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ABSTRACT

We present how we used a workflow system to create a
computational pipeline for storing, preprocessing and
statistically analyzing gene expression microarray data
together with public annotation information. The pipe-
line demonstrates that the used workflow system can fa-
cilitate reuse and documentation of the analysis methods
which are adaptable to changing integrative data analy-
sis approaches.

1. INTRODUCTION
Computational analysis of biological large-scale data
sets often requires repeating similar analysis steps. One
reason to this is that measurements are often performed
more than once for a given experimental setup. It may
also be necessary to perform similar analyses to the
same dataset in order to see how choosing different pa-
rameters affects the results. Another reason is that mea-
surement data of a given measurement system usually
needs to go through certain analysis steps. Thereby, us-
ing continuously the same measurement system brings
stability to data analysis. As long as the experimental
setup remains the same, repeating the analysis process
could happen on the side of wet lab researcher if the
process can be enacted in a simpler way than running
scripts from a command line console. On the other
hand, as research progresses, the biological question
and the experimental setup change and computational
experts need to develop new data analysis approaches.
When the measurement instruments remain the same,
certain parts of the analysis can remain the same, while
other parts need to be further developed. Against this
background and as analysis tasks are shifting between
the wet lab experimentalist and the computational spe-
cialist, there is a need for facilitating the reuse of parts
of the analysis flow.

To respond to this demand, many commercial and
public workflow systems have been developed [1]. They
enable construction of workflows, pipelines of computa-
tional tools. For example, Taverna is an open-source
platform for creating and executing computational

workflows [2,3]. It enables the use and integration of
separate distributed web-services, including computa-
tional tools and databases, through one interface where
workflows can be constructed out of these services. Ta-
verna is not limited to only biological analysis. It
enables the use of a variety of tools for different fields.
GenePattern is another platform that provides analysis
tools for genomic data [4]. These tools can be used in
workflow construction.

In this work, we tested the Medicel Integrator (Me-
dicel Oy, Espoo, Finland) in workflow construction. It
differs from the earlier mentioned systems in that it also
includes a local data warehouse which regroups data
from several web databases in one location. It enables
storage of experimental and public data as well as expe-
rimental descriptions in a formal way which facilitates
the computational use of the information in data analys-
es.

We implemented a commonly used microarray data
analysis pipeline to evaluate whether such a workflow
system can facilitate reuse of analysis methods. We
created a modular computational workflow for storing,
preprocessing and statistically analyzing Affymetrix
gene expression data together with public annotation in-
formation retrieved from the data warehouse. More spe-
cifically, the implemented data analysis methodology
performs normalization, a statistical test to find diffe-
rentially expressed genes between two different sample
groups and a statistical enrichment test to find gene on-
tologies that are significantly enriched or depleted
among found differentially expressed genes.

The workflow can be reused for repetitive analysis of
a given data set when one wishes to test different para-
meters in statistical tests. Alternatively, it can be reused
for another data set by only replacing the data to be ana-
lyzed. For a user with programming background, it is
also adaptable to changing analysis needs, supporting
the reuse of established analysis methods. The used in-
put data and parameters as well as the obtained inter-
mediary and end results are saved within the workflow
as documentation.
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Figure1. Block diagram of the modular workflow scheme,
where the user can do the most common modifications to in-
puts and run the workflow or its modules. The white boxes
represent intermediary or end results which can be visualized
and exported. Input 1 represents Affymetrix files. Input 2 is a
table which includes information of each sample. Input 3 de-
fines the sample groups. Inputs 4-6 define thresholds.

2. RESULTS

2.1. Workflow system
We used the Medicel Integrator workflow system for
workflow construction. It enables construction, enac-
tion, storage and reuse of data analysis procedures orga-
nized as tool pipelines. The platform provides access to
the R programming environment and Bioconductor
(www.bioconductor.org) [5] as well as a variety of IT
and computational data analysis tools that can be used
as building blocks in workflow construction. Its asso-
ciated data warehouse integrates data from public data-
bases, such as Ensembl, Uniprot, Intact, Reactome and
Kyoto Encyclopedia of Genes and Genomes (KEGG).  .

2.2. Modularity and reuse of a workflow
For simplicity, we mainly describe our workflow on the
level of modules. We use the term module to refer to a
set of interconnected computational tools within a

workflow. Such modules have each a high-level func-
tionality, such as reading in data, performing data pre-
processing or performing analytical operations (Figure
1). The computational tools forming sub-pipelines (not
shown) within each module have lower-level functional-
ities, such as converting data from one data format to
another, performing a statistical test, or sorting rows
within a table.
     The modular structure of the workflow supports
reuse of the analysis methods. The user can visualize the
whole workflow in a modular scheme (Figure 1), where
the relevant inputs, parameters and outputs of each
module are exposed. From there, it is possible to execute
the whole workflow or only chosen modules. It is also
possible to visualize the tools within a module and ex-
ecute them one at a time. The inputs of each module in-
clude data to be analyzed and parameters related to the
functionality of individual tools within the modules. The
outputs of the modules are intermediary and end results
of the pipeline. They can be visualized and exported.
Prior to reuse of the workflow, the data analyzed can be
replaced and the parameters can be modified by the us-
er. Each workflow, module, or tool can also be copied as
en entity within the workflow system and pasted into
another workflow for reuse as well as modified for other
analytical needs.
     The modular structure of the workflow also supports
documentation of the analytical procedure, since the in-
puts, parameters and outputs of each module, i.e. inter-
mediary and end results are saved.

2.3. Workflow description

The established workflow includes processes that are
typically covered in the analysis of DNA microarray da-
ta: 1) loading and reorganizing data based on sample in-
formation, 2) data preprocessing, 3) identification of
singular gene expression patterns, and 4) mapping of
the observed singularities to biological context data and
identification of significantly enriched or depleted anno-
tations. An analogous analysis has been performed to
study differences in stem cells between two different
culture conditions [6].

2.3.1. Load and reorganize data and sample informa-
tion
The  first  module  of  the  workflow  takes  in  the  raw  Af-
fymetrix data files (.CEL) and a metadata table includ-
ing the file names together with sample information,
such as cell, tissue, organ, or treatment type. The mod-
ule reorganizes the raw data files and produces a meta-
data file which can be read in the following analysis
steps. The raw data files and the metadata table can be
modified between module executions.
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2.3.2. Preprocess the data

The second module of the workflow performs measure-
ment summing and normalization. Single probe mea-
surements in the raw Affymetrix data files given as in-
put are converted to gene-wise values for transcript ab-
undance using the robust multiarray average (RMA) al-
gorithm of R [7,8]. In this example workflow we used a
custom CDF file hgu133plus2hsensgcdf (loaded at
http://brainarray.mbni.med.umich.edu) which defines
how the probes are pooled to values of Ensembl genes
[9]. The description of the different samples is given to
this module as a second input. The output of the module
is a table which includes one RMA normalized expres-
sion value for each Ensembl gene across all samples.
The column headers include information relative to
sample descriptions that can be used in later analysis
steps when filtering the data.

2.3.3. Identify singular gene expression patterns

The third module of the workflow compares the expres-
sion levels of genes between two sample groups using
the Linear Models for Microarray Data (limma) algo-
rithm in R [10]. The statistical test is performed as de-
fined for comparison of two groups of samples [11]. The
module takes the normalized data matrix from the pre-
vious module as input. Experimental parameters availa-
ble to define the sample groups to be compared, as well
as the thresholds for adjusted p-value and fold change,
are given  within an R script as another input. The out-
put is a table that includes the names of the Ensembl
genes that are differentially expressed between the sam-
ple groups. For each gene, the statistics for differential
expression from the limma test are presented, including
the average log2 fold change between the sample groups
and  a p-value adjusted for multiple testing (using Ben-
jamini and Hochberg’s method to control the false dis-
covery rate) [11]. Another output includes only a list of
names of the differentially expressed Ensembl genes.
This list serves as input for the subsequent module.

2.3.4. Identify significantly enriched and depleted an-
notations to GO terms

The fourth module finds GO categories that are over- or
underrepresented among the group of differentially ex-
pressed genes with respect to all the genes measured on
the chip. The core of the module implements a hyper-
geometric test. This module uses the list of Ensembl
gene names as input. A threshold p-value for significant
enrichment according to the hypergeometric test is giv-
en as another input. The output of the module is a table
including a ranked list of significantly over- and under-
represented GO categories together with a set of key
values, such as their p-values from both statistical tests
and a value indicating whether the category is over- or
underrepresented.

2.3.5. Demonstrating  workflow reusability
We used two separate data sets to test the workflow. The
first data set of 10 arrays was on adipose stem cells cul-
tured in two different culture media [6]. The second da-
ta set of 70 arrays was on human embryonic stem cells
and induced pluripotent stem cells. The latter data was a
collection of public data sets retrieved from a stem cell
database (Kong et al., manuscript in preparation).
     For the first data set, we performed an analogous
analysis as presented in [6]. The raw data from the 10
arrays were loaded into input 1. The metadata table in
input 2 contained the raw data file names and for each
of the files either the classification term HS (human se-
rum) or FBS (fetal bovine serum). Two combinations of
inputs 3-6 were tested (Table 1). In one case the input 5
was eliminated to allow fold changes of all sizes.
     To analyze the second data set, data in input 1 were
replaced by the raw data from the 70 arrays. Input 2 was
modified to include the raw data file names and their
classification into hIPS (human induced pluripotent
stem cell) or hESC (human embryonic stem cell). The
used inputs 3-6 are presented in Table 1.

Table 1. Inputs used to demonstrate reusability.

Input 1 Input 3 Input 4 Input 5 Input 6
10 arrays HS  FBS < 0.05 > 2 < 0.05

HS  FBS < 0.05 eliminated < 0.05

70 arrays hIPS  hESC < 0.01 > 1.5 < 0.05

3. DISCUSSION
We used a workflow system to construct a workflow for
DNA microarray data analysis. We showed that using
such a system can help structure the analysis processes
for reuse and documentation purposes. Within the
workflow, the analytical processes are organized into a
modular cascade of computational tools, which can be
executed either as a whole or separately. The whole
analysis process is thus automated and explicit and can
be easily tuned and reused as whole or in parts for simi-
lar tasks when new experimental data is obtained or to
analyze the same data using different parameters. Only
the input data and chosen parameters used in the analy-
sis need to be replaced by the user. After executing the
workflow, all the intermediary and end results of the
analysis cascade are visible and exportable. The
workflow is saved and provides documentation of how
results have been obtained.

The re-usability value of the pipeline depends on the
user’s  background.  In  the  simplest  case,  for  a  non-
programmer, it is replacing input parameters as in the
cases we demonstrated with two data sets, or as in a
work where the enrichment analysis module was mod-
ified for the needs of another analysis on yeast genes
[12]. This required replacing one input of human genes
within the module with a list of yeast genes. For a  user
with programming background, it is also possible to
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modify the operation of the workflow e.g. by modifying
the computational tools.

The possibility provided by the used workflow sys-
tem to visualize the whole analysis process as a pipeline
including the inputs, analysis tools, and outputs, is an
advantage, because what happens to the data is explicit
to the user. This is not the case in many microarray data
analysis software, such as GeneSpring (Agilent Tech-
nologies).

The used workflow system differs from e.g. Taverna
and GenePattern in that it includes a local data ware-
house to which information can be stored and from
which other biological data can be retrieved and inte-
grated with the data being analyzed. Within our
workflow, this characteristic was exploited in the fourth
module which takes a list of Ensembl genes and re-
trieves their annotations to GO terms from the data
warehouse to perform an enrichment analysis. An ana-
logous enrichment analysis could be made with a few
modifications for any type of category into which the
genes have been classified in the data warehouse.
Enrichment could for example be calculated with re-
spect to involvement in signaling or metabolic path-
ways, but also other things, such as genomic location of
the genes, or subcellular location or domain features of
the corresponding proteins.

An essentially similar data analysis as covered by
our workflow could be performed entirely in the R pro-
gramming environment [7,8,10,11,13]. Many microar-
ray data analysis methods have been implemented in R.
However, using R requires programming experience and
modularization of the analysis happens only within the
script. Modularization raises the efficiency of re-use. It
is important to make it accessible, which is not the case
when it is embedded within a script, in particular for a
user not familiar with R.

Chipster is an example of software developed for fa-
cilitating the use of R commands through a graphical
user interface (http://chipster.sourceforge.net, The Fin-
nish  IT  Center  for  Science).  It  is  an  open-source  plat-
form that provides computational tools for workflow
construction primarily for microarray data analysis. In
functionality, the tools correspond to the modules pre-
sented in this work, since they perform preprocessing
and analytical tasks to microarray data. These tools can
be chained and their parameters can be modified by the
user. Overall, it provides a variety of ready-made analyt-
ical tools for the tasks that in Integrator were covered by
a pipeline of tools of lower-level functionalities within
each analytical module. In Integrator, the user was ex-
pected to build these modules before they could be used.
On the other hand, Chipster provides analysis tools for a
selected set of data types, whereas Integrator has broad-
er applicability.

Executing the workflow within the tested system is
in general slower than running a corresponding series of
commands in R, because within the workflow, there are
other tools around those that run the R codes. The time

required for constructing or using a workflow or R
script depends, among other, on the user’s background.
We consider that constructing a workflow of the pre-
sented type was rather time-consuming, but so can be
writing an R script if we take into account the time
needed to familiarize with the R packages. Once the
workflow has been established, it is simple and efficient
to enact it with new data or parameters. Similarly, one
could rapidly modify an R script, but this requires pro-
gramming skills. It is also easier to share a modular
workflow than to share a script, because the workflow is
more communicative with respect to the operations be-
ing performed. Therefore, we conclude that the
workflow system tested can function as a platform for
constructing modular easy-to-use data analysis methods
intended for users without programming experience.
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