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An empirical solar radiation pressure model for
autonomous GNSS orbit prediction

Juha Ala-Luhtala, Mari Seppänen and Robert Piché
Tampere University of Technology, Finland

Abstract—GNSS satellite orbits can be predicted by integrating
the satellites’ equation of motion. If the prediction is done in
a consumer grade positioning device, a simplified version of
the equation of motion is required. The forces due to Earth’s
gravitation, solar gravitation and lunar gravitation should be
included, but the models for the smaller non-gravitational forces
can be fairly simple. This paper presents a simple empirical two
parameter solar radiation pressure model for an orbit prediction
application in a navigation device that does not have a network
connection. The model is tested by predicting the orbits of GPS
and GLONASS satellites up to 5 days into the future, using
position and improved velocity from broadcast ephemerides as
an initial state. The predicted orbits are compared to the precise
orbits from International GNSS Service (IGS).

I. INTRODUCTION

When a stand-alone GNSS receiver is turned on it takes some
time before the first position estimate is available to the user.
This delay, called Time To First Fix (TTFF), is at least 30
seconds but can be even several minutes if there are obstacles
blocking the direct view to the sky. The delay is frustrating for
the user and can also be a serious problem in an emergency or
other special situation. The reasons for this delay are the time
needed for signal acquisition and tracking, and the time needed
to receive the navigation data send by the GNSS satellite.
One method to reduce the TTFF is to provide the ephemeris

data to the device from an alternative source. Then the device
needs to receive only the time of the satellite and less time
is spent in receiving the navigation data. The position and
velocity information of the satellite can also be used to
speed up the signal acquisition, because the satellite’s position
coordinates can be used to identify the visible satellites and
with the information about satellite’s velocity the range of
possible Doppler frequency shifts can be reduced. A widely
used method is to provide the needed ephemeris information
using assisting data servers. However, since many navigation
devices do not have a network connection, there is interest in
developing methods that can provide the ephemeris information
autonomously and without the need of a network connection.
”Self-assistance” techniques for computing the ephemeris

data have been implemented in commercial products and are
outlined in the literature [1; 2], but these publications do not
give a detailed description of the algorithms. In this paper we
use a method that we presented first for GPS satellites in [3; 4]
and recently extended to GLONASS satellites in the paper [5].
In this method the satellites’ position and velocity are predicted
by integrating the satellite’s equation of motion several days

forward using initial conditions computed from the satellites’
broadcast ephemeris.
The satellites’ equation of motion used in our method

includes gravitational forces of the Earth, the Sun and the
Moon and a simple empirical model to account for the effects
of the solar radiation pressure. When the prediction algorithm
was tested with GLONASS satellites we noticed that the
orbit prediction errors were significantly smaller than for GPS
satellites. We found out that the main reason for the difference
was our solar radiation pressure model, which included only
the effects in the direction perpendicular to the plane containing
the satellite’s solar panels. Studies conducted for GPS satellites
report that there is also a small acceleration, often called y-bias,
along the satellite’s solar panel axis, that has a significant effect
to the orbit of the satellite [6; 7]. However for GLONASS
satellites the magnitude of this y-bias acceleration has been
found to be on average very close to zero [8].
In this paper we present an improved empirical solar

radiation pressure model that takes into account also the y-bias
acceleration along the satellites’ solar panel axis. The model
includes two satellite-specific parameters: a scale parameter for
the direct solar radiation pressure and a magnitude for the y-
bias acceleration. To estimate the parameters we need to know
the satellite’s true orbit over several days. Since the navigation
device has access to only a few broadcast ephemerides that have
limited accuracy and span a short time interval, the estimation
is done offline using the precise ephemerides from International
GNSS Service (IGS).

II. FORCE MODEL
The orbit prediction algorithm used in this paper is based on

the satellite’s equation of motion. For a very high precision orbit
prediction algorithm a large number of different forces need to
be included in the equation of motion, but since our model is
intended to be used in a consumer grade positioning device that
has modest computational resources, we have included only the
four forces that have greatest effect to the satellites orbit.
The acceleration of the satellite is described by equation

r̈Sat = aEarth + aSun + aMoon + aSRP, (1)

where aEarth, aSun and aMoon are the accelerations caused by the
gravitation of the Earth, the Sun and the Moon respectively.
The fourth term aSRP is the acceleration caused by the solar
radiation pressure.
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The acceleration caused by Earth gravitation can be

computed by taking the gradient of the gravity potential U .
Taking the unsymmetrical mass distribution of the Earth into
account, the gravity potential can be written using a spherical
harmonics expansion of the form [9]

U(r,λ,ϕ) =
GME

r

∞
∑

n=0

n
∑

m=0

[

(

RE

r

)n

Pnm(sinϕ)

(

Cnm cos(mλ) + Snm sin(mλ)
)

]

, (2)

where r is the satellites distance to the center of the Earth,
λ is the longitude and ϕ is the latitude. The constant RE in
this formula is the Earth’s radius and the terms Pnm are the
associated Legendre polynomials of degree n and orderm. The
coefficients Snm and Cnm in the formula are experimentally
determined constants whose magnitude decreases very fast with
increasing n and m. At GNSS satellite altitude, the terms up
to the degree and order 4 are significant [3], but we use terms
up to the degree and order 8. The values for the geopotential
coefficients Cnm and Snm are obtained from the EGM2008
model [10].
The gradient of the gravity potential is computed by using a

recursive algorithm introduced by Cunningham [11] and later
extended by Métris et al.[12], which gives the gradient in the
Earth centered Earth fixed (ECEF) coordinates. If R is the
transformation matrix from inertial reference frame to ECEF-
coordinates, the acceleration in the inertial reference frame is
given by [9]

aEarth(r) = R−1∇U(Rr). (3)

After the Earth’s gravitation the second biggest acceleration
components in the satellite’s equation of motion are caused
by the gravitational forces of the Moon and the Sun. To
compute the acceleration acting on the satellite because of the
gravitational force of any celestial body, one can use the form

acb = GM

(

rcb − r

‖rcb − r‖3
−

rcb

‖rcb‖3

)

, (4)

where M is the mass of the celestial body, rcb is its position in
Earth centered inertial reference frame and r is the position of
the satellite in the same reference frame. The orbits of the Sun
and the Moon are computed using simple models presented in
[9]. The coordinates are accurate to about 0.1–1% [9].
The fourth component in the equation of motion (1) is the

acceleration due to the solar radiation pressure. The model used
in this paper is of the form

aSRP = λ

(

−α1 P0 (1 + ε)
AU2

r2sun

A

m
es + α2ey

)

. (5)

In formula (5) the factor rsun is the distance from the satellite
to Sun and es is a unit vector from the satellite to the Sun.
The vector ey points along the satellite’s solar panel axis and
is calculated using the equation

ey =
rSat × (rSun − rSat)

‖rSat × (rSun − rSat)‖
. (6)

The constants in the formula are as follows: AU is the
astronomical unit, P0 is the solar radiation pressure at a distance
of 1AU from the Sun, ε is the reflectivity coefficient of the
satellite, m is the mass of the satellite and A is the satellite’s
surface area. The values for the constants are given in Table I.
The factor λ is a shadow function, whose value equals one when
satellite is in sunlight, zero when it is in umbra and something
between when it is in penumbra. We have used the conical
shadow model described in the book [9].
The parameters α1 and α2 are satellite-specific parameters

that are estimated separately for each satellite using precise
ephemeris data from International GNSS Service (IGS) [13].
The parameter α1 is a scaling parameter that is used to account
for the uncertainty in the mass, surface area and reflectivity of
the satellite. The parameter α2 represents the magnitude of the
y-bias acceleration. The estimation is done using an extended
Kalman filter, in which the measurement model is discrete-
time and the state model is continuous-time. The application
of extended Kalman filter to orbit determination is covered in
detail for example in the book [14]. Details of the state and
measurement models are presented in [3].
The model presented in equation (5) is not meant to exactly

describe the solar radiation pressure acceleration experienced
by the GNSS satellite. The intended use is in an autonomous
orbit prediction algorithm, where no high precision modeling
of the solar radiation pressure is needed. Instead, we want to
model the average effect of the solar radiation pressure during
a long time interval of for example 7 days.
In the earlier work by Seppänen [3] and Seppänen et al.

[4; 5] only the scale parameter for the direct solar radiation
pressure was estimated. Using this 1-parameter model the
prediction errors for GLONASS were significantly smaller than
for GPS satellites. The results presented in this paper show that
including the y-bias acceleration to the model, we attain similar
prediction accuracy for both GPS and GLONASS satellites.

TABLE I
CONSTANTS IN THE SOLAR RADIATION PRESSURE FORMULA

P0 [Nm−2] ε AU [km] A [m2] m [kg]
4.56 · 10−6 0.21 149 597 870.691 13.4 1075

III. REFERENCE FRAMES
The position and velocity we get from broadcast ephemeris

are in an Earth-fixed, Earth-centered (ECEF) reference frame.
An ECEF system has its origin at the mass center of the Earth
and its axes are fixed with respect to the Earth’s surface. In
GPS the reference frame is WGS84, which can be considered
equal to the Terrestrial Reference System (TRS) maintained
by the International Earth Rotation and Reference Systems
Service (IERS). The origin of the TRS system is the Earth’s
centre of mass and its z-axis is the mean rotational axis of
the Earth. This mean pole of rotation was defined, because
the Earth’s instantaneous rotation pole moves with respect to
Earth’s crust whereas in Earth fixed reference frame the axes
must be pointing at a fixed point on the Earth’s surface.
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In GLONASS the received ephemeris is in Earth fixed

PZ90.02 reference frame [15] but it can be transformed to
WGS84 or TRS by a translation of origin [16]

rWGS84 = rPZ90.02 +





−0.36
0.08
0.18



 m. (7)

An inertial reference system maintained by the IERS is the
Celestial Reference System (CRS). CRS is a reference system
whose coordinate axes maintain their orientation with respect
to distant stars. The origin of this reference frame is in the
center of the Earth and Earth is in an accelerated motion while
orbiting around the sun. Therefore CRS is not precisely inertial,
but is an adequate approximation of an inertial reference frame
for our purposes. The transformation from the TRS system at
epoch t to the CRS system is

rTRS(t) = W(t)G(t)N(t)P(t)rCRS, (8)

where the matrices W, G, N and P describe polar motion,
Earth rotation, nutation and precession, respectively. The
transformation matrices are time dependent and thus the
vector rCRS, being constant in CRS, is time dependent after
transformation to TRS. We follow the book [9] and use IAU76
theory when computing the precession matrix P and nutation
theory IAU80 for matrix N, although more recent models
IAU2000A and IAU2000B are available and can be found from
[17]. The matrix G describes the rotation of the Earth, details
for computing this matrix can be found from [4; 5]. The rotation
matrix describing the polar motion is

W(t) = Ry(−xp)Rx(−yp). (9)

where xp and yp are the polar motion parameters and Rx

and Ry are simple rotation matrices around the x- and y-
axes. Together with dUT1 they are called also Earth Orientation
Parameters (EOP). The daily values for these parameters can
be found from the homepage of IERS [18].
The integration of the equation of motion must be done in

an inertial reference frame and we choose to use the Terrestial
Intermediate Reference System (TIRS) at epoch t0, where t0
is the initial time of prediction. The TIRS system at an epoch
t is connected to the CRS system by the equation

rTIRS(t) = R
TIRS(t)
CRS rCRS, (10)

where the transformation matrixRTIRS(t)
CRS is defined by equation

R
TIRS(t)
CRS = G(t)N(t)P(t). (11)

Finally the transformation from TRS at an arbitrary time t to
the TIRS system at epoch t0 is

rTIRS(t0) = R
TIRS(t0)
CRS

(

R
TIRS(t)
CRS

)T

WT (t)rTRS, (12)

where we have used the result that RCRS
TIRS = (RTIRS

CRS )
T .

For velocity the transformation from TRS to TIRS(t0) can
be computed by differentiating equation (12) with respect to
time. When differentiating, the other matrices are treated as

constants and the time dependence of the Earth rotation matrix
GT (t) is taken into account [4]. The equation for the velocity
transformation is [4]

vTIRS(t0) = R
TIRS(t0)
CRS RCRS

TIRS(t)

(

WT (t)vTRS +

ω ×
(

WT (t)rTRS
)

)

, (13)

where ω = [0 0 ω]T is the angular velocity vector of the Earth’s
rotation.
After predicting the satellite’s position and velocity at time

t in the future, we have to apply the inverse transformations.
Solving rTRS and vTRS from equations (12) and (13) we get

rTRS = W(t)RTIRS(t)
CRS RCRS

TIRS(t0)rTIRS(t0) (14)

vTRS = W(t)
(

R
TIRS(t)
CRS RCRS

TIRS(t0)vTIRS(t0) −

ω ×
(

R
TIRS(t)
CRS RCRS

TIRS(t0)rTIRS(t0)

))

. (15)

When the satellite’s orbit is predicted, we actually do not
know the exact matrix W(t). However using the algorithm
described in the next section we can solve the polar motion
parameters xp and yp at the initial time t0. Because they do
not change much in a few days long prediction, we can make
the approximation

W(t) ≈ W(t0). (16)

Similarly the third Earth orientation parameter dUT1 is needed
to compute the rotation matrices RTIRS(t0)

CRS and R
TIRS(t)
CRS [4]. In

this paper we set dUT1 = 0 when computing these matrices.
This approximation is made since dUT1 may, in general, be
unknown to the device and its evolution is very difficult to
predict. We have found that making this approximation results
in median error of about 4 meters in the satellite’s position in
a prediction over 4 days.
The satellite’s position has to be represented in an

Earth fixed reference frame to calculate the acceleration
due to the Earth’s gravitation. We use the TRS reference
frame, so the transformation matrix R used in the equation
(3) is W(t)RTIRS(t)

CRS RCRS
TIRS(t0). Some approximations to the

calculation of this matrix can be made to speed up the numerical
integration. If the length of the prediction is only few days,
the precession and nutation matrices can be assumed to stay
constant, and we can make the approximationsP(t)P(t0)T ≈ I
and N(t)N(t0)T ≈ I. Using these approximations we have

W(t)RTIRS(t)
CRS RCRS

TIRS(t0) ≈ W(t)G(t)GT (t0). (17)

Multiplication with the matrix G rotates the reference frame
according to the Earth’s rotation. Mainly it is a simple rotation
around the z-axis, with the angular speed of the Earth. If the
x-axis points to a certain meridian at the initial time t0, then
at the time t it points to the direction we get by rotating the
x-axis around the z-axis with an angle of (t− t0)ω. Thus

W(t)G(t)GT (t0) = W(t)Rz((t− t0)ω) (18)

is the matrix R used to transform the inertial vector to an Earth
fixed reference frame when computing the Earth gravitational
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acceleration. Its transpose is then used to transform the
acceleration vector to the TIRS(t0) reference frame. Again, the
matrix W(t) is replaced with W(t0) while predicting.

IV. INITIAL STATE IMPROVEMENT
In GPS the satellite’s position is calculated using the 16

ephemeris parameters that are broadcast by the satellite. One
of these parameters is called the time of ephemeris (TOE).
With one received navigation message i.e. one set of ephemeris
parameters the satellite’s position can be calculated at any
instant within ±2 h from the TOE. Going outside of this
range the accuracy of the ephemeris deteriorates rapidly. The
GPS satellite’s velocity can be computed by differentiating the
ephemeris parameters with respect to time. The equations for
computing GPS satellite’s broadcast velocity are presented for
instance in [19].
In GLONASS the broadcast ephemeris is given in the

form of satellite’s position and velocity at the TOE instant,
which is denoted tb in the GLONASS ICD [20]. In addition,
the current value for the acceleration originating from the
gravitational interactions with the Sun and the Moon is given.
This acceleration is part of a simple motion model that can be
used to solve the satellite’s ephemeris at any other time instant
within about 15 minutes from tb. A new navigation message is
broadcast every half hour.
The position and velocity computed directly from the

broadcast ephemeris are not accurate enough for orbit
prediction over several days. For this reason we use a fitting
method to improve the initial state of the satellite. Also we
assume that the earth orientation parameters are unknown at
the start of the prediction, so we need a method to solve these
from the broadcast ephemeris.
In this paper we use the fitting method presented by

Seppänen et al. [4; 5] where we first apply an antenna correction
to the position obtained from the broadcast ephemeris and
then solve for the initial velocity and the two earth orientation
parameters xp and yp using multiple positions and velocities
from the broadcast ephemeris. The antenna offsets for GPS
satellites are obtained from NGA [21], and for GLONASS we
use the values from [22].
After applying the antenna correction we solve for the initial

velocities and earth orientation parameters by fitting our model
to the broadcast data. A short overview of the method is
described here, for more details see [4] and [5]. If we have
n satellites the vector of unknowns is

x =











v1
0
...
vn
0

p0











=

[

vall0
p0

]

, (19)

where vi
0 is the velocity of the i:th satellite and p0 =

[xp(t0) yp(t0)]T are the polar motion parameters. As
measurements we have the satellites’ states yi

k at time instants
t1, . . . , tm which can be described by equation

yi
k = f ik(x) + ε

i
k, i = 1, . . . , n k = 1, . . . ,m. (20)

Here the vectors εik are the differences between the measured
state at instant tk and the state that was predicted using the
nonlinear function f ik defined by equation
[

ri(tk)
vi(tk)

]

= f ik(x) = ϑ
TRS(t0, tk, r

i
0,v

i
0,p0), i = 1, . . . n,

(21)
where ϑ

TRS is the function that predicts satellite states by
integrating a nonlinear differential equation and carrying out
the required transformations between the TRS and the inertial
reference frame. Collecting the differences εik into a single
vector ε, the cost function to be minimized is now given by
equation

J(x) = ε
TDε, (22)

where the diagonal weight matrix D has the value (1000)2

in those elements corresponding to velocity components and
ones corresponding to position components. If only satellites’
positions are used as measurements, the weights corresponding
to the velocity components can be set to zero. The cost function
is minimized using the Levenberg-Marquardt method. As initial
values for the polar motion parameters we use xp = 0.05
arcseconds and yp = 0.35 arcseconds, which is the approximate
center of the polar motion spiral during the years 2004-2008.
In practice the initial iterate for polar motion could be taken
from the results of a previous solution.
For GPS satellites the initial time instant is chosen to be

t0 = TOE+ 1.5 h and the measurement instants are t1 = TOE
and t2 = TOE − 1.5 h. For GLONASS the position and
velocity are obtained only at one time instant, which can be
used to integrate the orbit with the simple motion model from
GLONASS ICD [20] about 15 minutes to each direction. In
order to achieve good prediction results also with GLONASS
we have to use more than one received ephemeris parameter set
[5]. For this work we decided to use the position and velocity
obtained without integration from two broadcast ephemerides,
with time difference of 12 hours.
The tests done in this paper use n = 5 satellites to solve

for the earth orientation parameters and initial velocities. We
have observed that in order to get sufficiently accurate values
for the earth orientation parameters we need preferably at least
3 satellites in the initial state fitting algorithm.

V. RESULTS
In the estimation of the solar radiation pressure parameters

we used IGS precise ephemerides from GPS weeks 1545-
1618 for GPS satellites. For GLONASS satellites we use
IGS precise ephemerides from GPS weeks 1570-1618. A time
series of parameter estimates were obtained by taking separate
consecutive 7-day arcs and estimating the parameters for each
arc using the extended Kalman filter algorithm. For each arc the
final output of the estimator was taken as the estimated value.
The time series of parameter estimates for two GPS satellites

in the same orbit slot are shown in Figures 1 and 2. The effect
of eclipse seasons to the estimates is clearly visible, especially
in the estimated y-bias acceleration where sharp spikes in the
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estimates can be seen during eclipse seasons. The eclipse season
is a time period where the satellite enters the Earth’s shadow
during each orbit revolution. The time spent in the shadow
varies, but lasts a maximum of about 56 minutes [7]. Similar
behavior is observed for all GPS and GLONASS satellites.
Since our model uses constant values for scale factor and

y-bias acceleration we take the median of the time series to be
used in the model. The resulting values are shown in Tables II
and III. For GPS satellites the y-bias acceleration varies from
−10−9m/s2 to 10−9m/s2, being clearly different from zero
for most satellites. For GLONASS satellites the estimated y-
bias accelerations are much smaller and near zero for most
satellites. This is in agreement with the results of Ineichen et
al. [8], where it was found out that for GLONASS satellites
the y-bias accelerations were on average very close to zero.

PRN=7

PRN=8

GPS week

scale       

1540 1580 1620

1.2

1.3

1.4

1.5

Fig. 1. Time series of scale parameter α1 estimates for GPS satellites PRN
7 and PRN 8. Shaded areas represent eclipse seasons.

GPS week

y−bias            
(10−9m/s2)           

PRN=7

PRN=8

1540 1580 1620

−1

0

1

Fig. 2. Time series of y-bias acceleration α2 estimates for GPS satellites PRN
7 and PRN 8. Shaded areas represent eclipse seasons.

The method was tested by predicting the orbits of GPS and
GLONASS satellites using broadcast ephemeris data from GPS
weeks 1618-1632. The initial velocity and earth orientation
parameters were computed by the method described in the
previous section. For GLONASS we used two broadcast
ephemerides with time separation of 12 hours. The Runge-
Kutta-Nyström -method [9; 23] was used to solve the equation
of motion. The algorithm is an efficient integration method
for second order differential equations in which the second
derivative (the acceleration a) is independent on the first
derivative (the velocity).

TABLE II
SOLAR RADIATION PRESSURE PARAMETERS FOR GPS SATELLITES

PRN 1 2 3 4 5 6
α1 1.424 1.473 1.326 1.331 1.423 1.328
α2 (10−9m/s2) -0.548 0.101 0.409 0.784 -0.572 0.376

7 8 9 10 11 12
1.432 1.331 1.333 1.319 1.479 1.438
-0.523 0.599 0.636 0.572 0.089 -0.607
13 14 15 16 17 18
1.469 1.470 1.445 1.477 1.432 1.475
-0.411 -0.399 -0.715 0.129 -0.521 -0.286
19 20 21 22 23 24
1.463 1.465 1.450 1.459 1.489 1.350
-0.429 -0.815 -0.124 -0.516 -0.153 0.941
25 26 27 28 29 30
1.551 1.333 1.333 1.460 1.426 1.329
-0.022 0.765 0.887 -0.112 -0.343 0.784
31 32
1.440 1.345
-0.604 1.034

TABLE III
SOLAR RADIATION PRESSURE PARAMETERS FOR GLONASS SATELLITES

PRN 1 2 3 4 5 6
α1 2.162 2.175 2.135 2.160 2.164 2.166
α2 (10−9m/s2) 0.101 0.235 0.021 0.116 0.041 0.101

7 8 9 10 11 12
2.152 2.151 2.141 2.151 2.139 2.143
-0.021 0.047 0.165 0.125 0.060 0.053
13 14 15 16 17 18
2.141 2.145 2.144 2.141 2.146 2.150
-0.077 -0.081 0.031 0.106 -0.051 0.091
19 20 21 22 23 24
2.131 2.155 2.147 2.166 2.110 2.173
-0.119 0.033 0.001 0.065 0.013 0.095

The predicted orbit was compared to the precise positions
obtained from the IGS. A box plot of the norms of the
prediction errors are shown in figures 3 and 4. The boxes show
the 25%-, 50%- and 75%-quantiles and the whiskers extending
from the boxes show the 5%- and 95%-quantiles. From the
results it can be seen that for GPS satellites a significant
improvement is obtained by including the y-bias acceleration to
the solar radiation pressure model. For a 5 day long prediction
the median error is reduced from 87 meters to about 22 meters
and the 95%-quantile is reduced from 250 meters to about
73 meters. For GLONASS satellites the improvement in orbit
prediction accuracy is much smaller. For a 5 day long prediction
the median error is reduced from 28 meters to 25 meters and the
95%-quantile is reduced from 98 meters to 86 meters. However
this was expected since the estimated y-bias accelerations were
much smaller for the GLONASS satellites.
Figures 5 and 6 show the orbit prediction errors in the RTN

(Radial, Tangential, Normal) coordinate system using the 2-
parameter solar radiation pressure model. The transformation
from ECI to RTN is calculated using equation [14]

rRTN = [ eR eT eN ]rECI, (23)

where rECI and vECI are the position and velocity of the satellite
in ECI coordinate system and the unit vectors eR, eT and eN
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Fig. 3. Prediction errors for GPS satellites with the different solar radiation
pressure models.

GLONASS prediction errors
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Fig. 4. Prediction errors for GLONASS satellites with the different solar
radiation pressure models.

are calculated using equations

eR =
rECI

‖rECI‖
(24)

eT = eN × eR (25)

eN =
rECI × vECI

‖rECI × vECI‖
(26)

Here the directions eT and eN may be referred also to as along-
track direction and cross-track direction respectively. From the
results it is seen that the errors in the orbit prediction are mainly
in the tangential or along-track direction and the errors in the
radial and normal directions are relatively small. For positioning
purposes this is a favorable result because the radial error tends
to have the largest effect to the pseudorange error of the satellite
[5].
95%-quantiles of the RTN-errors in a 5 day long prediction

for the two solar radiation pressure models are compared in
Tables IV and V. For GPS satellites the tangential error reduces
significantly by including the y-bias acceleration to the model.
The relative reduction in the radial error is also quite large. For
GLONASS satellites including the y-bias acceleration reduces
somewhat the tangential error, but the accuracy in the radial
and normal directions show no clear improvement.

VI. CONCLUSION
The TTFF of a GNSS positioning device can be reduced

if the satellites position and velocity can be obtained before

TABLE IV
95%-QUANTILE OF THE RTN ERRORS FOR GPS SATELLITES (5 DAY

PREDICTION)

Radial Tangential Normal
scale only 6.7 m 250.1 m 11.5 m

scale and y-bias 3.4 m 72.3 m 11.1 m

TABLE V
95%-QUANTILE OF THE RTN ERRORS FOR GLONASS SATELLITES (5 DAY

PREDICTION)

Radial Tangential Normal
scale only 4.1 m 97.2 m 15.0 m

scale and y-bias 4.0 m 85.4 m 15.0 m

GPS prediction errors in RTN
(95% quantile)

Length of prediction [days]

error       
 [m]        

T

R N

1 2 3 4 5
0

25

50

75

100

Fig. 5. 95%-quantile of the prediction errors in the RTN reference frame for
GPS satellites.

GLONASS prediction errors in RTN
(95% quantile)

Length of prediction [days]

error       
 [m]        

T

R N

1 2 3 4 5
0

25

50

75

100

Fig. 6. 95%-quantile of the prediction errors in the RTN reference frame for
GLONASS satellites.

reading the navigation message send by the satellite. For
devices without a network connection the position and velocity
can be predicted by integrating the satellites equation of motion.
The initial conditions for the integration can be computed from
a previously received broadcast message. In this paper the
autonomous orbit prediction algorithm presented in [3–5] was
improved by including the y-bias acceleration to the empirical
solar radiation pressure model.
The model uses two parameters that have to be estimated

separately for each satellite. The results presented in this paper
show that for this kind of simple model the parameters can be
approximated by constant values, that can be estimated offline
using for example the precise orbits from IGS. The parameter
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values need to be updated only when the satellite constellation
is changed. This can be handled by updating the parameters a
few times per year, for instance, as a part of a software update.
The model was tested with GPS and GLONASS satellites

by predicting the satellites orbits several days into the future
using improved initial conditions obtained from broadcast
ephemerides. The results show that for GPS satellites we get
a significant improvement in the orbit prediction accuracy
by using the 2-parameter solar radiation pressure model. For
GLONASS satellites the estimated y-bias accelerations were
small and for this reason only a small reduction can be seen in
the orbit prediction errors.
Looking at the errors in a satellite centered RTN coordinate

system, we see that the errors are mainly in the tangential
or along-track direction. The errors in the radial direction are
found to be small: in a 5 day long prediction 95% of the radial
errors are below 4 meters for GPS satellites and about 4 meters
for GLONASS satellites. This is a favorable result because the
radial error has the greatest effect on the pseudorange error of
the satellite [5].
This paper was concerned only in the prediction of the

satellites’ position and velocity. In a completely autonomous
orbit prediction algorithm we need also a method to predict
the satellites’ clock offsets. Our recent paper [5] discusses also
the clock offset prediction and considers how the errors in the
orbit and clock offset prediction are combined in order to get
the total error in the range measurement.
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