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Tommi Perälä received his M.Sc. degree at Tampere
University of Technology, Department of Mathematics in
2008 and is currently Ph.D. student at the same department.
He has been working with personal positioning algorithms
since 2005.
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ABSTRACT

A method to predict satellite orbits in a GPS device without
a network connection is presented. The motivation for this
work was to reduce time to first fix when assistance data is
not available.

The orbit of a satellite is predicted by numerically
integrating the differential equation that models its motion.
The initial position and velocity values used in prediction
correspond to those received from the broadcast when the
device was last operated. These initial values are given in
the Earth centered, Earth fixed reference frame and have
to be transformed into an inertial reference frame prior to
substitution into the equation of motion and subsequent
integration. For this purpose, one needs to predict the
movement of Earth’s rotation axis with respect to both
space (nutation and precession) and to the Earth’s crust
(polar motion). Using precise ephemeris as the initial
condition, we found that this kind of model gave quite
accurate prediction results.

However, the results were worse when initial conditions
were computed from the less accurate broadcast ephemeris
which, unfortunately, is the only ephemeris available to
the navigation device without a network connection. In

addition, we were not able to find a model that would
be able to predict Earth’s polar motion with sufficient
accuracy within the assumed lifetime of the device.
Without the polar motion parameters, one cannot do the
transformation from ECEF to an inertial reference frame.
In this paper we will present a method to improve the
accuracy of the initial velocity of the satellite computed
from the broadcast and simultaneously solve the unknown
polar motion parameters. Tests of our algorithm show that
in 95% of the cases the error in satellite’s predicted position
stays under 21 meters for one day and under 94 meters for
three days.

1 INTRODUCTION

In Global Positioning System (GPS) each satellite
transmits its position in the form of ephemeris parameters
and its clock time. The user’s receiver measures the time
delay it takes for the signal to travel from the satellite
to the receiver, from which the apparent range to the
satellite can be calculated. This range still includes an
unknown bias originating from the time difference between
the receiver’s clock time and GPS time. When the biased
range measurements and positions from four satellites are
known simultaneously the unknown bias as well as the
position of the user can be solved.

When a GPS navigation device is turned on, it typically
takes about 30 seconds to get the first position estimate,
even in an ideal environment. This delay occurs because
the part of broadcast containing the ephemeris takes 12
seconds to transmit and the satellite sends it once every
30 seconds. When the receiver is without a straight view
to the sky, for example blocked by trees or high buildings,
the signal acquisition and demodulation slows down and it
takes much longer to get the first position estimate. If the
signal gets too weak, the demodulation is no longer even
possible. As little time as this 30 seconds delay may seem,
it is usually frustrating even from a typical user’s point
of view, to say nothing of emergency call cases or other
special situations. Therefore some innovations are needed
to provide the first position estimate in a significantly
shorter time. That time is often discussed with abbreviation
TTFF (time to first fix).

Because the main reason for the long TTFF is the time
it takes to receive the satellites’ ephemeris broadcast,
alternative ways of obtaining satellite position information



can be used to reduce it. If the current ephemerides
were in the device already before turning it on, the
connection between satellite and the receiver would be
needed only for the range measurements. This is fast,
because the receiver is potentially capable of getting a
new pseudorange measurement at the beginning of each
subframe of the broadcast or every 6 seconds. Thus it
would be possible to get the first position fix often under
5 seconds after turning on the device, if we only knew the
positions of the satellites.

Besides reducing TTFF, satellite orbit prediction can also
widen the capability of GPS devices. In some navigation
cases, the user is indoors or in urban canyons where the
signal is strong enough to be detected and for getting
pseudorange measurements, but too weak or fragmental
for reading the whole ephemeris. Then the predicted orbit
can make it possible to both compute a position and reduce
TTFF. Orbit prediction can also be used to find the visible
satellites when the almanac is too old. Furthermore, if
the velocities one gets from orbit prediction are accurate
then the Doppler frequency shift can be estimated more
accurately. These facts can speed up the acquisition in
certain cases.

A widely used alternative to satellites’ ephemeris broadcast
is the use of assistance data servers that send data
to the navigation device that enable the computation
of satellites’ position coordinates. However, there are
problems associated with such assistance data: Connection
to the assistance server may fail or the assistance data
connection may be too expensive for the user. Furthermore,
many navigation devices are designed to operate without
any network connection. There is therefore interest in
methods that can be implemented entirely in the navigation
device, without network connection.

One such stand-alone technique is to compute the present
satellite position using satellite broadcast data that was
received when the device was in operation earlier. This
technique has been implemented in commercial products
and is outlined in the literature [1; 2], but these publications
do not give a detailed description of the algorithms. The
aim of this paper is to give a fully detailed presentation
of an ephemeris prediction algorithm. Specifically,
we present a detailed description of all the physical
phenomena we have taken into account in our model as
well as either introductions or references to the algorithms
we have used.

We measure the performance of our model by calculating
the prediction error or 3D-distance between predicted
satellite position and precise ephemeris orbit. The
navigation device’s actual position accuracy depends apart
from satellite orbit error on other matters like satellite
geometry. The largest error source in this case might be the
unknown time difference between GPS time and satellites’

clocks. In order to enable the evaluation of the GPS time,
satellites send clock correction terms as a part of their
broadcast. However when predicting orbits, we have to
use old correction terms. In this paper we concentrate
ourselves on satellite’s position error and do not consider
positioning error at all.

The remainder of this paper is organized as follows.
In Section 2 we present the equation of motion used
in this work to predict the orbit of a GPS satellite.
In Section 3 we provide a detailed discussion on the
different reference frames and the associated coordinate
transformations involved in the calculations. In Section
4 we show how to use the equation of motion and
the received ephemeris broadcasts to compute the initial
velocity of the satellite and solve the unknown polar motion
parameters simultaneously. Finally, in Sections 5 and 6 we
present the results of our simulations and conclude.

2 FORCE MODEL

In this work the orbits of a GPS satellite is predicted by
forming its equation of motion and solving it numerically.
By Newton’s second law F = mr̈, where F is the vector
sum of forces acting on the satellite, m is the mass of the
satellite and r̈ is the second time derivative of satellite’s
position. The position coordinate vector r must be in an
inertial reference frame for Newton’s second law to hold
true. Dividing through by m and denoting the acceleration
by a we get

r̈ =
F

m
= a(t, r) (1)

Given the satellite’s position and velocity at a moment t0,
say r(t0) = r0 and v(t0) = v0, we can compute the
satellite’s position at any other moment t by integrating
equation (1) as follows:

r̈(t) = r0 +

∫ t

t0

(

v0 +

∫ t

t0

a(t, r)dt

)

dt. (2)

The largest forces acting on a GPS satellite are the
Earth gravitation (taking into account the unsymmetrical
mass distribution of the Earth), lunar gravitation, solar
gravitation and solar radiation pressure. In our model, F
is the vector sum of these four forces and thus acceleration
can be represented as

a(t, r) = ag + amoon + asun + asrp (3)

where functions ag, amoon, asun and asrp correspond the
accelerations due to Earth gravitation, lunar gravitation,
solar gravitation and solar radiation pressure respectively.

We now consider a satellite as a point mass located at r
in an inertial Earth centered reference frame. Let ρ(r∗)
be the mass density at a point r∗ inside the Earth and let



G be the gravitation constant. Then the part of satellite’s
acceleration due to Earth’s gravitation is

ag(r) = −G

∫

ρ(r∗)(r − r∗)

‖r − r∗‖3
dr∗.

Because ∇(1/‖r − r∗‖) = −(r − r∗)/‖r − r∗‖3, the
equation can be reformulated as

ag(r) = ∇U(r) = ∇G

∫

ρ(r∗)

‖r− r∗‖
dr∗,

where U is the gravity potential.

It is appropriate to write the potential U in Earth centered,
Earth fixed reference frame. The advantage in this is that
the Earth’s density function ρ and therefore also U are
time independent in a reference frame that is rotating with
the Earth whereas in the equations above one should have
actually written ρ(r∗, t). Denoting the satellite’s ECEF
position re and the point inside the Earth r∗e the gravity
potential can be written as

U(re) = G

∫

ρ(r∗e )

‖re − r∗e‖
dr∗e . (4)

If the re was computed from corresponding inertial vector
by multiplying by a transformation matrix R i.e. re = Rr
then

ag(r) = R−1∇U(re). (5)

However, before we can use this equation we first have to
compute the gradient of the potential U .

In geodesy and related sciences it is customary to write the
potential U as a spherical harmonics series. In this kind
of representation, in place of the unobservable quantity ρ
the Earth’s mass distribution is represented by coefficients
Cnm and Snm, that can be determined experimentally.
Furthermore in this representation U can be expressed as a
series of terms that are functions of the longitudeλ, latitude
ϕ and radius r = ‖re‖ which are the spherical coordinates
representation of the satellite’s position re. The spherical
harmonics representation of the potential U is

U(re) =
GME

r

∞
∑

n=0

n
∑

m=0

[

(

RE

r

)n

Pnm(sinϕ)

(

Cnm cos(mλ) + Snm sin(mλ)
)

]

, (6)

where Pnm is associated Legendre polynomial of degree n
and order m, ME is the mass and RE is the radius of Earth.
The derivation of this representation from the integral (4)
can be found for example from the book [3, s. 56-57].

The first term of the sum (6) is the potential of Earth
when approximating it as a spherically symmetric ball. The
subsequent terms are added to correct this approximation.

Because they decrease very fast with increasing n and m,
the potential can be approximated by taking into account
only the first few terms. We have been using terms up to
the degree and order 8.

The associated Legendre polynomials satisfy some
recurrence relations that can be used to evaluate the terms
in the sum (6). Furthermore also the partial derivatives of
the potential U or the satellite accelerations corresponding
to each potential term can be computed recursively. We
have used the algorithm introduced by L. E. Cunningham
[4] and later extended by Métris [5] for partial derivatives
of higher degree.

After the Earth’s gravitation the second biggest
acceleration components in the satellite’s equation of
motion are caused by the gravitational forces of the Moon
and the Sun. When computing these accelerations one
must take into account that not only the satellite but also
the Earth is drawn by the Moon. Therefore when dealing
with Earth centered reference frame one has to compute the
acceleration of the satellite in relation to the acceleration
of the Earth. To compute this relative acceleration acting
on the satellite because of the gravitational force of any
celestial body, one can use the form

acb = GM

(

rcb − r

‖rcb − r‖3
−

rcb

‖rcb‖3

)

, (7)

where M is the mass of the celestial body, rcb is its
position in Earth centered inertial reference frame and r
is the position of the satellite in the same reference frame.
Besides the Moon and the Sun this formula can be used also
for computing the planetary accelerations, which we have
ignored because of their small influence to the satellite’s
orbit.

The orbits of the Sun and the Moon have to be known
in order to compute the gravitational acceleration with
the formula (7). In our model we use simple models
presented in [3, s. 70-73] to compute the lunar and the
solar coordinates. The coordinates are accurate to about
0.1-1% [3].

The last acceleration component in equation (3) arises
when a satellite reflects and absorbs photons emitted by the
Sun. Taking into account only the part of radiation being
parallel to the direction from satellite to Sun the formula

asrp = −α λ P0 (1 + ε)
AU2

r2
sun

A

m
esun (8)

gives an estimate for the acceleration. This kind of
model for solar radiation pressure (SRP) is called also the
Cannonball model [6]. In formula (8) the factor rsun is
the distance from satellite to Sun and esun is a unit vector
from satellite to Sun. The factor λ is a shadow function,
whose value equals one when satellite is in sunlight, zero



when it is in umbra and something between when it is
in penumbra. We have used a conical shadow model
described in the book [3, s. 80-83]. The remaining factors
are constants: AU is the astronomical unit, P0 is the solar
radiation pressure at the distance of 1AU from the Sun, ε is
the reflectivity coefficient of the satellite, m is the mass of
the satellite and A is the satellite’s surface area. For these
constants we have used values shown in the Table 1.

Table 1: Constants in the solar radiation pressure formula

P0 [Nm−2] ε AU [km] A [m2] m [kg]

4.56 · 10−6 0.21 149 597 870.691 13.4 1075

However, it is hard to know the exact mass, surface area
or reflectivity of the satellite. These numbers are also
different for different satellite types or blocks IIR and IIA.
For these reasons, the acceleration formula (8) is multiplied
with an additional parameter α. When the value of this
parameter is estimated based on real GPS orbit data, the
magnitude of asrp gets fixed regardless of the values chosen
for the other constants. We estimated α separately for
each satellite using an extended Kalman filter, in which
the measurement model is discrete and state model is
continuous. This kind of filter is presented in [7, s. 278]
and [8, s. 405]. Details of the state and measurement
models for this case are presented in [9]. As measurement
data we used precise ephemeris positions published by
National Geospatial-Intelligence Agency (NGA) [10]. The
estimation of the parameter alpha was done several times
using different periods during the GPS weeks 1513 - 1568.
The resulted values were varying a little bit as a function of
time, especially during times when the satellite is in umbra.
However we wanted a constant parameter for each satellite
and therefore took the satellite-specific mean. Results of
this estimation process are shown in Table 2.

Table 2: Solar radiation pressure parameters

PRN 1 2 3 4 5 6 7 8
α 1.43 1.47 1.33 1.34 1.44 1.34 1.44 1.33

9 10 11 12 13 14 15 16
1.33 1.32 1.47 1.44 1.48 1.48 1.45 1.48

17 18 19 20 21 22 23 24
1.43 1.49 1.46 1.48 1.45 1.47 1.50 1.36

25 26 27 28 29 30 31 32
1.34 1.33 1.33 1.46 1.42 1.33 1.45 1.35

3 REFERENCE FRAMES

The International Earth Rotation and Reference Systems
Service (IERS) maintains two important reference systems:
a Celestial Reference System (CRS) and a Terrestrial
Reference System (TRS). CRS is an inertial reference
system, whose coordinate axes maintain their orientation
with respect to distant stars. However the origin of this

reference frame is in the center of the Earth and Earth
is in an accelerated movement while orbiting around the
sun. Therefore it is not precisely inertial, but a good
approximation of an inertial reference frame. TRS is
an Earth fixed reference frame. Its origin is the Earth’s
centre of mass and z-axis is the mean rotational axis of the
Earth. This mean pole of rotation was defined, because
the Earth’s instantaneous rotation pole moves with respect
to Earth’s crust whereas in Earth fixed reference frame
the axes must be pointing at a fixed point on the Earth’s
surface. The coordinate transformation between these two
reference systems can be written as

rTRS(t) = W(t)G(t)N(t)P(t)rCRS, (9)

where the matrices W, G, N and P describe polar motion,
Earth rotation, nutation and precession, respectively. The
transformation matrices are time dependent and thus the
vector rCRS, being constant in CRS, is time dependent
after transformation to TRS. We use IAU76 theory when
computing the precession matrix P and nutation theory
IAU80 for matrix N. A detailed description of these
models are presented in [3].

The third rotation matrix G describes the rotation of the
Earth. In order to compute it, we need Greenwich Mean
Sidereal Time (GMST), which can be computed as follows.
Starting from GPS time, we first compute corresponding
Julian date as JDGPS = 2444244.5 + t/86400 s, where
t is the amount of seconds elapsed since the beginning
of GPS time. After that we present the Julian date in
Universal Time UT1 by subtracting the leap seconds τ
which have been added to the Coordinated Universal Time
(UTC) since the beginning of GPS time, 6.1.1980 and
adding the difference dUT1 = UT1-UTC. That is

JDUT1 = JDGPS +
dUT1 − τ

86400s
.

The amount of leap seconds is typically known by the GPS
device, because the current amount of leap seconds is part
of the broadcast message and new leap seconds are added
quite seldom. However the time difference dUT1, which
is one of the Earth orientation parameters (EOP), is not
necessarily known when starting the prediction. This time
difference is small (|dUT1| < 0.9 s), but it causes some
error if we neglect it. When JDUT1 is divided into two
parts, such that the first part is the JD at the beginning of the
current day and the second part is the rest of JDUT1, we get
parameters JD0hUT1 and UT 1. When computing these, one
has to notice that the julian date number changes at noon,
but 0 h universal time is at the midnight. Also the UT 1
must be given in seconds. Taking these facts into account
we can apportion as follows:

JD0hUT1 = $JDUT1 + 0.5% − 0.5

UT 1 = (JDUT1 − JD0hUT1) · 86400 s.



Now we can compute the Greenwich Mean Sidereal Time
in seconds with the formula

GMST = 24110.54841 + 1.002737909350795 UT1+

8640184.812866 T0 + 0.093104 T 2 − 6.2 · 10−6 T 3, (10)

where the time arguments T and T0 are

T =
JDUT1 − 2451545

36525
T0 =

JD0hUT1 − 2451545

36525
,

i.e the number of Julian centuries of Universal Time
elapsed since 2000 Jan. 1.5 UT1 at the current time and
at the beginning of the day, respectively. Furthermore the
equation of equinoxes

GAST = GMST +∆ψ cos ε + 0́.́ 002649 sinΩ

+ 0́.́ 000013 cosΩ (11)

is used to compute Greenwich Apparent Sidereal Time
(GMST). In this equation the parameters ∆ψ, ε and Ω
come from the nutation theory and .́́ denotes that the
number is presented in arcseconds. Finally, we can
compute the transformation matrix

G(t) = Rz(GAST).

In this equation Rz is a simple rotation around the z-axis
i.e

Rz(γ) =





cos γ sinγ 0
− sinγ cos γ 0

0 0 1



 . (12)

After multiplying the vector rCRS with precession, nutation
and Earth rotation matrices, it is in a Terrestial Intermediate
Reference System (TIRS), whose z-axis points to the
Celestial Ephemeris Pole (CEP). We assume that the
orientation of Earth’s rotation axis is the same as the
orientation of this CEP pole. CEP is not fixed with respect
to the surface of the Earth, but performs a periodic motion
around its mean position, called polar motion. The motion
is small, having a radius of under 10 m, but it is important
to take this into account. The rotation matrix describing the
polar motion is

W(t) = Ry(−xp)Rx(−yp).

where xp and yp are the polar motion parameters and Rx

and Ry are simple rotation matrices around the x- and
y-axes. Together with dUT1 they are called also Earth
Orientation Parameters (EOP). The daily values for these
parameters can be found from the homepage of IERS [11].

IERS reports the observed values for EOP and quite
accurate short term predictions. However the Earth
orientation parameters are not long-term predictable,
which causes some problems while trying to do the

prediction in a device without any network connection. We
can not form a prediction model which would be valid for
life of the device i.e. years. Neither are the EOP parameters
part of the broadcast message yet, though this fact will be
changed in the future as the new L1C signal comes into use
[12]. However in chapter 4 we will show how to infer these
parameters based on collected broadcast ephemeris data.

When transforming the position vector rCRS to the TRS
one matrix at a time according to the equation (9), every
intermediate step is also a reference frame. For example
when multiplying with matrix P we get a mean of date
(mod) system and after multiplied also with nutation matrix
N we get a true of date (tod) system. The Figure 1
illustrates the connection between CRS and TRS, as well
as the intermediate reference frames between them. Next
we will present the reference frames we have used, and
illustrate how the transformation matrices between them
are compounded of those four matrices connecting CRS
and TRS.

Figure 1: Connection between the IERS reference systems CRS

and TRS. Transformation matrices and intermediate reference

frames. The inverse of a transformation matrix is same as its

transpose.

The broadcast position and velocity we get from broadcast
ephemeris are in Earth fixed reference frame WGS84,
but we assume those coordinates are equivalent to the
corresponding TRS coordinates. Now for numerical
integration we need an inertial reference frame and we
choose to use the TIRS system at epoch t0, the initial



epoch for the equation of motion. Before starting to predict
satellite’s position according to the integral (2), we need to
transform the position and velocity vectors to this inertial
reference frame, denoted by subscript IN. For position
vector, the transformation from TRS at an arbitrary time
t to the TIRS system at epoch t0 is

rIN = rTIRS(t0) (13)

= G(t0)N(t0)P(t0)P
T (t)NT (t)GT (t)WT (t)rTRS.

However, when we start the prediction we have t = t0 and
the transformation is simplified to

rIN = WT (t0)rTRS(t0). (14)

To make the transformation for velocity vector *vTRS, we
first derive the time derivative of the matrix GT . Denoting
GAST = γ(t) and using the chain rule we get

dGT (t)

dt
=

dRT
z (γ(t))

dt
=

dRT
z (γ)

dγ

dγ

dt
(15)

The derivative dRT
z /dγ can be calculated using the

equation (12)

dRT
z (γ)

dγ
=





− sinγ − cos γ 0
cos γ − sinγ 0

0 0 0





=





cos γ − sinγ 0
sin γ cos γ 0

0 0 1









0 −1 0
1 0 0
0 0 0



 . (16)

Multiplying a vector from the left side with the right most
matrix is the same as cross product with ez = [001]T . This
is a reason for denoting this matrix (ez×) in the following
equation:

dRT
z (γ)

dγ
= RT

z (γ)(ez×).

Next step is to differentiate the GAST (= γ) with respect to
the time. Taking a look at the equations (10) and (11) one
can notice that the time derivative of the term containing
UT 1 is the largest and the other terms are negligible.
Therefore

dγ

dt
=

dGAST

dt
≈ 1.002737

2π

86400s

= 7.2921158553 · 10−5s−1,

which is the Earth’s angular velocity and will be denoted
as ω. Now according to equation (15)

dGT

dt
= RT

z (γ)(ez×) · ω = GT (ω×),

where ω = [0 0 ω]T .

Now we can calculate the transformation for a velocity
vector by differentiating both sides of the equation

(13). Before doing that we denote the matrix product
G(t0)N(t0)P(t0)PT (t)NT (t) as C and discover that the
time derivative of this matrix product is close to zero.
This is because the matrices at epoch t0 are all constants
and precession and nutation are much slower than Earth’s
rotation. Therefore we consider the matrix C a constant
when we now calculate the time derivative of the equation
(13). We get

drIN

dt
=

d

dt

(

CGT (t)WT (t)rTRS

)

=
d

dt

(

CGT (t)rTIRS

)

= C

(

GT (t)
drTIRS

dt
+

dGT (t)

dt
rTIRS

)

= C
(

GT (t)vTIRS + GT (t) (ω × rTIRS)
)

.

If the derivative of the polar motion matrix is assumed to
be zero, then

vTIRS =
d

dt

(

WT rTRS

)

= WT vTRS.

We get

vIN = CGT (t)
(

WT (t)vTRS + ω ×
(

WT (t)rTRS

))

.

Next we denote the transformation matrix from reference
frame A to B as RB

A. Now RTIRS
CRS = GNP and RCRS

TIRS =
(RTIRS

CRS )T = PTNTGT . We end up with the formula

vIN = RTIRS
CRS (t0)R

CRS
TIRS(t)

(

WT (t)vTRS +

ω ×
(

WT (t)rTRS

)

)

. (17)

for velocity transformation from TRS to the chosen inertial
reference frame.

After predicted the satellite’s position and velocity at time
t in the future, we have to do the transformations the other
way around. Solving rTRS and vTRS from equations (13)
and (17) we get

rTRS = W(t)RTIRS
CRS (t)RCRS

TIRS(t0)rIN (18)

vTRS = W(t)
(

RTIRS
CRS (t)RCRS

TIRS(t0)vIN −

ω ×
(

RTIRS
CRS (t)RCRS

TIRS(t0)rIN

)

)

. (19)

However, when it is a prediction in question, we actually do
not know the exact matrix W(t). However, we might know
the polar motion parameters xp and yp at the beginning
of prediction and because they do not change that much
in a couple of days long prediction, we can approximate
the matrix by W(t0). Similarly the dUT1 value at the
time t can be approximated by the dUT1 value at t0 while
computing the matrix RTIRS

CRS (t).

We need to do some transformations between different
reference frames not only at the beginning and in the end



of the prediction but also during the prediction. In the
section 2 it was mentioned that we need to represent the
satellite’s position vector in an Earth fixed reference frame
to calculate the acceleration due to the Earth’s gravitation.
TRS is an Earth fixed reference frame, so we can do the
transformation to it using the equation (18). Therefore
the transformation matrix R presented in equation (5) is
W(t)RTIRS

CRS (t)RCRS
TIRS(t0). Because we need to do this

transformation at every time step of numerical integration,
it is good to pay attention to the computational complexity
of this matrix. To speed up the calculation, we approximate
the matrix R in the integration. If the length of prediction
is only some days, the precession and nutation matrices
remain almost unchanged. Thus we can write PPT ≈ I
and NNT ≈ I. The matrix

W(t)G(t)N(t)P(t)PT (t0)N
T (t0)G

T (t0)

can be approximated by

W(t)G(t)GT (t0).

Multiplication with the matrix G rotates the reference
frame according to the Earth’s rotation. Mainly it is a
simple rotation around the z-axis, with the angular speed
of the Earth. If the x-axis points to certain meridian at the
initial time t0, then at the time t it points to the direction we
get by rotating the x-axis around the z-axis with an angle
of α = (t − t0)ω. Thus

W(t)G(t)GT (t0) = W(t)Rz((t − t0)ω)

is the matrix R used to transform the inertial vector to
an Earth fixed reference frame when computing the Earth
gravitational acceleration. Its transpose is then used to
transform the acceleration vector to the IN reference frame.
Again, in the prediction the matrix W(t) is replaced with
W(t0).

There is still one transformation between the reference
frames to be presented. The model that is used to compute
the solar and lunar positions gives the coordinates in the
J2000.0 ecliptic reference frame, where the z-axis points to
the mean pole at epoch J2000.0 and xy-plane is the orbital
plane of the Earth. We first do the transformation to the
equatorial coordinates or to CRS as follows:

rcb = Rx(ε)rcb,

where ε = 23.43929111◦ is the obliquity of the ecliptic.
Then we transform the coordinates further to the chosen
inertial reference frame. Because CRS is also an inertial
reference frame, we just do a multiplication with a constant
matrix, that is

rcb,IN = RTIRS
CRS (t0)rcb,CRS.

After this the coordinate vector rcb,IN of a celestial body is
ready to be substituted in the equation (7) or (8).

4 INITIAL VALUE IMPROVEMENT

In the previous sections we have presented how to predict
the satellite’s orbit by solving its equation of motion
using satellite’s positions and velocity at t0 as initial
conditions. In addition we need to know two of the Earth
orientation parameters: xp and yp in order to be able to
calculate the needed transformation matrix W(t0). The
third Earth orientation parameter, dUT1, is also needed
when computing the matrices RTIRS

CRS (t), but we set it zero
when doing the prediction. Because the parameters xp and
yp are unpredictable, we have to get them somehow from
the broadcast ephemeris, as we get the initial position and
velocity. Otherwise this algorithm would not be suitable
for a totally self-assisted GPS device. We now call the
satellite’s initial state and polar motion parameters as initial
conditions, and present how the values of these initial
conditions are set up.

The GPS satellites’s position can be calculated using the
16 ephemeris parameters that are broadcast by the satellite.
For further information of the computation the satellite’s
position see [13] or [14]. The received position is in
WGS84 but we assume it to be in TRS system, which is
very close to WGS84. By differentiating the parameters
with respect to time, we can also calculate satellite’s
velocity in TRS, as described in [15]. Also an instructional
implementation for this is available in [16].

Having implemented the equations of motion described
in Section 2, we saw our model was operating very well
when using precise ephemeris position and velocity as a
initial condition. Unfortunately the broadcast position and
velocity are more inaccurate. Moreover, a small error in
the satellite’s initial state causes a large error in the final
predicted position. Therefore it is necessary to find means
to improve the satellite’s initial state.

The first thing we do to improve the initial state accuracy
is to add an antenna correction to the broadcast ephemeris
position. By antenna correction we mean the difference
between the satellite’s center of mass and antenna phase
center. When positioning with GPS, the receiver measures
the pseudoranges between the satellites and itself using
the signal transmitted from satellites antennas. Thus
the broadcast ephemeris position describes the position
of satellite’s antenna. However, when doing the orbit
prediction, it is physically more correct to start the
prediction from the satellite’s center of mass. We
have provided antenna offsets used by NGA, which are
documented in [17]. For IIA satellites the offset is

δ =
[

0.2794 m 0.0000 m 0.9519 m
]T

,

and for block IIR the offsets are satellite-specific. The
offset vectors δ are given in a satellite body fixed reference
frame. We now let r be the satellite’s position in an Earth



centered reference frame, for example TRS and let esun be
a unit vector from satellite to sun in the same reference
frame. Then the unit vectors pointing to the x, y and z
directions of satellite body fixed frame can be written as

uz = −
r

‖r‖
, uy = −

esun × uz

‖esun × uz‖
and ux =

uy × uz

‖uy × uz‖

in TRS. The unit vector uz is pointing towards the Earth,
uy is chosen such that it is perpendicular to the plane
containing both the Earth and the Sun, and ux defined such
that it completes the right-handed system. Using these, the
antenna offset in TRS can be written as

δ = δxux + δyuy + δzuz .

The antenna offset vector δ gives the antenna’s position
coordinates with respect to the center of mass of the
satellite. Now we know the coordinates of antenna phase
center, that is the satellite’s broadcast position r and want
to calculate the center of mass coordinates rcom. It can be
done by subtracting the offset:

rcom = r − δ.

The opposite correction, from center of mass to antenna
phase center, could be done after the prediction. However,
in our tests we do not do it, because we compare the
predicted satellite positions to the precise ephemeris of
NGA [10], which is given in terms of the center of mass.

After applying the antenna correction, we solve the
unknown polar motion parameters and improve the
inaccurate BE velocity by fitting these variables to the
broadcast data. The fitting procedure goes along as
described in the following and the Figure 2 illustrates the
used notations.

 













Figure 2: Least squares fitting. We solve the initial velocities of n

satellites and polar motion parameters, which form the variable

x, such that the prediction function f would predict the satellite

track going through the two satellite states around the TOE = toe.

That is, we want to find the x that minimizes the distance between

f(x, rBE(t2)) and y.

Consider one ephemeris parameter set, which is received as
a broadcast message and having a certain time of ephemeris
(TOE). With these parameters we are able to calculate
the satellite’s state i.e. position and velocity at any time
within ±2 h from the TOE. Going outside of this range
the precision of BE deteriorates rapidly. We now compute
satellite’s state at the time instants t1 = TOE − 1.5 h and
t2 = TOE + 1.5 h for n satellites, from which we have
received the broadcast information. Let us denote y the
vector containing the antenna corrected BE positions and

the BE velocities of all these satellites at the first time
instant t1 i.e.

y =

[

yr

yv

]

,

where

yr =







rsat1
BE (t1)

...
rsatn

BE (t1)






and yv =







vsat1
BE (t1)

...
vsatn

BE (t1)






.

Then we denote f the function which, starting from
latter time instant t2, computes the satellites’ states at t1.
This function carries out first a coordinate transformation
from Earth fixed TRS to the inertial reference frame IN
according to the eq. (14) and (17), secondly it solves a
nonlinear differential equation by evaluating the integral
(2) and finally does the transformation back to TRS using
(18) and (19). As input parameters this function requires
satellites’ positions and velocities at t2 as well as the polar
motion parameters xp and yp of the same time instant.
Polar motion parameters are needed when calculating
the transformation matrices and they are common to all
satellites. The third of the EOP:s, dUT1, is also unknown,
but we set it zero when evaluating the value of function f .
We fix the initial positions of the satellites on the antenna
corrected BE positions denoted rBE(t2). The rest of the
function inputs form the variable vector

x =





xp

yp

vBE(t2)



 ,

where

vBE(t2) =







vsat1
BE (t2)

...
vsatn

BE (t2))






.

Now we want to find the x̂, with which the value of the
function f is as near the point y as possible. In other words
we solve the nonlinear least squares fitting problem

x̂ = arg min
x

(

∑

i

p2
i (x)

)

= arg min
x

pT (x)p(x)

where the residual function p is

p(x) =

[

fr(x, rBE(t2)) − yr

(fv(x, rBE(t2)) − yv) · 1000

]

.

Here we have partitioned the vector valued function
f into two pieces, such that the first contains all the
components representing the satellites’ positions and the
second contains the velocities. The magnitude of the
velocity residuals differs significantly from the position
residuals. We have found experimentally, that multiplying
the velocity residual by 1000 works well in this case.
Instead of the residual function we could have put the



weights also to the function to be optimized ending up to
the weighted least squares problem

x̂ = arg min
x

(

pT (x)Dp(x)
)

,

where the diagonal matrix D has a value of
√

1000 in
those elements corresponding to the velocity components
and ones elsewhere.

The nonlinear least squares problem can be solved with
Levenberg-Marquardt method. The algorithm requires an
initial guess for x. For the velocities v(t2) the initial
guess is taken from the broadcast velocity vBE(t2). For
polar motion parameters we have used the values xp0 =
0.05 arcseconds and yp0 = 0.35 arcseconds, which is the
approximate center of the polar motion spiral during the
years 2004-2008. In practice the initial guess for polar
motion could be taken from the results of previous LSQ-
solution. An initial guess near the true value speeds up the
convergence of the least squares fitting algorithms.

As a result we get quite accurate polar motion parameters
x̂p and ŷp as well as improved velocities of the satellites
v̂ at the time instant t2. Thus we are able to start our
prediction from t2 to the future.

5 TESTS

We tested our algorithm with broadcast ephemeris from
GPS weeks 1540-1580 and having the TOE equal to 57600
s. The initial conditions were fitted with the ephemeris of
five satellites at time, after which predictions were done for
each of these satellites. There was about 160 fittings and
800 predictions together. The error in the predicted satellite
position was computed by taking the norm of the difference
between predicted position and NGA precise ephemeris
position. We chose the 95% quantile of these errors and this
is plotted as a blue line in Figure 3. Futhermore, green line
is the corresponding error quantile, if we could use NGA
precise ephemeris and the exact EOP as initial conditions
in our force model.

When considering the results of the Figure 3, one should
bear in mind that the presented satellite’s position error can
not be converted directly to the final positioning error of
the user. The error component having strongest effect to the
final positioning error is the error component parallel to the
line between the user and the satellite, and this is varying
together with the user’s location on the Earth. However,
the error curve of the Figure 3 gives a good upper bound
to this user range error (URE). Another factor that has a
significant effect on the positioning error, is the clock offset
of the satellite, which is unpredictable. We do not consider
this error here but it is discussed in [2] .

To illustrate the influence of the initial value improvement
algorithm of Section 4 we plotted a prediction error,
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Figure 3: Error in satellite’s position as a function of prediction

length. Blue line is the algorithm, which could be running in

an autonomous positioning device. Green line is the prediction

error with the same force model, if we could start the prediction

from satellite’s precise ephemeris state and knew the EOP at the

beginning of prediction.

where the initial conditions were taken directly from the
broadcast and another line for case where we did the
antenna correction to the broadcast position, but no fitting.
These curves are shown in the Figure 4. Comparing to
Figure 3 we can see that fitting the initial velocity with this
least squares algorithm has a great impact to the prediction
error.
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Figure 4: How the initial conditions affect to the prediction

result? Here our simple force model is tested with initial

conditions taken from a) broadcast directly (black line) b) antenna

corrected broadcast (red line) c) NGA precise ephemeris (green

line, same as in Figure 3). In every case the EOP is assumed to

be known at the beginning of prediction.

In this paper we simulated the presented least squares
fitting algorithm using five satellites’ broadcasts, which
all had the same TOE. Note that identical TOEs were
assumed for simplicity and that the algorithm can equally
well handle broadcasts having different TOEs. Indeed, this
is an important notion as in real applications the TOEs
differ from broadcast to broadcast, depending on what the
receiver has collected. However one should not use too
old, say over a week old broadcasts. This is because EOP
are changing with respect to time and this is not taken into
account in our algorithm.



6 CONCLUSION

We presented a method to predict satellite tracks in
an autonomous navigation device, which works without
needing any network connection. Broadcast ephemeris is
the only data it receives. The presented method is suited to
reduce TTFF when the Assisted GPS is not available.

Our method for predicting satellite’s position is based on
solving satellite’s equation of motion numerically. We have
included only the most significant forces: Earth gravitation,
solar and lunar gravitation and solar radiation pressure to
the equation of motion, which we call the force model.

After showing how to form the satellite’s equation of
motion we presented a method to solve satellites’ initial
positions and velocities from the broadcast ephemeris,
such that they will suit better as initial conditions of the
force model. We first do an antenna correction to the
broadcast position, after which we use these corrected
satellite positions together with our force model to solve
the velocities of the satellites as well as the polar motion
parameters, which are needed in order to know the exact
rotation axis of the Earth.

We tested our method with GPS broadcast ephemeris
data and calculated the prediction error using the precise
ephemeris delivered by NGA as a reference. In our test
set 95% of the prediction errors were below 21 meters
for one day prediction and below 94 meters for three day
prediction. Noting that in three days the satellite has
travelled about 1 000 000 km, this level of accuracy is
notable. To appreciate the benefit of the presented least
squares fitting method we also calculated the prediction
error of our force model, when the initial state was taken
a) from precise ephemeris and b) from pure or unfitted
broadcast ephemeris. With precise ephemeris as initial
condition, the force model is almost order of magnitude
better than with pure broadcast. However, with the
presented fitting method the prediction accuracy with BE
got very close to the accuracy of predictions with PE. In
addition, the least squares fitting method can solve the
polar motion parameters, which are likely to be unknown
for the device.

We believe that error in an initial state that is based
on precise ephemeris has a negligible effect on satellite
orbit prediction, compared to errors in the force model.
Furthermore, because the prediction accuracy with fitted
initial conditions is very close to this, we assume that also
the most significant error source in that case arises from the
force model.

For radiation pressure we used a simple Cannonball-model
and the magnitude of the force was estimated separately
for each satellite. However, when GPS tracks are predicted
with high level accuracy, the used radiation pressure

models are more sophisticated and the free parameters are
estimated just before starting the prediction, using precise
ephemeris data. In our case the device has received only
some broadcast ephemeris sets, whose accuracy is worse
and therefore this kind of estimation might not be possible.
Therefore we believe the model for solar radiation pressure
is constricting the level of accuracy. To enhance the
accuracy one should, if possible, try to make the model for
solar radiation pressure better.
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