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Abstract—The term “location fingerprinting” covers a wide va-
riety of methods for determining receiver position using databases
of radio signal strength measurements from different sources.
In this work we present a survey of location fingerprinting
methods, including deterministic and probabilistic methods for
static estimation, as well as filtering methods based on Bayesian
filter and Kalman filter. We present a unified mathematical
formulation of radio map database and location estimation,
point out the equivalence of some methods from the literature,
and present some new variants. A set of tests in an indoor
positioning scenario using WLAN signal strengths is performed
to determine the influence of different calibration and location
method parameters. In the tests, the probabilistic method with the
kernel function approximation of signal strength histograms was
the best static positioning method. Moreover, all filters improved
the results significantly over the static methods.

I. INTRODUCTION

Location-aware services have become popular with the

development of modern communication technology. The in-

creased variety of commercial applications has established the

demand for indoor localization services. Weak signal reception

and missing line-of-sight between the user and the satellites

causes Global Positioning System (GPS) to perform poorly

indoors and thus different indoor localization systems have

been developed.

Systems such as the Active Badge, the Cricket, the Bat

and the Ekahau positioning engine (EPE) rely highly on an

infrastructure that is specially designed for indoor localization

[1, 2]. However, these kind of purpose-built systems can be

expensive and thus hard to implement on a world-wide scale.

There are also other dedicated indoor positioning systems, see

e.g. survey [3].

Localization systems can exploit different kinds of mea-

surements; systems based on the angle of arrival (AOA), time

of arrival (TOA) and the time difference of arrival (TDOA)

have been proposed [4]. However, the reliability of these

measurements suffers from the complex signal propagation

environments [5].

The increased deployment and the popularity of wireless lo-

cal area networks (WLAN) have opened a new opportunity for

location-aware services. Although WLAN was not designed

for localization, it can be used for location estimation by

exploiting the received signal strength indicator (RSSI) value.

RSSI also allows the utilization of the existing infrastructure,

because no additional hardware is needed. Signal to noise ratio

(SNR) is also available, but it is often omitted because RSSI

has stronger correlation with the location than SNR [5].

Location fingerprinting differs from other localization prin-

ciples. Instead of determining the distances between the user

and the transmitting access points (AP) and triangulating the

user’s location, the location of the user is determined by

comparing the obtained RSSI values to a radio map. The radio

map is constructed in an offline phase and it contains the

measured RSSI patterns at certain locations. This way the char-

acteristics of the signal propagation in indoor environments are

captured and the modeling of the complex signal propagation

is avoided. However, the offline phase is quite laborious and

the radio maps have to be stored in memory.

Many of the existing location fingerprinting methods lack

a proper mathematical formulation and theoretical basis. The

first purpose of this work is to present the mathematical

formulation of the location fingerprinting methods covered in

this paper. The second goal is to apply Bayesian and Kalman

filters to location fingerprinting. The third objective in this

work is to implement the different algorithms and to test them

in varying circumstances.

This paper is organized as follows. In Section II, the

mathematical formulation of the radio map is presented. In

Section III, the location estimation phase is covered from

the deterministic (III-A) and the probabilistic (III-B) point

of view. In Section IV, the traditional location fingerprinting

is extended to computating the location estimates in time

series by applying different filters. Different state models are

combined with the static location estimation algorithms. The

test results are presented in Section V. Section VI summarizes

the results and suggests guidelines for the future work.

II. RADIO MAP

The construction of the radio map begins by dividing the

area of interest into cells with the help of a floor plan. RSSI

values of the radio signals transmitted by APs are collected in

calibration points inside the cells for a certain period of time

and stored into the radio map. The ith element in the radio

map has the form

Mi =

(

Bi, {~aij |j ∈ Ni}, θi
︸ ︷︷ ︸

Ri∈R

)

, i = 1, . . . , M,
(1)

where Bi is the ith cell, whose center pi is the ith calibration

point. Vector ~aij holds the RSSI values measured from the

access point APj and its kth element is denoted by ak
ij .

The parameter θi contains any other information needed in



the location estimation phase. This can be for example the

orientation θi = di ∈ {north, south, east, west} of the mobile

unit (MU), such as in the RADAR system [5]. We denote

the ith fingerprint by Ri and the set of all fingerprints by

R = {R1, . . . , RM}, so the ith element of the radio map is

Mi = (Bi, Ri).
The radio map can be modified or preprocessed before

applying it in the location estimation phase. The motivation

can be the reduction of the memory requirements of the radio

map or the reduction of the computational cost of location

estimation. In addition, different location estimation methods

use different characteristics of the fingerprint histogram, such

as the mean and the variance.

III. LOCATION ESTIMATION

Given the radio map, the objective of the location estimation

phase is to infer the state (location) of MU from the received

measurements vector y which includes RSSI samples yj from

several APs. In some cases we collect several RSSI measure-

ment from the jth AP into vector ~yj before we compute the

state estimate. The mean of these measurements is denoted by

ȳj which is the jth component of vector ȳ.

A. Deterministic framework

In the deterministic framework, the state x is assumed to be

a non-random vector [5]. The main objective is to compute the

estimate x̂ of the state at every time step. Usually the estimate

is a convex combination of the calibration points pi, that is

x̂ =

M∑

i=1

wi
∑M

j=1
wj

pi, (2)

where all weights wi are nonnegative. One possible weight wi

is the inverse of the norm of the RSSI innovation [6], that is

wi =
1

||ȳ − āi||
, (3)

where ȳ is the measurement vector, āi is the vector of the

means of the RSSI values of each AP at the ith calibration

point, and the norm ||·|| is arbitrary. Examples of possible

norms are given in Table I. The Euclidean norm (2-norm)

Table I
NORMS

Name ||x|| (x ∈ R
nx )

p-norm [5] ||x||p =
`Pnx

i=1 |xi|p
´ 1

p

modified p-norm [7] ||x||mp =
“

Pnx
i=1

1
wi

|xi|p
” 1

p

infinity-norm ||x||∞ = maxi (|xi|)
Mahalanobis-norm [8] ||x||M =

√
xT Σ−1x

is widely used, but the Manhattan norm (1-norm) is also

common [5, 6, 7]. In this paper, the Mahalanobis norm is

used by applying the sample means and the sample variances

of the fingerprints. Because samples from different APs are

assumed to be mutually independent, the covariance matrix

Σi ∈ R
ny×ny used in the computation of the norm ||x||M is

the diagonal matrix

Σi =






σ̂2
i1 0 0

0
. . . 0

0 0 σ̂2
iny




 .

The estimator (2), which keeps K biggest weights and sets

the others to zero is called the Weighted K-nearest neighbor

method (WKNN) [6]. WKNN with equal weights is called

the K-nearest neighbor method (KNN) [5]. The simplest

method, where K = 1, is called the Nearest neighbor method

(NN) [9].

In general the KNN and the WKNN can perform better than

the NN method, particularly with parameter values K = 3
and K = 4 [6]. However, if the density of the radio map is

high, NN method can perform as well as the more complicated

methods.

B. Probabilistic framework

In the probabilistic (or statistical) framework the state x

is assumed to be a random vector [10]. The idea in the

probabilistic framework is to compute the conditional pdf

px|y(x|y) , p(x|y) (posterior) of the state x given mea-

surements y = y. The posterior contains all the necessary

information to compute an arbitrary estimate of the state and

an estimate of the error. Using the Bayes’ rule we get

p(x|y) =
p(y|x)p(x)

p(y)
, (4)

where p(y|x) is the likelihood, p(x) is the prior and p(y) is a

normalizing constant. In this section, we use a uniform prior

which is a conventional choice for the prior [10], that is

p(x) =

∑M

i=1
χBi

(x)
∑M

j=1
|Bj |

, (5)

where |Bi| is the volume of Bi and

χBi
(x) =

{
1, x ∈ Bi

0, x /∈ Bi
.

In Section IV, the posterior distribution is computed in time

series, and the prior is computed using the state model and

the posterior from the previous time step. In this section

the emphasis is on the computation of the likelihood. We

assume that the measurements collected at the calibration point

represent the distribution of the RSSI in the whole cell. That

is, the likelihood is constant inside each cell Bi, so

p(y|x) =

M∑

i=1

p(y|i)χBi
(x), (6)

where p(y|i) = pvi
(y − āi) and vi = y − āi. We assume

that the components of the random vector vi are independent.

Thus,

p(y|i) =

ny∏

j=1

pvij
(yj − āij),



where y ∈ R
ny . The pdf pvij

of the measurement error of the

RSSI signal from the jth station in the ith cell is proportional

to the current centralized histogram in the radio map if

the calibration time is long enough. Hence, the normalized

centralized histogram Hvij
(x) is the natural approximation of

pvij
. However, usually the calibration time is not long enough,

and it is rational to approximate the incomplete calibration

data somehow. Often the calibration phase is incomplete in the

sense that bins with zero probability occur in some parts of

the histograms. That can be prevented by applying a uniform

prior which assigns a small fraction of the total probability

mass, e.g. the inverse of the sample size, to all bins [10].

There are several approaches for computing the likelihood

p(y|i). Examples of these methods are given in Table II, where

K(·) denotes the kernel function, ak
ij is the tth element of the

vector aij , |aij | denotes the number of elements in vector aij ,

and h > 0 is a smoothing parameter which determines the

width of the kernel [11].

Table II
LIKELIHOOD

Name of the method p(y|i) =
Qny

j=1 pvij
(yj − āij)

Histogram [10] pvij
(x) = Hvij

(x)

Kernel [10] pvij
(x) =

P|aij |

k=1
K

 

x+āij−ak
ij

h

!

|aij |h

Gaussian [12] pvij
(x) = 1

q

2πσ̂2
ij

exp

„

− x2

σ̂2
ij

«

Log-normal [13] pvij
(x) = 1

x
q

2πσ̂2
ij

exp

„

− (log(x)−µ)2

σ̂2
ij

«

Inverse function pvij
(x) =

8

>

<

>

:

2−|x|
2 log(t)+3

, |x| ≤ 1
1

(2 log(t)+3)|x|
, 1 < |x| ≤ t

0, t < |x|
Exponential pvij

(x) = 1
2
e−|x|

Histogram comparison p(y|i) =
Q

j dpdf

`

Hyij
, Haij

´

Different probability density distance measures dpdf (·, ·) for

the histogram comparison method are given in Table III [14].

Table III
PROBABILITY DENSITY DISTANCES

Name dpdf(f, g)

Infinity norm sup |f(x) − g(x)|
Lissack-Fu (LF)

P

|f(x) − g(x)|p

Bhattacharayya
P

p

f(x)g(x)

Kullback-Leibler (K-L)
P

f(x) f(x)
g(x)

Simandl 1 −
P

min(f(x), g(x))

Another way to handle the problem of incomplete data is

non-parametric kernel approximation of the histograms. The

RSSI fingerprint histograms are discontinuous and sensitive

to disturbances due to varying MU’s orientation and obstacles

that affect the radio signal propagation. Thus it is reasonable

to smoothen the discrete histogram to a continuous function

and fill the gaps.

In the parametric approach, the RSSI histogram is approxi-

mated as a known function. Fingerprints include a lot of data,

and thus it would be practical to use some parametric methods

to approximate the histograms. Unfortunately, the distribution

of the RSSI varies as a function of location and time because

of the complex radio signal propagation environment. RSSI

histograms can be asymmetric and multimodal. Thus, the

modeling of the measurement error distribution with a known

function at every location becomes challenging. In this paper

the left-skeweness of some of the histograms is exploited by

approximating the histograms with a log-normal distribution

[13], when the absolute values of the signal strengths are

used. The left-skewness occurs due to the observation that

the variations of the weaker RSSI values are larger than

the stronger RSSI values. However, assuming that can be

problematic in the outer limits of the AP’s range. The MU

has a lower limit to the received RSSI and below that limit the

RSSI values are too weak for MU to register. This limitation

of MU restricts the tail of RSSI histograms from the left.

Thus RSSI histograms can be left skewed, symmetric or right-

skewed, depending on the distance and obstacles between the

MU and APs.

The Gaussian approximation of the histograms has been

widely discussed in the literature [6, 12, 13]. The Gaussian

approximation can provide a good fit with some of the

histograms, but in the case of skewed histograms the fit can be

bad. Moreover, some of the histograms are quite concentrated

around their mean, and the Gaussian approximation tends to

spread the distribution too much. In those cases, the exponen-

tial function provides better approximation and improves the

resolution of different fingerprints close to each other.

Substituting equations (5) and (6) into equation (4) we get

the posterior

p(x|y) =

M∑

i=1

βi

χBi
(x)

|Bi|
, (7)

where

βi =
p(y|i)|Bi|

∑M

j=1
p(y|j)|Bj |

.

From this posterior we can compute an estimate of the state.

One possible estimate is the maximum-a-posterior (MAP)

estimate. In this case, it is the same as the maximum-likelihood

(ML) estimate, because the prior is uniform. The posterior is

piecewise constant, and thus the MAP estimator is ambiguous.

If the posterior has the maximum value only in one cell, say

Bi, it is reasonable to use the center of the cell as MAP

estimate, that is

x̂MAP = pi.

Another commonly used estimate is the mean of the posterior,



that is

x̂MEAN =

∫

xp(x|y)dx =

M∑

i=1

βipi. (8)

We see that there are many relations between the deter-

ministic and the probabilistic methods and with particular

selections of parameters both methods give identical estimates.

For example, the probabilistic MAP estimate has the same

form as the deterministic Nearest Neighbor estimate. Secondly,

if the volumes of the cells are equal and wi = p(y|i) ∀i, then

the deterministic estimate (2) and the posterior mean (8) are

identical. In addition, if the number of values of i, where the

likelihood p(y|i) is nonzero is K , then the posterior mean (8)

has the same form as the deterministic Weighted K-nearest

neighbor estimate.

IV. FILTERING APPROACH

In this section, the accuracy of localization is enhanced by

exploiting also the previous measurements in addition to the

current ones.

A. Bayesian filter

The idea in the Bayesian filtering is to compute the posterior

p(xk|y1:k), where the subscript k represents time tk and

y1:k = {y1, . . . , yk}

denotes the set of all measurements. Assuming independences

and using Bayes’ rule we get [15, 16]

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (9)

where p(yk|xk) is the measurement likelihood (6), and the

prior is

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1,

where p(xk|xk−1) is the transition density. Furthermore, the

density function of the initial state is p(x0) , p(x0|y1:0).
We use the same likelihood (6) as in the stationary case.

We approximate all the priors and the posteriors as piecewise

constant densities. Let the previous posterior be denoted as

p(xk−1|y1:k−1) =

M∑

j=1

βj+
k−1

|Bj |
χBj

(xk−1)

and the current prior be denoted as

p(xk|y1:k−1) =

M∑

i=1

βi−
k

|Bi|
χBi

(xk),

where

βi−
k =

M∑

j=1

∫

Bi

∫

Bj

p(xk|xk−1)

|Bj |
dxk−1dxkβj+

k−1

,

M∑

j=1

πi,jβ
j+
k−1

, πT
i β+

k−1
.

Interestingly, in our case it is enough to model transition

probabilities between the cells,

πi,j , P (xk ∈ Bi|xk−1 ∈ Bj).

This can be made using the floorplan of the building. We call

the resulting state model the graph state model since it is based

on the graph adjacency matrix

[G]ij =

{
0, no connection between Bi and Bj

1, connection between Bi and Bj .

The state transition matrix is obtained from the matrix T as

[T]ij =
[G]ij

∑

i[G]ij
.

Thus, the prior is obtained from the previous posterior as

β−
k = Tβ+

k−1
.

B. Kalman filter

In our Kalman filter approach the Position Kalman Filter

(PKF) [17] [18, II.D] is used to smoothen the estimates of the

static estimators by using the static solutions as measurements

for the conventional KF.

In this paper two state models were used, namely the

stationary state model and the constant velocity model [19].

The stationary state model can be formulated as

xk = xk−1 + wk−1, (10)

where the state x includes only the position coordinates. This

model can be used when there are no velocity measurements

and the MU is mainly located indoors, and thus the velocity

often stays small. The constant velocity model can be formu-

lated as

xk = Fk−1xk−1 + wk−1,

where the state x contains both the position and the velocity

coordinates and

Fk−1 =

[
I2×2 ∆tI2×2

02×2 I2×2

]

,

where ∆t = tk − tk−1 and I is identity matrix. In the

constant velocity model of this paper, the state x also contains

the 2-dimensional velocity in addition to the 2-dimensional

position. The state noise is wk ∼ N(0, Qk), where the state

noise covariance matrix is

Qk =

[
1

3
∆t3I 1

2
∆t2I

1

2
∆t2I ∆tI

]

σ2
C , (11)

where σ2
C describes the error in the axis directions.



V. IMPLEMENTATIONS AND RESULTS

The algorithms and methods discussed in Sections III and

IV were implemented and tested in the wireless local area

network (WLAN). In Sections V-A and V-B, the collection

of the radio maps and the test data is explained. In Section

V-C, the test results of the static location estimation algorithms

are presented. Section V-C also covers the impact of several

environment parameters on the performance of the algorithms.

In Section V-D, the filters are applied to the test data. The

data was collected at the calibration phase and at the location

estimation phase with a MacBook laptop containing an AirPort

network card. Wireshark software was used to collect the radio

map and the test data.

A. Radio maps

The radio maps were collected in an office area at the

Tampere University of Technology. The division of the cells

was done by exploiting the floor plan. Four radio maps were

constructed to test the effect of the density of the radio map,

orientation of the MU and the duration of the calibration time

at the each CP.

The radio map 301 was collected at 40 CPs, with fixed

orientation and 30 s measurement period. The radio map 60r1

was collected at the same CPs, but with 60 s measurement

period and by rotating at the CPs. The rotation was done

to minimize the effect of the orientation of the user and the

calibration time was lengthened to increase the reliability of

the fingerprint. The radio map sparse was constructed by

removing every second entry from the radio map 60r1. The

radio map 60r2 was also done with the 60 s measurement

period and by rotating the MU, but the density of the radio

map was increased to 77 CPs. The fingerprints were measured

from 20 APs from which 11 were located on the same floor

as the CPs, 5 on the floor below and 4 on the floor above. The

radio maps are summarized in Table IV.

Table IV
RADIO MAPS

Radio map Duration(s) Rotation CPs

sparse 60
√

20
301 30 40

60r1 60
√

40
60r2 60

√
77

B. Test data

Tracking the MU was tested by walking at nearly constant

speed in the neighborhood of the cells. One of the four tracks

collected is shown in Figure 1.

The raw data was preprocessed later, and the weakest signals

of the test data were ignored to increase the reliability of the

measurements.

The same set of 20 APs was used as in the calibration

phase. The number of APs heard varied from 2 to 15. The

most common number of APs heard was 9. For further details

see [20].

STARTEND

Figure 1. One of the four test tracks.

C. Static location estimation algorithms

The different methods described in Section III were tested.

The radio map 60r2 was used in most of the tests. If the solver

was not able to produce an estimate at some time step, the

estimate from the previous time step was used. The initial state

was set to be the location of the AP transmitting the strongest

sample among all samples in the first 1 s time interval.

Each of the location estimation algorithms has several

parameters which were varied to find the best performance.

The x̂MEAN was used as an estimator in the tests, because it

provided only slightly different results than x̂MAP throughout

the tests. The mean of the norms of the 2-dimensional error

vectors, denoted as ME, was used as the primary performance

measure.

1) K-nearest neighbor: The K-nearest neighbor method and

its modifications were tested. Different numbers of CPs were

considered in the computation of the estimate by varying the

parameter K . Different measures were used to compute the

distances in the signal space.

The effect of varying the parameter K in KNN method is

studied first. It is examined whether consideration of multiple

“nearest” neighbors has any benefit to the performance. The

MU was moved through the CPs and considering multiple CPs

did not provide better performance.

The impact of the distance measure used is considered next.

The parameter p was varied from 1 to 5 in the p-norm distance

measure in the NN method; ∞-norm and Mahalanobis norm

were also tested. The 1-norm resulted in the smallest ME.

The sample size of the fingerprint can be interpreted as

a measure of the reliability of that fingerprint [7]. Direct



weighting with the inverse of the sample size improved the

results slightly; ME decreased from 5.6 m to 5.4 m. The test

was done with the NN method using the 1-norm as a distance

measure.

2) Histogram method: The binwidth of the histograms was

varied and the binwidth b = 1 gave the smallest ME. The

use of the uniform distribution also improved the results and

prevented the cells from having zero likelihood.

3) Histogram comparison method: The Simandl and the

Bhattacharayya distances provided the smallest ME (Table V).

Table V
HISTOGRAM COMPARISON METHOD

Distance ME
(m)

Infinity norm 8.5
Lissack-Fu 9.7

Bhattacharayya 7.0
Kullback-Leibler 11.1

Simandl 7.0

4) Kernel method: The kernel method was tested with sev-

eral kernel functions and kernel widths. The kernel functions

were applied to the normalized fingerprint histograms with the

histogram binwidth b = 1.

Different kernel functions were tested with the kernel width

h = 2 which provided the smallest ME (Figure 2). The expo-

nential kernel function is claimed to provide good results [21],

and in this work, it also gave better performance compared to

the other kernel functions.

1 8

5.4

6.1

Kernel width

 

 

ME / m

Figure 2. Effect of kernel width with exponential kernel function

5) Parametric approximation of measurement noise: The

measurement likelihood was computed using different para-

metric approximations of the normalized histograms. In the

tests, the exponential approximation produced the smallest ME

(Table VI).

6) Radio map density: The density of the radio map was

varied by changing the number of CPs considered during

Table VI
PARAMETRIC APPROXIMATION OF HISTOGRAMS

Function ME
(m)

Log-normal 8.7
Gaussian 6.0

Exponential 5.5
Inverse 6.4

the location estimation phase; radio maps sparse, 60r1 and

60r2 were used. As seen in Figure 3, the denser the radio

map the better the results with every tested method. However,

the improvement between the radio maps sparse and 60r1

is larger than the improvement between the radio maps 60r1

to 60r2. Thus the improvement in the results does not grow

linearly as a function of the radio map density. Histogram

and histogram comparison methods benefit the most from the

refinement of the radio map.

Histog. comp. Histogram NN Parametric Kernel

5

11

Method

ME / m

 

Sparse

60r1

60r2

Figure 3. Effect of radio map density

7) Single orientation vs. varying orientation: It was tested

whether the orientation of the user during the calibration phase

has any effect on the location estimation phase. This was

done by using radio maps 301 and 60r1 with calibration time

truncated to 30 s. The purpose of the rotation was to equalize

the impact of the MU’s orientation to measure more reliable

fingerprints.

Figure 4 illustrates how all tested methods benefit signif-

icantly from the rotation of the MU during the calibration

phase. Especially the histogram comparison and the histogram

method gain a lot from the varying orientation. The kernel and

the parametric methods resulted in smaller ME compared to

the NN method which has the smallest ME compared to other

methods when the MU is not rotating.

8) Calibration time: The effect of varying the calibration

time at each CP was examined by parsing different calibration

times from the radio map 60r2. Figure 5 shows ME of the

different methods as a function of the calibration time. The

histogram method needs a lot of data to produce reliable like-



Histog. comp. Histogram NN Parametric Kernel

7 

12

Method

ME / m

 

Still

Rotating

Figure 4. Effect of orientation

lihoods and the prolonging of the calibration time up to about

30 s clearly improves its estimates. However, the histogram

method reaches its minimum ME with the maximum 60 s

calibration time. The histogram comparison method reaches

its best performance already in about 10 s.
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Figure 5. Effect of calibration time

The parametric approximation, NN and the kernel methods

perform well even with short calibration time. The largest drop

in the ME occurs between 1 s and 2 s. When more data is

collected, the kernel method performs best. The parametric

approximation, NN and the kernel methods perform well,

because they fill the incomplete fingerprint data.

9) Number of access points in the test data: In this work

a set of 20 APs was used. In this section the effect of varying

the number of APs used in the test data is examined. In the

test bed, none of the ranges of the 20 APs covers the whole

test area. Thus to test the effect of number of available APs

on the performance of the algorithms, the measurement from

the strongest APs were used in the test data.

Figure 6 illustrates the ME as a function of the number of
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Figure 6. Effect of number of APs in the test data

available APs. All tested methods benefit from increasing the

number of available APs. However, the ME is not a linear

function of the number of APs: increasing the number of

available APs beyond five does not improve the performance

dramatically. The order of the different methods according to

ME stays almost the same with any number of APs and the

kernel method has the smallest ME throughout the test.

10) Summary of static location estimation algorithms: In

this section, the algorithms are compared by using the best

parameter values found in this work. The numerical results are

shown in Table VII. The probabilistic histogram, kernel and

parametric approximation methods performed slightly better

than the deterministic NN method. The histogram comparison

method resulted in the largest ME whereas the kernel method

resulted in the smallest ME.

Table VII
STATIC ESTIMATORS, RADIO MAP 60r2

Method ME Median RMSE Max 95th
(m) (m) (m) (m) (m)

Histogram 5.5 4.3 8.4 104.5 14.2
Kernel 5.4 4.1 8.9 98.6 12.3

Parametric 5.5 4.3 8.7 106.3 13.1
Histogram comp 7.0 5.0 11.0 106.0 19.4

NN 5.6 4.4 8.8 119.6 13.7

D. Filtering algorithms

The filtering approach was tested by applying the Bayesian

filter with the graph state model and PKF with the stationary

and the constant velocity state models to the static location

estimation algorithms, as discussed in Section IV.

The estimate of the static location estimation algorithm was

given to PKF as a measurement with the covariance matrix

Rk = 4 · I. The time step in the tests was constant (∆t = 1 s)

and the state noise covariance for the stationary state model

was V(wk) = 8.3 · I (Eq. (10)). The state noise covariance for

the constant velocity model is given in Eq. (11) where σ2
C = 2

was used as a parameter. The filtering approach smoothens
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the trajectory of the estimates, and thus reduces ME which

follows especially from the reduction of the maximum error.

Figure 7 illustrates the performance of the different filters

compared to the static estimation algorithms. The smallest

ME was achieved with the PKF that used the stationary state

model.

Table VIII summarizes the performance of the filters when

they were applied to the static kernel method.

Table VIII
FILTERS APPLIED TO KERNEL METHOD, RADIO MAP 60r2

Method ME Median RMSE Max 95th
(m) (m) (m) (m) (m)

Bayesian filter, graph 4.6 3.9 5.7 19.9 11.0
PKF, constant velocity 4.7 4.0 5.8 22.4 11.1

PKF, stationary 4.5 3.8 5.5 20.2 10.8

VI. CONCLUSIONS

In this paper, different location fingerprinting methods were

considered by introducing the mathematical basis of the meth-

ods and testing them with WLAN RSSI measurement data.

The mathematical formulation was carried out from different

points of view, and the parameters of the methods were varied

in the tests in order to obtain the best performance. The

environment variables, such as the number of access points

(APs) and the radio map density, were also varied and the

methods were compared also in these varying circumstances.

The main goal in the mathematical formulation was to

model the location as a continuous random variable which

led to the division of the area of interest into rectangular

cells instead of considering only the individual calibration

points. However, deterministic methods, such as the K-nearest

neighbor (KNN) method and the Weighted K-nearest neighbor

(WKNN) method, were formulated with the discrete location

variable, as they are presented in the literature.

The Bayesian filtering approach with the graph state model

performed clearly better than the static algorithms. PKF was

tested with two state models, namely, the stationary and

constant velocity state models. Both of these state models

resulted in better performance than the static estimators, but

the stationary state model outperformed the constant velocity

model. PKF with the stationary state model performed better

than the Bayesian filter with the graph state model when

the histogram and the kernel method were used as the static

estimation algorithms.

The radio map needs good planning, but an adequate grid

density is hard to determine because it depends on the floor

plan and the locations and number of available APs. In the

tests, calibration times longer than 10 s did not improve the

performance dramatically, but the benefit of rotation during

the calibration was significant. In addition, the increase in the

number of available APs did not diminish ME linearly. These

results can be considered as guidelines in the design process.

In this work the calibration points were chosen to be in

the centers of the cells; more tests can be made to collect the

data from all over the cell to obtain perhaps more reliable

signal characterization inside the cells. Moreover, it would be

interesting to examine how well the algorithms work when

the measurements used in the location estimation phase are

collected with a different receiver than what was used for the

radio map collection. In that case one should pay attention to

the receivers’ different RSSI units.
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of three Kalman filter extensions in hybrid navigation,”

in Proceedings of The European Navigation Conference

GNSS 2005, Munich, Germany, July 2005.

[18] J. Kwon, B. Dundar, and P. Varaiya, “Hybrid algorithm

for indoor positioning using wireless LAN,” IEEE 60th

Vehicular Technology Conference, 2004. VTC2004-Fall.,

vol. 7, pp. 4625–4629, September 2004.

[19] A. H. Jazwinski, Stochastic Processes and Filtering

Theory. Academic Press, 1970, vol. 64.

[20] V. Honkavirta, “Location fingerprinting methods in

wireless local area networks,” M.Sc. thesis, Tampere

University of Technology, 2008. [Online]. Available:

http://math.tut.fi/posgroup/

[21] A. Kushki, K. Plataniotis, and A. Venetsanopoulos, “Ra-

dio map fusion for indoor positioning in wireless local

area networks,” The 7th International Conference on

Information Fusion, pp. 1311–1318, 2005.


