The function is easy to invert which makes
the analysis considerably simpler than any other previously
published closed-form approach. The proposed technique is
validated by transistor and oscillator measurements and with
harmonic balance simulation at 100 MHz.

Index Terms— Nonlinear circuits, Nonlinear network anal-
ysis, Oscillators, Output power.

I. INTRODUCTION

Oscillator output power has been studied for decades.

Much of the progress is reviewed, e.g., in [1] and [2].

Both analytical and numerical techniques have been de-

veloped with varying presumptions, complexity, generality,

and accuracy. Simple analytical techniques offer the best

insight into oscillator operation and trade-offs. This paper

proposes such a new technique.
We show that, by using a novel quasi-linear transistor

model and conventional linear circuit analysis, Clapp os-

cillator output power can be calculated in closed form.

The proposed technique is now applied (but not restricted)

to the Clapp oscillator (Fig. 1) which is probably one

of the most abundant oscillators, at least, if we accept

that the usual crystal oscillators and Colpitts oscillators

are actually sub-classes of Clapp. The proposed technique

falls on the middle ground between the elementary lin-

ear techniques, frequently quoted in textbooks [3], and,

those more advanced nonlinear techniques that, however,

are often too complicated to provide useful insight. The

present technique is significantly simpler than any of the

previously published closed-form approaches [1]. Never-

theless, its prediction power can be comparable to that of

a commercial harmonic balance simulator, as this paper

demonstrates.

II. OVERVIEW OF THE OUTPUT POWER ANALYSIS

First the transistor is modeled at a chosen bias point

(VCEQ, ICQ) as will be explained in the next chapter. Then

values are assigned for the oscillator’s “embedding” C1,

C2, RL,. . . , shown in Fig. 1. One component value should

not be assigned, e.g., Cr because it will be calculated

according to the desired oscillation frequency ω0/2π.
Nodal analysis is then applied to the oscillator circuit

that consists of the quasi-linear transistor model and the

v̂be

BJT:
ym = f(v̂be)
v̂be = f−1(ym)C1
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The idea: From det(Y ) = 0,
find ym, then v̂be, v̂L & PL

PL = 1
2

∣v̂L∣2/RL

Fig. 1. Schematic diagram of a Clapp oscillator [4] with biasing
omitted. Impedance matching from a true external load (50 Ω)
is assumed to be embedded in the load RL. The LC-resonator’s
equivalent series resistance is described by Rr .

embedding. The determinant of the circuit’s Y -matrix is set

to zero, which is the condition for self-sustained oscillation

[5]:

det (Y ) = 0. (1)

From this condition, the amplitude-dependent large-signal

transadmittance magnitude ∣ym∣ and the unassigned value,

say Cr, are solved at ω0. Having ∣ym∣ solved, next, base-

to-emitter voltage amplitude v̂be can be calculated as their

interdependence (2) is under control. Finally, the load

voltage amplitude v̂L and output power are calculated

using the dependence of v̂L on v̂be, as given by (5). Chapter

IV exemplifies the technique.

III. THE QUASI-LINEAR TRANSISTOR MODEL

For simplicity, the transistor is modeled now with a

quasi-linear model: an equivalent circuit where only one

element value is nonlinear. A key-enabler of the present

technique is a simple yet sufficiently realistic transistor

model. It is well known that there are various amplitude-

limiting (or “power-saturating”) nonlinear mechanisms in

all transistors. In this analysis we assume that the nonlin-

earity of ∣ym∣ is dominating over all other mechanisms.

We propose a new model for the large-signal transad-

mittance ym = ∣ym∣ejφ. One can expect that ∣ym∣ should
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Fig. 2. The transistor model used in this analysis.
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Fig. 3. Transadmittance magnitude according to (2).

behave according to the following function of v̂be

∣ym(v̂be)∣ = ∣ym0∣
[1 + ( v̂be∣ym0∣

îc,max
)r ]1/r

(2)

where ym0 is the small-signal transadmittance while r and

îc,max are empirical fitting parameters. The argument φ
can be regarded independent of amplitude, as discussed

below in more detail. As far as we know, this simple model

has not been presented earlier. However, the model is obvi-

ous as ∣ym∣ ≈ ∣ym0∣ for small v̂be, and, ∣ym∣ ≈ îc,max/v̂be for

large v̂be, implying that the current amplitude îc = ∣ym∣v̂be
eventually saturates to a constant or “clipped” value îc,max,

independent of v̂be. The parameter r shapes the transition

from the small-signal range (where ∣ym∣ ≈ ∣ym0∣) to the

1/v̂be-dependency range, as shown in Fig. 3. Typically

r ≈ 2. The transition would be abrupt for r = ∞. For

the purpose of calculating the oscillator output power in

closed form, it is necessary that (2) can be solved for v̂be.

We measured the S-parameters of six different BJT

devices as a function of network analyzer power (−20 . . .−2 dBm) at 100 MHz. Equivalent-circuit (Fig. 2) ele-

ment values were extracted for all of them. Amplitude-

dependency was simply ignored and small-signal values,

those measured at −20 dBm, were adopted for all elements

except ∣ym∣. Instead, ∣ym∣ was modeled using (2) whose

parameters were obtained through least squares fitting. Fig.

4 shows that (2) describes the ∣ym∣-behavior of all tested

transistors very well. What comes to φ, its typical variation

was only 5○, while the maximum was 20○, over the entire

test power range, which gives reasons to regard φ constant.

This keeps the oscillator analysis simple.
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Fig. 4. Measured (circles) and modeled (solid line) ∣ym∣ of six
different BJT devices at VCEQ = 5V and ICQ = 20mA. Two
samples of PN3563 were measured; number 5, indicated with an
asterisk (*) is the one used in the example calculation.

IV. EXAMPLE OF POWER CALCULATION AT 100 MHZ

This example uses PN3563. A sample of PN3563 had∣ym0∣ = 104 mS, φ = −64○ r = 2, and îc,max = 30.6 mA at

the dc operating point VCEQ = 5 V and ICQ = 20 mA.

We lump the transistor’s parasitic capacitances Cbe and

Cce into C1 and C2, respectively: C ′
1 = C1 + Cbe and

C ′
2 = C2 +Cce, in hope of making the results less specific

for this particular transistor. Further, we take C ′
1 and C ′

2 as

variables in order to demonstrate the prediction power of

the present theory. For the resonator we take Lr = 500 nH,

which provides reactance of 314 Ω and high unloaded

quality factor Qu at 100 MHz. Typical Qu for airwound

inductors is 40. Therefore, we take Rs = 314/40 ≈ 8 Ω.

We arbitrarily take the load resistance as RL = 250 Ω.

Next, the Y -matrix of the oscillator shown in Fig. 5 is

constructed and its determinant is set to zero:

det (Y ) = ∣Y1 + jωCbc + Yr −Y1−Y1 − ym Y1 + Y2 + ym
∣ = 0 (3)

at ω = ω0 with Y1 = 1/rπ+jωC ′
1, Y2 = 1/RL+1/r0+jωC ′

2,

and Yr = 1/(Rr + jωLr + 1/jωCr). Both unknowns, ∣ym∣
and Cr can be solved from (3). Only the magnitude of

ym (not phase) needs to be solved, since φ is assumed

constant and equal to the small-signal value. To keep the

oscillation frequency at 100 MHz, capacitance of Cr must

range from around 25 pF down to some 5 pF for C ′
1 and

C ′
2 capacitances ranging from 5 to 200 pF. For small C ′

1

and C ′
2, large Cr are needed1 since Lr is fixed.

After applying some algebra on (3), it turns out that ∣ym∣
is the smaller2 of the real, positive roots of the polynomial

a∣ym∣2 + b∣ym∣ + c (4)

1With large Cr the circuit is no longer a canonical Clapp oscillator
where Cr is much smaller than C′1 or C′2. Instead, the circuit will
approach a Colpitts configuration, where Cr works merely as a dc block.

2For some reason, as yet unresolved, the larger root was always larger
than ∣ym0∣, which is unphysical, and it was therefore ignored. Complex
and negative roots imply that oscillation conditions are not met.
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Fig. 5. The Clapp oscillator of Fig. 1 redrawn. The transistor
is replaced by its equivalent circuit (Fig. 2). Transistor’s capaci-
tances Cbe and Cce are lumped into C ′1 and C ′2, respectively.

whose coefficients a, b, and c can be written in terms of the

parameters appearing in Fig. 5. Having ∣ym∣ solved, then

v̂be can be solved from (2) and the output power from

PL = v̂2L
2RL

= ∣Y1 + ym
Y2

∣2 v̂2be
2RL

(5)

where v̂L is the amplitude of the voltage across RL. Fig.

6 shows the calculated power as a function of C ′
1 and C ′

2.

V. COMPARISON TO MEASUREMENT AND SIMULATION

This 100-MHz oscillator was also built and tested. The

output power of the fundamental frequency component was

measured with a spectrum analyzer for over 20 different

(C1, C2)-combinations. E12-series radial-leaded ceramic

disc capacitors were selected so that the ratio C ′
1/C ′

2 was

always as close to 4 as possible. Impedance matching from

50 Ω to 250 Ω comprised a 16-pF series capacitor and a

200-nH air-wound shunt inductor.

The oscillator circuit was simulated with the harmonic

balance simulator of Agilent ADS 2011.01. In the absence

of a nonlinear model for PN3563, the ADS library model

of an electrically very similar transistor, 2N918, was used.

In the simulation, the oscillation frequency was kept to

100 MHz, within ±5% error, by adjusting Cr. Ideal models

were used for all passive components except the resonator

inductor for which the loss resistance Rr was, again,

taken into account. The present theory agrees well with

measurements and simulations, as Fig. 7 demonstrates.

VI. CONCLUSION

We have proposed a novel quasi-linear transistor model
and shown that, by using this model together with conven-

tional linear circuit theory, Clapp oscillator output power

can be analyzed in closed form. The results offer significant
insight into oscillators by showing that the amplitude-

dependency of transadmittance magnitude, alone, can ex-

plain the oscillation amplitudes and, consequently, output

power. This technique is considerably simpler than any

of the previously published closed-form approaches, yet it

agrees well with measurements and simulation.
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Fig. 6. Calculated oscillator output power PL (mW) at 100
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Fig. 7. Calculated, measured, and simulated output power PL.

For further verification, the technique should be tested

for different load resistances RL. It should also be studied

how well the proposed transadmittance model (2) would

suit devices such as HBT’s, MOSFET’s, and HEMT’s.

The technique can easily be extended to other popular

oscillators [1], [6], with modifications to (3), (4), and (5).
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