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Abstract—Fingerprint-based (FP) positioning methods deter-
mine a receiver’s position using a database of radio signal
strength measurements that were collected earlier at known
locations. For positioning with WLAN signals, nonparametric
methods such as the weighted k-nearest neighbour (WKNN)
method are widely used. Due to their large data storage and
transmission requirements those methods are infeasible for large-
scale mobile device services. In this paper we consider parametric
FP methods, which use model-based representations of the survey
data. We analyse the positioning performance of those methods
using real-world WLAN indoor data and compare the results to
those of the WKNN method.

I. INTRODUCTION

In the last decade indoor positioning techniques have re-
ceived extensive attention, and are nowadays an essential
feature of many commercial and public service networks.
Since many of these applications have to run on small
mobile devices, the positioning algorithms have strict limits
on allowed energy, memory, bandwidth, and computational
resources.

Positioning in indoor environments can rely on measure-
ments from e.g. an inertial measurement unit (IMU) or from
radio signals such as Bluetooth, wireless local area networks
(WLAN), or ultra-wideband (UWB). In contrast to Bluetooth
and UWB, the infrastructure required for WLAN-based posi-
tioning, namely WLAN access points (APs) and receivers in
user devices (UEs), is already in place. Instead of using signal
propagation time, most WLAN-based positioning algorithms
exploit the correlation between the received signal strength
(RSS) and the UE’s location (see e.g. [1, p. 47]). This choice
is supported by the fact that media access control (MAC)
addresses of APs and the corresponding RSS values are
already contained in transmission data [2, pp. 57 ff.], [3, 4],
so no changes to the AP software are required.

Because modelling signal propagation, especially in indoor
environments, is rather complex, (nonparametric) location
fingerprinting methods are widely applied for positioning [5].
Those methods estimate the UE’s position by comparing the
list of current AP RSS measurements to a database (called
a radio map) of information (called fingerprints) on APs and
their corresponding RSS values for known positions.

Fingerprints (also known as location reports, reception
reports, or observations) are collected in an offline phase
by site survey, war-driving or crowd-sourcing. In addition
to the UE’s current position, each fingerprint (FP) contains

radio characteristic records. When FPs are collected from
a WLAN they include, in general, at least identifiers (IDs)
for the APs from which the UE received a signal and their
corresponding RSS values. For localisation in the online phase,
a common approach is to use some variant of the weighted
k-nearest neighbour (WKNN) method, a nonparametric esti-
mation method. The idea of the WKNN method is to compute
a location estimate as a weighted mean of the k FP locations
from the radio map whose vectors of AP signal strength values
are in some sense closest to the vector of currently measured
AP signal strength values [5]. For overviews on nonparametric
location fingerprinting methods we refer the reader to [5, 6]
and references therein.

Nonparametric fingerprinting methods have the advantage
that modelling the signal propagation is not needed. These
algorithms have been shown to be reasonably precise and
reliable in indoor environments (see e.g. [5, 7]). Their dis-
advantage is that they work directly with the FP data, and the
size of this database can be a critical issue when FP-based
positioning is offered as a large-scale service for mobile de-
vices, especially in cellular telephone networks. For example,
the Third Generation (3G) system provides transmission rates
of 5 Mbit/s at most; for Second Generation (2G) systems those
rates are significantly lower [1, pp. 7 ff.]. For WLANs the size
of the database is less critical since these systems provide
sufficient data transmission rates. Thus, positioning in real
time on a mobile UE may be unfeasible since data transmission
from the server might be too time consuming or expensive [8].
In addition, large amounts of data have to be stored on the
server [9]. One approach for mitigating this problem is to
apply data-compression to the radio map [10, 11]. A more
fundamental way to address the issue is to use parametric
(model-based) FP methods. Those methods use models with
small numbers of parameters to describe the FP data, which
besides data transmission is also beneficial for the positioning.

In this paper we present an experimental comparison of
some of the parametric FP methods that have been proposed
in the literature. We start with a brief summary of the methods.
In Section II we look at a parametric FP approach that uses
elliptical probability distributions for modelling the area in
which an AP’s signal can be received. Section III is dedicated
to a signal propagation path loss model that is calibrated from
FP data. In Section IV we consider an approach that uses
mixtures of Gaussian distributions to approximate multimodal



distributions. This technique is useful for nonlinear and/or non-
Gaussian systems for which traditional approaches such as
Kalman filter (KF) and extended KF (EKF) perform poorly.
In Section V the performance of these different parametric
FP techniques, with and without filtering, is compared in
benchmark tests using real-world WLAN measurements in two
university buildings. Section VI summarises and concludes

II. COVERAGE AREA MODELS

In [6, 8] a computationally light method for parametric
fingerprinting is proposed. In order to reduce the size of the
FP radio map the authors represent the coverage area (CA;
aka reception region) of any AP by an elliptical probability
distribution, which can be represented by five parameters [12].
This probability distribution represents only the region in
which a signal from the AP can be received; other than an
implied reception strength threshold, it gives no information
about the RSS. The approach enables fast transmission of the
radio map to a UE [6, 8] and fast computation of the UE’s
position.

A. Coverage area estimation

The coverage area is modelled in [6, 8] by a posterior
distribution for the ellipse parameters θ given the FP locations
z = {z1, z2, .., zn} where the AP was heard. The distribution
is given by Bayes’ rule

p(θ|z) ∝ p(z|θ)p(θ), (1)

where the likelihood and prior are Gaussian. In other words,
the CA is modelled by fitting the mean and covariance of a
multivariate Gaussian to the data. Alternatively, to obtain a
fit that is robust to outliers, the likelihood and prior could
be Student-t distributed [12, 13]. A Bayesian formulation
of the regression problem has two advantages. Firstly, the
Bayesian prior p(θ) allows one to exploit information about
“typical” coverage areas, which is crucial when only a few
FPs are available [6, 8]. Such information is available through
experimental studies. For example, the typical reception range
for WLAN in indoor environments is 20–50m [2, p. 9].
Secondly, using Bayes’ rule allows recursive estimation and
updating of estimates [8].

The CA method considered above ignores the specific
RSS values corresponding to IDs of observed APs. Hence
it is less sensitive to changes in the radio environment than
fingerprinting methods that use these values. This gain in
robustness, however, comes generally at the cost of lower
accuracy compared with nonparametric fingerprinting methods
(e.g. WKNN), which besides FP locations and IDs of APs
observed in each FP often1 also store corresponding RSS
values, and use them in the positioning phase.

A coverage area method that uses RSS information is
proposed in [6, 13]. Instead of storing only one CA per AP
in the database, several CAs per AP are stored, which are

1Some authors store RSS-based rankings of AP-IDs or RSS ratios or RSS
differences rather than the measured RSS values.

modeled from FP data that is grouped according to RSS.
In [13] the authors examine the use of one, two and three CAs
per AP assuming both Gaussian and Student-t distribution for
location reports. FPs are grouped based on their RSS values
and different CAs are generated using only location reports of
their corresponding group. An important feature is that any FP
can be part of more than one group. Three different grouping
rules are considered: RSS-level, n strongest APs of each FP
and x% strongest APs of each FP; see [13] for details.

B. Positioning using coverage areas

A position estimate for a UE using coverage areas [6, 8, 13]
can be obtained by applying Bayes’ rule. The position estimate
and an uncertainty measure of the estimate can be extracted
from a Gaussian posterior probability density function p(x|c)
of the UE position x given a list c = (c1, c2, ..., cN )T of APs
observed by the UE in the current position. For the conjugate
(i.e. Gaussian) prior pdf of this position, a suitable mean and
covariance, which represent prior knowledge on UE’s position,
could be chosen. In case such information is unavailable,
setting the covariance very large is justified [6]. For computing
the likelihood p(c|x) [6, 8, 13] it is assumed that prior
probabilities of observing cn are equal for all n = 1, ..., N
and that observations are conditionally independent given x.

III. PATH LOSS MODELS

Path loss (PL) models refer to models of the signal power
loss LP or the received signal strength PRSS along a radio link,
averaged over large-scale and small-scale fading [1, p. 127].
In the simplest models the PL depends only on the transmit
power and the distance a radio wave travels; more complex
models take further factors into account. For an overview of
propagation mechanisms and PL models we refer the reader
to [1, 2, 14] and references therein.

The relation between the RSS and the radio wave’s traveled
distance can be used for positioning. From RSS measurements
and PL models the distances between a set of reference
nodes and the target node are estimated, which then enables
estimation of the target node’s position. However, the position
estimate is sensitive to signal noise and PL model parameter
uncertainties because the distance-power gradient is relatively
small [15]. Consequently, these estimates are generally less
accurate than radio-signal based estimates that are derived
using angle of arrival or time delay measurements.

A. Parameter estimation for PL models

It had been shown that it is ill-suited for several real-
world applications to assume the parameters of the PL models
to be known a-priori [3]. Therefore, the parameters should
be estimated, simultaneously with the AP positions (in case
they are unknown), from FP data consisting of AP-IDs and
corresponding RSS values.

A widely applied PL model (see e.g. Dil and Havinga [4])
that is used for describing the RSS dependency of distance



d between AP and UE in any indoor environment is the log-
distance model

PRSS(d) = A− 10n log10(d) + w, (2)

where A = PRSS(1) (apparent transmission power) and n
(PL exponent) are the unknown parameters, and w is a zero-
mean Gaussian random variable with variance σ2

w used for
modelling the shadow fading (aka slow fading). Nurminen et
al. [16] estimate Gaussian distributions for AP position as well
as A and n of the AP’s PL model simultaneously using the
Iterative Reweighed Least Squares (IRLS) method. Similarly
to the method introduced in Section II, the Bayesian approach
used in [16] permits updating AP position estimate and PL
model parameters as new fingerprint data becomes available.

The algorithm uses uninformative Gaussian priors. Nurmi-
nen at al. [16] argue that one can choose the valid prior mean
values for A and n arbitrarily, since for large numbers of FPs
the posterior distribution is typically unimodal, which is sup-
ported by Li’s findings [3]. Nevertheless, for cases with limited
data, a well-chosen informative prior is beneficial. Various
studies yielded values for the PL parameters (e.g. [17]). For the
prior AP position more care should be taken in order to prevent
IRLS placing the AP in an area of weak RSS values [16].
However, even with such measures it cannot be guaranteed
that the algorithm finds the correct AP position, but covariance
matrices yielded by the IRLS give the user a tool to distinguish
between reliable and unreliable AP position and PL parameter
estimates. To account for correlation in measurement errors
the authors add a small constant diagonal matrix for the AP
position’s covariance matrix. The cross-correlation between
AP position and PL model parameters is, however, neglected,
mainly to limit the number of parameters.

B. Positioning using PL models

Once the parameters of the PL model and the positions
for all APs are estimated, trilateration or some other nonlinear
estimation technique can be used to estimate the position of the
UE. In [16] Nurminen et al. test three different methods that
use the PL model (2) with real WLAN data in an indoor office
environment: a grid method that uses standard Monte Carlo
integration, the Metropolis-Hastings algorithm, and the IRLS.
All three methods are analysed using both point estimates
and Gaussian distributions for A and n. The tests show that
assuming Gaussian distributions for the parameters rather than
point estimates is, in general, beneficial. These results are
not surprising, since the PL model contains approximation
errors [18]. If less FP data is available for estimating the PL
model those errors, in general, are larger. Therefore, in such
situations it should be beneficial, from a theoretical point of
view, to assume more uncertainty in the parameter estimates.
Furthermore, the PL exponent n can be assumed constant only
for a limited time in an environment [3]. Since those changes
are minor as long as the environment stays the same, they can
be captured to some extent by assuming some uncertainty in
the PL exponent estimate.

In terms of computational demand the grid method and the
Metropolis-Hastings algorithm have no edge compared with
the WKNN that is used as reference, whereas the IRLS is
significantly faster and achieves running times close to those
of the CA method presented in Section II.

IV. GAUSSIAN MIXTURES MODELS

A known disadvantage of the CA approach discussed in
Section II is that most of the probability mass is located near
the centre of the ellipse that is used for describing an AP’s
coverage area. However, for weak signals the UE is more
likely to be close to the edge of the CA. Therefore, CAs yield
in such cases rather poor estimates in the positioning phase [6].
In the previous section we looked at approaches that address
such issues by taking into account the RSS in addition to
the AP-ID by using PL models. Alternatively, we could apply
Gaussian mixture (GM) models (aka Gaussian sum models).

A Gaussian mixture is a convex combination of Gaussian
density functions N (x;µ,Σ), namely

p(x) =
N
∑

n=1

ωnN (x;µn,Σn), (3)

where weights ωn are nonnegative and sum to one. The main
theoretical motivation behind GM and filters based on it is
that any density function can be approximated, except at
discontinuities, by a convex combination of Gaussian densities
arbitrarily closely [19].

A. Representing FP data using GMs

In [20] Kaji and Kawaguchi introduce an approach that
represent an AP’s RSS distribution as a GM model. Although
this approach generally will require more data to be stored
in the radio map than the CA approach of Section II, it
should still require considerably less storage compared with
traditional FP databases.

In their algorithm the collected FP data is first transformed
into a point distribution, where the point density depends on
the signal strength received in a FP (the higher the RSS the
higher the point density). Then the parameters of the GM
model, namely mean values {µn}Nn=1, covariance matrices
{Σn}Nn=1 and component weights {ωn}Nn=1, are optimised by
expectation maximisation [21]. Kaji and Kawaguchi point out
that their approach allows updating the GM models as new
FP data becomes available. They do not provide an equation
or rule for determining the number of components N . In our
tests in Section V we use N = max([K/40], 8), where K is
the number of FPs in which the specific AP is observed.

B. Positioning using GM approximation of the PL model

In positioning tasks the statistical model is often non-
Gaussian and/or significantly nonlinear (see e.g. [22] for a
criterion for significant nonlinearity). Therefore the Bayesian
recursion is generally unsolvable in closed form [19]. Apply-
ing a GM to solve such generally multimodal systems has
the advantage that it can follow the multiple peaks of the
probability distribution function, unlike the EKF. However,



to ensure fast computing times, which would allow real-time
positioning on mobile devices, the number of components
should be kept small.

Therefore, Müller et al. [23] introduced a generalised ver-
sion of GM that relaxes the non-negativity restriction on com-
ponent weights (GGM). For more details see [24]. Assuming
isotropic ranging models, i.e. omni-directional AP antennas,
the GGM yields a satisfying approximation of the normalised
measurement likelihood with only two Gaussian components,
namely

p(d|x) ≈ N (xu; µ1,Σ1) · (1− c̄ · N (xu; µ2,Σ2)) , (4)

with component 1 having positive weight and component 2
having negative weight, and xu being the position vector
contained in state x. Furthermore, the formula c̄ = c ·
(2π)

nu

2

√

det(Σ2), where c ≤ 1 and nu is the dimension of
xu, ensures nonnegativity of (4). To achieve similar approxi-
mation quality the traditional GM would require a significantly
larger number of components due to the infinite number of
peaks of the likelihood, which would prohibit its application
for real-time positioning.

The main principle of the GGM is to use the AP location
as mean values µ1 and µ2, rather than some of the nor-
malised likelihood’s peaks. It then uses the range measurement
d, which in case of WLAN RSS measurements is derived
from the PL model (2) using the RSS, to determine the
components’ covariance matrices. Due to assuming isotropic
ranging models those covariance matrices are multiples of
the identity matrix, i.e. Σ1 = σ2

1I and Σ2 = σ2
2I with

σ2 < σ1. The values σ1 and σ2 are determined using a
heuristic model, whose parameter(s) are optimised in the off-
line phase by either minimising the Lissack-Fu distance [23]
or the Kullback-Leibler divergence [24] between the exact
normalised likelihood and its GGM approximation.

For positioning a GGM for each observed AP is determined,
based on the AP’s RSS value. Those likelihood approximations
are then multiplied with the prior position estimate to get a
new Gaussian mixture. Finally, this mixture is collapsed to a
single Gaussian to obtain the posterior position estimate and
its covariance.

Kaji and Kawaguchi [20] use a particle filter for positioning
for their approach, which represents FPs by GM models.

V. COMPARATIVE TESTING

In this section we compare the performance of the paramet-
ric fingerprinting and positioning methods described in the pre-
vious sections. We evaluated these methods by analysing their
WLAN based positioning accuracy for six test tracks located
within two buildings of Tampere University of Technology. For
two of the tracks measurements were collected several months
later than for the other four tracks, which were collected at
the same time as the data used for generating the radio maps.
Some of the test tracks had floor changes, which were assumed
to be known. The radio maps were built separately for each
floor. Table I shows for each floor of the two buildings the
number of detected APs, the number of FPs, and the number

Building Floor APs FPs TPs
1 1 200 889 19
1 2 289 243 47
1 3 212 160 22
2 1 154 1 530 168
2 2 186 1 582 33
2 3 148 333 19

Table I
DATA SET SIZES. SOME APS COULD BE HEARD ON SEVERAL FLOORS.

 

 

WKNN CA 1−level CA 2−level PL GGM GMEM
0

20

40

60

80

100

120

140

160

180

si
ze

o
f

ra
d

io
m

ap
[i

n
k

B
]

building 1
building 2

Figure 1. Data storage requirements for radio maps for tested methods in
our two test buildings. There were 1 292 FPs in building 1 and 3 445 FPs in
building 2

of test points (TP) for the four tracks collected at the same
time as the data used for the radio maps. TPs are points on
the test tracks that we positioned in our evaluation.

For comparison we implemented CA-based positioning with
single CA [8] and 2-level CAs with limit −70 dBm [13],
PL model [16], GGM approximation of the PL model [23]
and the signal strength estimation model from [20] (denoted
GMEM). The standard deviation for RSS based methods was
set to 6 dB. In addition to these parametric methods we used a
weighted k-nearest neighbours method (WKNN) with k = 5
as a reference.

Figure 1 shows the sizes of radio maps for both buildings
for each method. The WKNN does not summarise the FPs
in any way, and therefore has the highest requirements. All
parametric methods reduce the size of the radio map consid-
erably. In our tests the radio map size is reduced between 30%
and 90%. However, because the size of the radio map used by
WKNN depends on the number of FPs and the size of the
radio map used by the other methods depend on the number
of APs those numbers cannot be generalised.

Detailed analysis of the radio maps revealed that the PL
exponent estimate n̂ of an AP tends to take values smaller
than 2 if the AP has been observed only in a small number of
FPs. If the AP has been observed in a larger number of FPs,
then a PL exponent estimate smaller 2 is less likely (68% of
all APs that were observed in fewer than 100 FPs have n̂ < 2,
but only 27% of all APs that were heard in more than 100
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Figure 2. Method performances with all data
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Figure 3. Method performances with five strongest measurements

FPs have n̂ < 2). PL exponents smaller 2 can be explained
by the fact that the corridors in which we collected our FPs
acted as waveguides [1, p. 66].

The true routes for all six test tracks were measured by
clicking a map plot on a touch screen while walking and
interpolating between the clicks, and were estimated for both
static case and filtered case (i.e. time series). For the filtering
we considered the state vector xk containing location and
velocity of the UE. Both CA-models and GGM were updated
using a plain Kalman filter. In addition, we collapsed the
GGM to a single component after 5 measurements and after
each time step. The GMEM used a grid for static position
estimation and a particle filter with 300 particles for the time
series estimation; the PL model method used Gauss-Newton
for static positioning and a GM filter [25] for time series.
In time series the effect of parameter uncertainties varied
depending on the location, and therefore was computed in the
prior mean of the estimate. The WKNN was given a standard
deviation of 10m for filtering with a Kalman filter.

The methods were tested in four different scenarios:
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Figure 4. Method performances with 90% of APs dropped
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Figure 5. Method performances when positioning done several months after
data for radio map generation was collected

Fig. 2: full data
Fig. 3:only the APs with five strongest signals were used

for positioning
Fig. 4:90% of APs were dropped pseudorandomly to check

how the methods perform in situations with low AP
density

Fig. 5:data for generating the radio maps and data for
positioning were collected with a time gap of sev-
eral months to evaluate the methods’ performance
degradation over time

In Figs. 2 – 5 we present quantiles with box plots for the
positioning errors, absolute time for one position estimate and
consistency values that can be used to evaluate the accuracy of
the estimated position’s covariance matrix that is reported by
a method. For the n-cons (normal consistency [26, p. 235 ff.])
values we assumed Gaussian distributed positioning errors,
and computed how often the errors were within the 50%
ellipse, i.e.

(x̂u − xu)
T
P

−1

k
(x̂u − xu) ≤ χ2

2(0.5) = 1.3863, (5)



25m

True route PL GGMF FingerprintCA 2-Level

Figure 6. Filtererd routes of selected methods when data for generating the radio map and data for positioning where collected with a time gap of several
months.
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Figure 7. Filtererd routes of selected methods when data for generating the radio map and data for positioning where collected within one month.



where x̂u is the estimated UE position, Pk its covariance
matrix and xu the true UE position. This measure may be
used for checking the error estimate in both ways (if it is too
small or large) as long as the distribution is close to the normal
distribution. In g-cons (general consistency [27]) we computed
how often the errors were within 50% for any distribution
using the modified Chebyshev inequality, namely

(x̂u − xu)
T
P

−1

k
(x̂u − xu) ≤

2

0.5
= 4. (6)

When using all of the data all parametric methods were
inconsistent, with n-cons values far from the desirable 50%
and g-cons values far from the 50% that can be interpreted
as minimum requirement (a g-cons of 60% is not necessarily
better/worse than 55%), and there are no significant differences
between the accuracies of the different methods, except for
filtered GMEM. The computation time for static GMEM is
higher than for filtered GMEM because it is computed on
a grid, whereas the filtered GMEM uses a particle filter.
The results suggest that the 300 particles proposed in [20]
was too few. Using only the five strongest measurements
improved the consistency and reduced the relative computing
time for all methods. The large time value for static PL
can be explained by the facts that in two (of 308) TPs the
convergence was extremely slow and that our implementation
did not restrict the number of iterations. Since the GGM’s
computational demand depends in exponential manner on
number of measurements [24] the reduction in computation
time for static and filtered GGM could be expected, although
in our tests the dependence is not exponential due to collapsing
a GGM after five measurements to a single Gaussian. At the
same time the positing accuracy degraded significantly only
for WKNN and the CA 1-level approach. This is evidence for
dependency of the measurements. In the test building there
were some Multiple Input Multiple Output (MIMO) APs that
produced dependent measurements.

Fig. 4 reveals that the more sophisticated approaches (PL,
GGM and WKNN) perform worse or similar than the relatively
simple CA methods for scenarios with low AP density. The
same holds for the scenario in which the radio map was
outdated (compare Fig. 5).

One possible reason for the static and the filtered GGM’s
poor performance in all four scenarios (compared with their
performance in [23] and in [24]) might be that we used a
different approach for determining the covariance matrices of
the GGM’s two Gaussian components, since our tests where
carried out in a WLAN rather than in cellular telephone or
UWB network. We believe that there exist better approaches
than the heuristic we used, but more research on this topic
will be necessary. A deeper analysis of the GGM can be found
in [24].

Fig. 6 shows an example for positioning with outdated
radio maps. None of the filtering methods provide satisfactory
positioning accuracy in the lower vertical corridor. One reason
for the poor performance in that area is that the radio maps
are missing FPs from the southern, central part of the building.

Another reason may be that the newer data used for positioning
contains weaker RSS values than the older data used for radio
map generation, which causes the distance from UE to APs to
be overestimated. This causes the PL approach, which relies
heavily on the RSS, to position the UE outside the building
at several occasions.

Using an up-to-date radio map (Fig. 7) the filtering methods
provide satisfying positioning accuracy with the PL approach
still struggling. This shows how critical it is to have accurate
PL model parameter estimates.

VI. CONCLUSION

In this paper we presented an overview of parametric
fingerprinting and positioning methods, and tested them with
real WLAN data for different test tracks and scenarios. Be-
sides their positioning accuracies and consistencies, we also
compared the storage requirements for their radio maps with
that of the WKNN (as an example of a nonparametric FP
method).

All parametric methods enable a significant reduction in
the size of the radio map used in the positioning phase. In
addition, our tests show that all parametric methods, except the
CA 1-level and the filtered GMEM method, provide similar
positioning accuracy as the nonparametric WKNN in case of a
high CN density and when using all available measurements.
When using only the five strongest measurements their com-
putation time drops significantly. Furthermore, all parametric
methods still show similar positioning performances, while
the WKNN’s performance degrades considerably. This means
that the parametric methods achieve satisfying positioning
accuracy even with few observable APs. When the AP density
is low or the mapping data is outdated then the simple CA
techniques achieve at least similar positioning accuracy than
the more sophisticated parametric techniques and the WKNN.
Thus, the CA technique gives the best trade-off between accu-
racy and computational demand. The other parametric methods
are, like the WKNN, more vulnerable to harsh environments.
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