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Abstract—The SRAM memories used for embedded micro-
processor devices consume a large portion of the system’s power.
The power dissipation of the instruction memory can be limited
by using code compression methods, which may require the use of
variable length instruction formats in the processor. The power-
efficient design of variable length instruction fetch and decode
is challenging for static multiple-issue processors, which aim for
low power consumption on embedded platforms. The power saved
using compression is easily lost on inefficient processor design.
We propose an implementation for instruction template -based
compression and two instruction fetch alternatives for variable
length instruction encoding on Transport Triggered Architecture,
a static multiple-issue exposed data path architecture. The com-
pression approach reaches an average program size reduction of
44% at best. We show that the variable length fetch designs are
sufficiently low-power oriented for the system to benefit from the
code compression, which reduces the program memory size.

I. INTRODUCTION

Modern systems-on-a-chip are becoming more and more
advanced as an increasing amount of CMOS transistors can
be fit on a single integrated circuit. Larger programs can be
stored on the on-chip memories of devices, which consume
a significant portion of the system’s power. This makes it
important to focus on reducing the memory accesses and
memory size to reach a better power consumption level on
the whole, especially on embedded, battery-powered devices
which aim for low power consumption levels.

The power consumption of a circuit is divided into two
categories: dynamic power and static power. The majority of
the power dissipated in an integrated circuit is due to dynamic
activity: net switching power, internal cell power and short-
circuit power during logic transitions in the transistors [1].
However, the proportion of static power, i.e. leakage power
dissipation is quickly growing towards half of all power
consumed as the deep submicron technology nodes continue
to decrease in size [2].

The program code, which is stored on SRAM memory for
embedded microprocessors, is an important aspect to consider
for power savings. If High Performance (HP) SRAM is used on
the chip, a substantial amount of current leakage is present [3].
Slower Low Standby Power (LSTP) SRAM can be used to
avoid large leakage, but LSTP memory cells have higher on-
currents, consuming more dynamic power as a trade-off. For
either technology used, reducing the size of the memory via
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program code compression is beneficial: HP SRAM leaks
less current when the memory module is smaller, while less
dynamic power is used on expensive LSTP memory read-
accesses if multiple instructions can be read per cycle.

Static multiple-issue architectures such as Very Long In-
struction Word (VLIW), Explicitly Parallel Instruction Com-
puting (EPIC) [4] and Transport Triggered Architecture
(TTA) [5] can gain a lot of power savings from program
code compression due to their long instruction formats, which
require large on-chip memories for the program code. The
challenge brought by some code compression approaches, such
as instruction template-based compression, is the requirement
of variable length instruction fetch and decode units. They are
especially difficult to design power-efficiently on embedded
devices employing static-scheduled processors, which have
fairly simple fetch and decode hardware as the starting point. If
a low-power variable length encoding support can be designed
for the processor, power can be saved through sufficient
memory reduction.

We propose an instruction template-based compression
method for TTA processors, which is used for NOP removal,
and implement power-efficient variable length instruction en-
coding fetch and decode stages required. Two alternative fetch
unit designs are synthesized and benchmarked on a 40 nm
ASIC technology for area and power consumption measure-
ments. The efficiency of the code compression is measured
by creating a custom processor with 256-bit instructions for
the CHStone [6] test suite and compressing each test pro-
gram’s code for the processor using four and eight instruction
templates. Feasibility of the implementation is evaluated by
comparing the power consumption of each test’s program
memory pre- and post-compression with CACTI [7] [8] and
comparing the savings with the instruction fetch units’ power
consumption. LSTP SRAM cells are used for the program
memory power estimation as they function at the 600 MHz
clock frequency of the synthesized TTA processor.

This paper is structured as follows. Section II is an
overview of TTA. Section III introduces the compression
approach and variable length instruction encoding. Section
IV describes the hardware implementation. In section V, the
proposed method is evaluated in terms of area, memory space
saving and power consumption. Section VI discusses related
work. Section VII concludes the paper.
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Fig. 1. Example TTA processor with 6 interconnection buses. Computational
resources include four arithmetic-logic units (ALU), two multipliers (MUL),
a load-store unit (LSU), a general control unit (GCU), a 64-entry register file
(RF) and 2-entry boolean register file (BOOLRF), and finally an immediate
unit (IMMU). Some resources are paired to form larger ALU+LSU and
ALU+MUL function units.

II. TRANSPORT TRIGGERED ARCHITECTURE

TTA is a highly modular exposed-datapath relative of
VLIW [9]. The main benefit of TTA comes from software
bypassing operation results as inputs to other operations with-
out going through the register file (RF). As many as 80% of
RF accesses may be eliminated through bypassing [10]. Since
the many-port RF is a major power sink in a VLIW, this
allows significant power savings. Fig. 1 shows an example
TTA processor, comprised of several function units (FU), two
register files and a 6-bus interconnection network.

The original work proposed various instruction encodings
for TTAs including connection encoding, socket encoding and
bus encoding. All contemporary TTAs use bus encoding, in
which each bus has a corresponding move slot in the instruction
word which contains either a move instruction or a NOP. A
partial bus encoding for the example processor is shown in
Fig. 2. The move instruction consists of a source field, a
destination field, and an optional guard field for predicated
execution. Opcodes and RF indices are encoded in the source
and destination fields. Moreover, our tool set [11] supports
long immediate encoding using instruction templates, which
replace some move slots with immediate values. The example
encoding has two templates, toggled by a one-bit template field
which is located at the instruction’s MSB. This is the minimal
template amount for encoding the move operations and the
long immediate for this particular processor. The femplate 0 is
a base template which has a move operation for each of the
six buses, while template 1 replaces two moves with a special
long immediate move.

III. VARIABLE LENGTH INSTRUCTION COMPRESSION

Instruction template-based compression removes a part of
information in instructions, which can lead to a variable length
format. The instruction formats defined by the templates can
be used, e.g., for NOP removal, and the approach is easier
to take into use in static multiple-issue architectures than
in superscalar architectures. Superscalar processors need to
decode each incoming instruction and search for instruction
level parallelism simultaneously, whereas in static architectures
the operations are fetched as a bundle, readily scheduled for
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Fig. 2. Instruction encoding for the example TTA processor, using two
instruction templates.

function units. The effective design of fetching, decompressing
and decoding remains as the challenge for the static architec-
tures, as well as the optimal selection of instruction templates
for particular processor configurations.

A. Instruction Template Selection and Compression

Instruction template-based compression approach re-
encodes the processor’s instruction set by adding a template
field to the instructions. This template field is used for defining
instruction formats which contain information for only a subset
of the available fields in the architecture’s instruction encoding.
On TTA this compression can be employed by considering the
available move slots in the processor as the information which
to include in the different instruction formats. A template
defines which move slots are included in the instruction format,
hence the instruction’s size is also tied to the template. The
move slots that are left out of the selection of a template
are implicitly assigned NOPs in the decoding stage, therefore
called NOP slots.

The problem becomes the optimal selection of such instruc-
tion templates that the majority of the NOP operations can be
removed from the program code with a minimal amount of
templates. There is a large design space of possible instruction
template encodings and their compression ratio depends on the
workload. For example, a template which can encode loads and
stores is more efficient for data copying than branch-heavy
control logic.

An example of template selection and NOP removal for a 5-
bus TTA is displayed in Fig. 3. In this example, a large amount
of NOPs are seen in four instructions. Two new instruction
formats are assigned to the templates /0’ and ’/1’, which
only use the buses A, B and D, E. The rest of the buses in
these two formats are considered as NOP slots. If NOPs are
seen in the NOP slots, they are removed from the instruction.
These templates can be used in three instructions to remove a
majority of the NOP operations in the program code.

As seen in the example above, we merged the template
previously used only for long immediate unit selection to be
used for NOP removal as well. This means that in addition to
the necessary base template which defines a move for each bus,
at least one template is required by immediate unit selection
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Fig. 3. A short program before (left) and after (right) assigning two new

instruction formats, which define two move slots to be used out of the five in
the processor. Most of the NOP operations are removed by using the shorter
instruction formats in the 2nd, 3rd, and 4th instruction.

if an immediate FU is available in the machine, reducing the
amount of templates that can be used for NOP removal by 2.
Due to the binary representation of templates in the template
field, the amount of templates for each machine is optimally
a power-of-two number.

The actual use of the templates for compression happens
during program scheduling. Each instruction is attempted to
match to the list of defined templates starting with the template
with most NOP slots used, resulting in best compression. If an
instruction can be matched with a NOP slot template, the given
template is assigned to the instruction and the bits for each of
the matched NOP moves are removed by a compressor during
program image generation. The instruction template field is
read during run-time in the decoder and the instruction is
pieced back together from the variable length representation
to the processor’s maximum instruction length by inserting
the missing NOP bits to the NOP slots. The complexity of the
re-assembly depends on the amount of slots in the processor,
number of templates, maximum instruction width and the bus
widths.

B. Variable Length Instruction Encoding

Variable length instruction encoding’s main purpose is to
encode some instructions in a smaller amount of bits than
others to save memory required to represent the program. This
immediately introduces a problem: since instructions become
tightly packed in the memory, they are no longer aligned at
the beginning of memory words for convenient fetching and
execution.

The incoming instructions must be found from the memory
words being fetched and expanded back to the full instruction
length before decoding. In order to be able to splice the
bit patterns into decipherable instructions while guaranteeing
continuous execution, a buffer is required in the fetch unit. The
design of this buffer is crucial, because its complexity can grow
rapidly on the logic level if an inefficient architecture is used,
consuming more dynamic power. The decoder’s complexity
must be taken into account as well, as its size will increase
undesirably unless constraints are set on the design.

Finally, a method for handling random access support is
required, i.e. how to execute control flow operations such as
Jjump or call, which require finding an instruction to execute
from the misaligned memory. Especially the execution of calls
is complicated, because the return address of the program flow
must be recorded. In a fixed length instruction architecture,
saving the return address is as simple as saving the program
counter’s value, because each instruction is neatly aligned
in the memory. In a variable length fetch design, there’s an
unknown amount of instructions with unknown sizes remaining
in the buffer when a call is detected. A pure hardware solution
to return address calculation requires knowing which memory
address each instruction comes from, the track-keeping of
which bloats the hardware.

We designed two alternative fetch units to estimate the
power consumption of different buffer architectures: ring buffer
fetch and shift register fetch. The fetch units are capable of
continuous instruction splicing from the memory words and
both handle the execution of jump instructions. On-hardware
return address calculation was implemented for the former
design. It was then decided to remove call instructions from the
TTA instruction format altogether to simplify return address
calculation, replacing each call with a jump and a register write
operation. This moves the return address calculation task to the
compiler.

Our solution for random access support on TTA is ad-
dressed partially on the compiler and partially inside the fetch
unit. Jumps are supported by having all control flow operation
targets in the program code to begin aligned at memory ad-
dresses. This means that the code is divided into blocks which
are mostly misaligned due to variable length instructions, but
occasionally aligned again due to a jump target. An issue with
sudden alignment is that the instruction prior to an aligned
instruction may contain redundant information, padding bits,
which are not to be executed. They are detected by appending
a padding indication bit to the MSB-end of each instruction,
indicating whether the current instruction contains padding bits
in the memory word after the actual instruction bits. This bit
is ’1’ if padding bits exist.

In order to reduce the fetch and decoder complexity, we
constraint the smallest variable length instruction size allowed
in the processor to a certain quantum (q) size. The ¢ and max-
imum instruction size I, define the size of the multiplexer
and shifter networks generated. This ¢ can be increased from
instruction template bit field width 1T, + 1 to 1,4, for the
least logic in the processor, but worst compression efficiency
of the instruction template compression. If ¢ equals I,,,4;, the
instructions become fixed length. The ¢ and I,,,, should be
power-of-two values for minimal logic increase.

IV. HARDWARE UNIT IMPLEMENTATION

The major changes to TTA processor micro architecture re-
quired for variable length instruction support are in the decoder
and the fetch units. The changes in the decoder are generated
per-processor according to NOP instruction templates. The
decoder contains a look-up table -based re-assembly network
for the instruction template decompression.

The names of the two fetch alternatives, Ring Buffer (RB)
and Shift Register (SR), describe how the fetch unit handles
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Fig. 4. The structure of the ring buffer fetch unit for I;nez = 2¢. An
instruction has been written to the MSB register on the previous cycle and is
currently being read out of the buffer, indicated by the RP. WP is assigning
the next memory word to the LSB register. The RB’s contents are rotated
with a rozr_r-function by RP + 1 for output. Other possible RP locations are
defined by the g. The data goes directly to fetch output port from the buffer.

the incoming memory words. RB uses a multiplexer network
which targets different parts of the buffer for writing and
reading. SR uses a shifter network to store the instructions
in the buffer in a First In First Out manner. The former is a
minimalist approach that has a buffer width of only 217,,,,,
while the latter’s buffer width is 31,,,, and has more relaxed
control logic.

The RB fetch unit’s basic buffer structure during execution
is displayed in Fig. 4. It was designed based on the constraint
that without needing to stall during execution, a minimum
buffer width of 27,,,, is required for continuous instruction
fetching. Its internal logic cycles a Read Pointer (RP) to point
at the MSB of the current instruction being read from the
buffer, and Write Pointer (WP) to define whether the next
memory word is to be assigned to the upper or lower half
of the buffer.

The granularity of the RP and the complexity of the internal
multiplexer structure are directly affected by the minimum
instruction size g. The content of the buffer is stored in a
variable and rotated each cycle by a ror_r function with RP+1
amount to align the instruction being read to the buffer’s MSB
for output. The rot_r operation is needed when the content
inside the buffer becomes misaligned, causing instructions to
wrap around from the LSBs of the buffer to the MSBs.

Because of the buffer’s limited size, need for uninterrupted
execution and the memory read latency of one cycle, it is a
requirement to check whether the current instruction pointed
by RP is large enough to free the buffer half targeted by WP
for the next cycle. The size of the variable length instruction is
decoded with the help of a look-up table during the same cycle
as an instruction is read out to determine buffer fullness, next
RP calculation and WP selection. Due to RB’s minimal size,
the cycle-accurate internal control logic became complicated.
The WP and RP synchronization after a control flow instruc-
tion ultimately required the use of one stall cycle to simplify
the control logic and to flush the buffer.

The shift register design was created to simplify the internal
logic of the fetch unit and to address the RB’s stall cycle. The

shift shift data_in
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empty slot empty slot Imax -bit instr.

S4 =3I max - (RP+1) <— RP

shift_left
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Fig. 5. The shift register fetch structure for I,nq: = 2¢. An instruction
is seen in the data_in port and treated as a part of the buffer. The incoming
instruction is I, ez length and is shifted left to the MSB for output, indicated
by the SA value, which is calculated from a virtual RP value. Other possible
SA amounts are defined by the g. The data propagates through a data_out
register before output.

buffer width was increased by one instruction to 3[4, to
alleviate the need for complex control logic, using the data_in
port of the unit as one of the buffer slots. The wider buffer
simplifies checking buffer fullness and reduces the critical path
inside the fetch unit, allowing higher clock frequencies to be
reached. However, an extra register with the width of I,,,,, is
required at the output, as otherwise data_in would be routed
directly to data_out, disrupting the processor’s pipeline.

An example of the SR unit is displayed in Fig. 5. The mem-
ory words are always read to the LSB-end of the buffer. Instead
of a RP, the SR tracks the current instruction to be forwarded
with a Shift Amount (SA) value. This can be imagined as a
virtual RP with the conversion: SA = I, — (RP + 1). For
output, the entire buffer’s contents are stored into a variable
which is shifted left by SA, aligning the current instruction
pointed by RP to MSB.

Every cycle the buffer’s contents are shifted left by I,,,4,
bits, and every cycle an instruction is consumed from the
buffer. If only instructions with the size of I,,,,, are written in
and read out, the buffer stays at equilibrium. The buffer begins
to fill up when smaller instructions are written in, with the RP
approaching the left side of the buffer. When an instruction the
size of I,,4, would no longer fit in, the fetching is stalled and
instructions are read out from the buffer until an instruction
the size of I,,,, fits to the buffer again.

V. EVALUATION

A TTA processor with an I,,,, of 256 bits was cre-
ated for a subset of the CHStone test suite to measure the
compression efficiency of two different instruction template
compression configurations: four and eight templates. In these
configurations, two and six templates were used for NOP
removal, respectively. The power consumption of the program
memory was measured with web-based CACTI 5.3 (rev 174)
pre- and post-compression. The power consumption of the two
fetch designs were measured with three different quanta using
synthetic tests to scope out the worst case power dissipation.
Additionally, the used chip area of the designs are provided.



A. Compression Efficiency
The efficiency is reported as space saved by compression:

C d si
Space saving (%) = 1 ompressed size

Uncompressed size x 100 (1)
We used the CHStone C-based high-level synthesis test bench
for measuring the compression efficiency of the instruction
template-based compression. A TTA machine with an I,,,, of
256 and a q of 32 was customized for the benchmarks. We
started with a 6-issue VLIW equivalent processor architecture
and reduced it by combining rarely used buses until a 256-
bit instruction length was reached. The benchmark programs’
uncompressed sizes were in the range of 14-50 KB, with the
exception of the jpeg test which was approximately 376 KB.

In this work, we used greedy workload-based template
selection: we first schedule a program on a TTA processor
without any NOP templates, then iterate through all possible
templates with a given number of NOP slots and select the
one which can represent the most instructions in the program.
Subsequent templates are selected based on how much they
improve the number of covered NOP moves. The narrowest
templates are optimized first, since they give a better com-
pression ratio. In our tests with a small 6-bus TTA, this greedy
algorithm produced the same templates with a much shorter
run-time as an exhaustive search of all template permutations.

For the machine with 2 NOP templates, we selected a 64-
bit and a 128-bit template optimized for the adpcm benchmark
using the greedy workload-based selection process. For the
machine with 6 NOP templates, we added 64-bit and 128-
bit templates optimized for the gsm program, which had the
weakest compression ratio, as well as two 32-bit templates
optimized for adpcm. The 32-bit templates were placed on
buses controlling load-store unit and control unit trigger ports,
which are likely to be used in any serial code.

Resulting memory space savings are shown in Fig. 6. The
2-template TTA reached an average program size reduction
of 37% and a maximum of 46%, and the 6-template TTA
improved to an average of 44% and a maximum of 51%.

B. Program Memory Power Consumption

The power consumption of the program memory was
estimated with CACTI before and after instruction template
compression. Only ITRS-LSTP was chosen for the SRAM
transistor type, because we were interested in the power

M Space saving with 6 templates Space saving with 2 templates

60% -
55%

50%

49,6%

51,4%

45,0%

4
41,5% 3.6%

consumption at 600 MHz clock frequency, which is the upper
limit where the LSTP SRAM cells still operate according to
CACTI. Technology node used was 40 nm and temperature
was a pessimistic 300K for all measurements. The number of
bits read out was matched with the memory width, i.e., the full
instruction length of 256 bits. One read/write port was used.
SRAM size was set exactly to the size of the program, which is
unrealistic as SRAM is not manufactured in arbitrary sizes, but
gives an estimate of power savings achieved by the instruction
template compression. Finally, the total dynamic read power
per read port Py, is calculated with

Eay,
ij’ > = Bayn felk @)

where Eg,,, is the dynamic energy per read port estimated by
CACTI and f is the clock frequency of 600 MHz for the
SRAM, which is the target frequency used in the synthesis
of the fetch units. Since LSTP SRAM cells were used in the
measurements, the portion of leakage power was much less
than 0.1% of the total power consumed and could be left
out of consideration. The overhead of the instruction template
bits and padding bits required by the proposed TTA’s variable
length instruction format are taken into account in the results,
while their effect is minimal (< 1%).

den:

The power savings per CHStone benchmark are presented
in Fig. 7. The difference between 2 and 6 instruction templates
used for the NOP removal is also visible in the power results:
6 templates covered more of the NOP moves, thus allowing
better power saving. In order to compensate for the jpeg test
results, where the benchmark contains a significantly larger
instruction count, a geometric mean of the power saved in all
the tests is presented: 4.74 mW with six instruction templates
and 3.91 mW with two instruction templates. The power saved
was not linear with the amount of bytes reduced from the
program code, because the size of the program memory affects
the consumption, especially when power of two values are
crossed. Despite approximately 21 KB was saved in the aes test
with six templates, only 3.45 mW less power was consumed,
while 6.42 mW of power was saved in the blowfish test with
13 KB memory reduction. As examples, the program code for
aes could be fitted on a 32 KB memory instead of 64 KB after
compression, and blowfish on 16 KB instead of 32 KB.

Since SRAM memory is not manufactured in arbitrary sizes
but in power of two sizes, the power saved when switching
to a half smaller memory size was estimated with CACTI
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Fig. 6. The amount of memory space saved in the CHStone benchmarks.
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with the same parameters as for instruction compression.
These results are presented in Fig. 8. The chart shows that
a considerable saving is seen each time when a reduction is
possible, until 16 KB. This highlights that a good amount
of power can be saved even if the program image does not
compress significantly, but if it compresses sufficiently to fit
on a smaller memory module.

C. Fetch Unit Power Consumption

The original and the two alternative fetch designs were syn-
thesized with Synopsys Design Compiler on a 40 nm standard
cell technology, using quanta of 2, 32, and 128 bits. The target
clock speed was set to 600 MHz and each variable length
design variant was subjected to three synthetic test cases,
which explored the units’ worst case power consumption. The
three test cases consisted of a varying degree of I,,,, = 256-
bit and quantum (g) length instructions: Either all g-length, all
L az-length or alternating I,,,4,- and g-length instructions.

The test result with the highest power consumption for
each design variant, including the original fixed length fetch
unit, is displayed in Fig. 9. In most cases, the worst power
consumption was seen when the fetch unit had to repeatedly
fetch and handle g¢-length instructions, as its internal multi-
plexer and shifter structures had to operate on bits. The best
results are seen with a ¢ of 128 bits, which is half of the
maximum instruction length. On the ring buffer design, the
other g-values follow closely, while the power consumption
grows rapidly on the SR design.

At best, the variable length fetch unit requires 3.50 mW of
extra power to operate at worst case, when the g of 128 bits is

452 A9 4,86

Total power consumption (mW)
o
Il

24 1,02

Fixed length RB q128

RB g32 RB q2
Design variant

SRq128 SRq32  SRq2

Fig. 9. Fetch units’ total power consumption with quanta (q) of 2, 32 and
128 bits, showing worst case test results.
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Fig. 10. Fetch units’ area in kilogates with quanta (q) of 2, 32, and 128 bits,
using target clock speed of 600 MHz.

used. However, a much better compression efficiency is seen
with a g of 32 bits, which is the quantum used in the instruction
template compression results of this paper. The SR approach
for a q of 32 consumes more power than would be saved with
6 instruction templates on average, unless a reduction from a
128 KB memory or larger to a smaller category can be made.
The ring buffer is much more efficient, reaching the break-even
of average power savings when just two instruction templates
are used for compression.

As long as a SRAM memory power saving of approxi-
mately 3.50 mW or more is reached with compression, the
variable length ring buffer fetch’s usage is favorable. These
results do not include the overhead from the instruction
template decompression which is integrated in the decoder
unit, which consumes additional dynamic power to re-assemble
the decompressed instructions. This can be projected to be a
fairly efficient operation, as it is a multiplexer network which
simplifies by choosing a reasonably large ¢ and using few
instruction templates.

D. Chip Area

The area of each of the fetch designs was collected from the
40 nm standard cell synthesis results and is presented in Fig. 10
in kilogates. A similar trend is seen in the area as in the power
consumption: the SR designs with a small g grow rapidly,
while the ring buffer stays more compact even when ¢ is
increased. Worth noting is that SR design’s area exploded when
the maximum instruction length of a power of two value —1
was used, while the ring buffer’s area followed a linear trend
with maximum instruction size increase. It is interesting to
note that at their simplest form at g of 128, the ring buffer and
SR are of similar size. This implies that the extra logic the
ring buffer requires to function roughly equals the extra logic
required by the SR design’s buffer, which is one instruction
longer. Finally, with the least logic generated from a g of 128
bits, both of the new designs are 431% larger than the original
fetch design, which only handles fixed length instructions.

VI. RELATED WORK

Program code compression has been vastly researched
and eventually adopted in many instruction set architectures.
Similarly, variable length instructions are used in many ar-
chitectures such as ARM Thumb [12], EPIC [4] and x86, not
only for NOP-removal, but also for executing other instructions



of varying sizes. Some papers introducing new compression
methods based on variable length instruction encoding list
impressive compression ratios, but do not show either perfor-
mance, area, or power consumption results, such as in [13].

Heikkinen evaluated instruction template-based compres-
sion for TTA in [14]. The compression was performed with
2-32 templates on DSP tests with different processor con-
figurations. In his benchmarks, the designs consumed more
power than saved, despite a space saving of 53,5% was reached
with maximum templates for the processors. The results in this
paper are more favorable for several reasons: The quantum in
[14] is limited to 16 bits, while we explored the effect of quanta
of 2, 32, and 128 bits, which are all power of two factors of
the maximum instruction length of 256 bits. The two processor
configurations in [14] had instruction widths of 127, and 192
bits, which are not a power of two, causing more complex
hardware structures to be generated in synthesis. Also both of
the fetch designs in this work contained less registers due to
more optimized design.

A very similar instruction template-based compression is
used in EPIC [4], where two variable length encoding schemes
can be used to eliminate NOPs from the program code:
MultiTemplate and VariOp. In addition, EPIC’s fixed length
MultiOp instruction format contains a field for how many full
NOP instructions are to be issued after the current instruction,
allowing instructions which contain only null data transports to
be omitted completely from the program code. MultiTemplate
instruction format involves the use of templates, each of which
defines a subset of function units to target with the operations
of the variable length instruction. The rest of the FUs are
implicitly provided with a NOP. The VariOp instruction format
is different, as it permits any subset of operation slots to
be included within any instruction up to the maximum FU
amount. Each operation is explicitly targeted to a FU and
the remaining empty operation fields are implicitly filled with
NOPs on a per instruction basis.

VII. CONCLUSION

This paper proposes a solution for compressing away
excess NOP instructions on TTA architectures using a variable
length instruction encoding approach and instruction template-
based compression. The compression reduces the SRAM mem-
ory size required for the program code, lowering the total
power consumption of the processor. Two instruction fetch
designs are proposed: the ring buffer and shift register buffer.
The former is a more minimalist design with a buffer of two
maximum length instructions. The latter uses one more buffer
slot to reduce the control logic complexity and reach a better
clock frequency for the processor.

The compression achieved 44% program size reduction on
average with 6 NOP removal templates and 37% reduction
with 2 templates. The fetch designs consume an extra 3.50 mW
of power at minimum on a TTA processor with 256-bit
maximum instruction length. Despite the savings from the
template compression do not always directly surpass the extra
power consumed by the fetch unit in our benchmark suite, the
target program can often be fitted on a half smaller memory
module after compression. For SRAM memory sizes between
32-512 KB and beyond, this is reduction is sufficient to benefit
from the variable length architecture.

Future work will include developing a more rigorous
template selection method for the case of multiple templates
and test workloads. Moreover, we will investigate compiler
techniques for taking better advantage of the NOP templates.
The instruction scheduler could avoid putting operations to
execution slots which can be encoded by the NOP templates.
The scheduler could also post-optimize already scheduled code
by testing if operations fit easily to nearby templates.
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