
Multicore Communications API (MCAPI)

implementation on an FPGA multiprocessor

Lauri Matilainen, Erno Salminen, Timo D. Hämäläinen, and Marko Hännikäinen

Tampere University of Technology,

Department of Computer Systems,

P.O. Box 553, 33101 Tampere, Finland

Email: lauri.matilainen@tut.fi, erno.salminen@tut.fi, timo.d.hamalainen@tut.fi, marko.hannikainen@tut.fi

Abstract—The design and implementation of an application

programming interface (API) is a trade-off between abstraction it

provides and overheads it causes. This paper presents an

implementation of Multicore Communications API (MCAPI) on

a heterogeneous platform consisting of FPGA-based

multiprocessor system-on-chip (MPSoC) connected via PCIe to

an external CPU board. The purpose is to provide a unified

programming API to different processor and OS types as well as

hardware IP-blocks. MCAPI is shown to meet these

requirements. We show the MCAPI transport implementation on

three processors and two buses, measure the overhead cost, and

analyze the effort required to port an application from a PC to

the MPSoC. The measured library memory footprint is less than

25KB and the roundtrip communication latency is diminishing

low - only few dozen clock cycles - compared to non-MCAPI

implementation.

Keywords-parallel programming, multiprocessor, programming

interface, FPGA

I. INTRODUCTION

Modern embedded applications are becoming increasingly
complex and more demanding with respect to code reuse as
platforms develop and applications should be implemented
rapidly. The implementation is combination of software and
hardware and may even change several times during product’s
lifetime. Hence, efficient hardware alone is not enough but
needs the support of programming models and tools.

Figure 1 depicts the goal of this paper. The overall
functionality is specified using, for example model based
techniques, and mapped to physical implementation consisting
of various processors and fixed-function HW IP-blocks. In
addition, efficient software platform services like operating
systems, drivers and compatibility layers are needed.

The goal is to implement an interface layer that provides
suitable abstraction for both SW- and HW-blocks and still
offers feasible performance, small memory and area
requirements, as well as fast code porting and re-mapping of
application tasks.

There are already several programming models and tools
for MPSoC programming [1] [2]. These tools help, for
example, in partitioning and mapping the problem to the
specific platform. Application portability is often provided by
some compatibility layer API (Application Programming
Interface). However, traditional multicomputer APIs are too

heavy-weight and lack support for extreme heterogeneity like
treating HW IP-blocks as “processors”.

Multicore Communications API (MCAPI) [3] was developed
for multi-core environment where inter-core communication is
expected to be faster and more reliable than inter-computer.
Thus, MCAPI aims to be more lightweight and efficient than
other parallel computing APIs.

We adopted MCAPI for an FPGA-based MPSoC environment.
Modern FPGA devices very flexible and can include up to tens
of soft-core processors and IP-blocks. Main goal is a practical
solution that is immediately usable in embedded product
development. The main contributions of this paper are:

1. The first MCAPI implementation for FPGA MPSoC.

2. Analysis of memory footprint and performance

overhead.

3. An example demonstrating code portability effort.

Figure 1 Application tasks are implemented in processor programs and fixed-

function HW blocks using unified interface layer abstraction. Intel Atom,

Customizable TTA-processors and Altera NIOS are example processors used

in this work.

Rest of the paper is organized as follows: In section II we
discuss related work. Section III presents an overview of
MCAPI specification and Section IV illustrates our own
implementation. Section V presents the obtained results and
Section V the conclusions.

A
ProgramTask

A

Task
B

Task
C

Task
D

B
Program

C
Program

D
Fixed

HW

API

API

API

API

NIOS
@FPGA

Atom
@CPU board

TTA
@FPGA

IP-block
@FPGA

Abstraction Realizations

Mapping

Interface layer

II. RELATED WORK

An API is an abstraction that describes an interface for the
interaction between system components. In practice, an API is
a set of functions in a program, e.g. send_data() or
connect_channel(). Such common interface is needed in order
to develop efficiently complex portable applications. The same
functions should be available to programmer regardless of API
implementation that can be e.g. PC running Linux and NIOS
without any OS. Consequently, most of the development and
functional verification can be carried out on a workstation, and
porting the tested software into target MPSoC should go
smoothly. However, some APIs make certain assumption from
the HW platform, such as utilization of shared memory.

A. OpenMP, MPI, and CORBA

OpenMP is an API for shared-memory multiprocessing
programming in C/C++ and Fortran on many architectures
ranging from desktops to supercomputers, e.g. Unix and
Windows NT platforms [4]. OpenMP requires special support
from the compiler which, on the other hand, makes it quite
easy to adopt. The code can still be compiled for serial
execution and parallelization can be added gradually.

MPI is a message-passing library interface specification [5].
Unlike OpenMP, MPI can be used on either shared or
distributed memory architectures. However, MPI requires more
changes to source codes than OpenMP but does not require any
special compilers.

CORBA (Common Object Request Broker Architecture) is
meant for inter-object communication between computers. It
provides high abstraction and several services. Attempts have
been made to use CORBA on embedded systems and even
some parts have been implemented in VHDL for hardware [6].
CORBA is, however, too heavy-weight to our goals.

Unfortunately generic solutions originating from
workstation environment may easily consume too many
resources from an embedded system. Moreover, the sheer
number of functions (e.g. ~300 in MPI) might prove overkill as
all of them might not be needed.

Another challenge is memory footprint. For example, Cell
Broadband Engine includes 8 slave cores (synergistic
processing engine, SPE) each having 256KB of local memory.
This is “far too small to host a full MPI library” [8], but some
reduced MPI versions are available [7] [10].

B. Research proposals and experiments

Among several multiprocessing interface proposals we
consider some cases close to our goals. Cell processor is one
interesting platform since its satellite processors offer good
performance but optimized software is often laborious. To
develop. Khunjush [13], Abellan [10], Hung [8] have used and
analyzed Cell SDK which offers low-level primitives to access
parallel resources. Hung has also implemented a hybrid API
combining parts of MPI and MCAPI and their work is closest
to our MCAPI implementations.

Several MPI implementations have been presented for
FPGA-based MPSoCs as well. Minhass [7] uses Altera NIOS
as we do, whereas Saldaña [15] and Mahr [14] Xilinx
MicroBlaze. Setälä et al. have presented distribution embedded

applications modeled in UML 2.0 and the associated inter-
process communication [17].

Paulin et al. [11] [16] have presented a custom MPSoC
exploration environment called StepNP. It offers hardware
support message-passing and multithreading to minimize
latencies. We compare our results with the related work in later
sections.

III. MULTICORE COMMUNICATIONS API (MCAPI)

The MCAPI [3] is targeted primarily towards inter-core
communication whereas MPI and sockets are mainly
developed for inter-computer communication. Thus, a principal
design goal of MCAPI was to specify a low latency API to
enable efficient use network-on-chip. MCAPI’s
communications latencies and memory footprint are expected
to be significantly lower than MPI or sockets, at the expense of
less flexibility.

MCAPI’s objective is to provide a limited number of calls
with sufficient communication functionality while keeping it
simple enough. Additional functionality can be layered on top
of the API set. The calls in the specification serve as examples
of functionality and are not mapped to any particular existing
implementation [3].

A. Communicating entities

The MCAPI specification is both an API and
communications semantic specification. It does not define
which link management, device model or wire protocol is used
underneath it. As such, by defining a standard API, it is
intended to provide source code compatibility for application
code to be ported from one environment to another (from PC to
MPSoC, in our case). The implementation of MCAPI hides
also the differences in memory architectures.

MCAPI communication is based on node and endpoint
abstraction, as shown in Figure 2. An MCAPI node is a logical
concept that can be denote to many entities, including a
process, a thread, a hardware accelerator, or a processor core.
Nodes are always unique and, in our case, statically defined at
design time.

Each node can have multiple endpoints that are socket-like
termination points. For example, an encryption node could be
implemented as single thread receiving plain text from one
endpoint, and sending encrypted data via another endpoint.
Endpoints are defined with a tuple <node_id, endpoint_id>.
Endpoints can be created at runtime.

MCAPI channels can be dynamically created between pairs
of endpoints. However, channel type and direction cannot be
changed without deleting and recreating the channel. Multicast
and broadcast is not supported. Channels are normally set up
once during initialization. MCAPI runtime library performs
operations like name lookup, route determination, and buffer
allocation between a specific pair of endpoints. After that the
channel sends and receives are carried out with less overhead.

 We use static endpoint names and channel definitions to
explicitly embed the topology in the source code. This also
enables the use of external tools to generate topologies
automatically and facilitates simple initialization.

B. Communication types

MCAPI defines three communications types:

1. Messages – connection-less datagrams.

2. Packet channels – connection-oriented, uni-directional,
FIFO packet streams.

3. Scalar channels – connection-oriented single word uni-
directional, FIFO packet streams.

MCAPI messages transmit data between endpoints without
first establishing a connection. The memory buffers on both
sender and receiver sides must be provided by the user
application. MCAPI messages may be sent with different
priorities. The topmost communication arc in Figure 2 depicts a
message transfer.

MCAPI packet channels provide a method to transmit data
between endpoints by first establishing connection, thus
potentially removing the message header and route discovery
overhead (marked with darker color in Figure 2). Packet
channels are unidirectional and deliver data in a first in first out
(FIFO) manner. The buffers are provided by the MCAPI
implementation on the receive side, and by the user application
on the send side, as depicted in the middle.

MCAPI scalar channels transmit 8-bit, 16-bit, 32-bit and
64-bit words between endpoints by first establishing a
connection. Like packet channels, scalar channels are
unidirectional and deliver data in a FIFO manner.

Each of these communications types has its own API calls,
the total number being ca. 50. About one fourth are for
initialization and setup, whereas the rest are for
communication. Channel API calls are designed to be simple
and statically typed, which minimizes overhead of dynamic
software structures. This allows applications to access the

underlying multicore hardware with low, preferably
deterministic latency.

Messages are the most flexible form, and are useful when
senders and receivers are dynamically changing and
communicate infrequently. These are commonly used for
synchronization and initialization.

Packet and scalar channels provide light-weight socket-like
stream communication mechanisms for senders and receivers
with static communication graphs. In a multicore, these
channel APIs provide a low-overhead ASIC-like uni-
directional FIFO communications capability.

IV. HARDWARE PLATFORM IN CASE STUDY

Figure 3 shows the MPSoC platform used in this study.
Platform includes two processing elements (PEs), HIBI
network, as well as direct memory access (DMA) interfaces for
IP-blocks (HIBI PE DMA) and external memory (HIBI MEM
DMA). Processors have local, private instruction and data
memories, and inter-processor communication is implemented
using message-passing. The architecture is in a FPGA on a
development board that is connected via PCIe to a PC, or
embedded CPU board. The platform was synthesized to
Altera’s Arria II GX FPGA development board [12] at
100MHz.

A. Bus interfaces

Blocks are connected to the bus by DMAs that take care of
copying data to/from network and local dual port memory in
order to speed up the communication and overlap it with
computation. The difference is in their usage: HIBI PE DMAs
are configured by the local PE (Nios) whereas HIBI MEM

Figure 2. Example with 4 MCAPI nodes that are using the three available communication schemes. Communicating endpoints must have the same type, hence

there are 6 of them.

Figure 3 Case study architecture with PC and MP-SoC on FPGA.

DMA is configured by the remote host (Nios or PC) from
the HIBI side. Configuration needs 4 parameters: source
address, target address, amount, and command. Processors’
DMA can have one ongoing TX to the network but can be
waiting for multiple RX data streams from the network. PE is
either interrupted upon the completion of reception, or it can
actively poll the status of RX channels. Transfers to/from the
local on-chip dualport data memory are controlled explicitly by
the programmer. Here, these scratch-pad memories run with
the same frequency as the processors. Similarly to SPE
memories in Cell processor i.e. PEs cannot access each other’s
local memory space. Instead, each HIBI wrapper has a set of
target addresses and PE DMA performs address translation
between local memory and HIBI addresses.

Memory DMA offers multiple transfer channels to both
directions. Memory can be accessed transparently but DMA
controller allows using single bus address in the transfers. For
example, reading a large block of data from memory using
DMA is clearly more efficient than using one request per data
word. This is beneficial in HIBI that utilizes multiplexed
address and data lines, and also in packet-switched NoCs.

B. PC

A regular PC (2.4 GHz, 1024 MB) running Debian GNU
/Linux 5.0.6, is used for application development and FPGA
synthesis. The main purpose is here to demonstrate that an
application code can easily run either on PC or Nios since
MCAPI takes care of the inter-processor communication be it
PCIe, HIBI, or any other. Hence, the applications can be
developed in a workstation environment that allows simpler
debugging. Then, application code can be transferred to FPGA
or be distributed among PC and FPGA processors.

V. MCAPI IMPLEMENTATION

Figure 3 shows also the software layers implementing
MCAPI on our platform. Nearest to hardware is a DMA driver

that was previously presented in [17] and was used with eCos
operating system. In this case study we have excluded the
operating system. We name our MCAPI implementation as
FUNCAPI according to a research project “Funbase”
(Function-based platform).

A. Layered approach

The implementation of FUNCAPI is divided into two
layers: top and transport. The top layer implements MCAPI
specified endpoint abstraction for user application and does
only simple error checking for function calls.

Transport layer implements interface between the top layer
and the underlying HAL (Hardware Abstraction Layer) layer,
namely the DMA drivers in this case. HAL layer abstracts the
underlying communication media and protocol. In this case
study, we use HIBI network inside FPGA and PCIe between
FPGA and PC. Other responsibilities are to handle MCAPI
databases and send/receive data and messages to/from other
physical PEs. It transforms the used endpoint identifiers to
target PE’s HIBI addresses. Transport layer also performs error
checking features concerning illegal endpoint accesses or
splitting too long transmissions. Application cannot access
non-existing nodes or endpoints which gives safety for the
application developer point of view.

B. Using virtual nodes for fixed-function units

A new feature in our implementation is that also HW
accelerators are seen as MCAPI nodes. Hence they can be
accessed with regular MCAPI functions, although IP-blocks
itself does not support MCAPI natively at all. This is done by
virtualizing the IP-block’s endpoint abstraction to transport
layer in a processor. Hence, MCAPI acts also as a HW/SW
interface and a node is not aware with which type of PE it is
communicating. A major benefit is that this allows gradually
accelerating the application by including more and more
hardwired accelerators.

A simple pseudo code example below shows how the
virtual node for a discrete cosine transform (DCT) HW IP-
block is handled. The IP-block is given a unique node number
at design time, “1” in this case. By default the MCAPI
msg_send function calls the driver of DMA controller (a C-
macro HPD_send), but for this virtual node number 1 it
forwards execution to a DCT driver. This eventually calls
HPD_SEND function, perhaps multiple times, to configure the
DCT and send raw data to be transformed. The same procedure
is easily repeated for other accelerators.

 send_msg(…) {

...

 switch(node_id){

 case ‘1’ :

 ...

 dct_drv(…);

 ...

 default :

 ...

 HPD_SEND(…);

 ...

 }

}

C. Functions

The connectionless message and packet channel API
functions have both blocking and non-blocking variants. For
example mcapi_msg_recv(…) function blocks the execution of
the application node until all the message data has been
received. The non-blocking variants will return immediately
and therefore their names are denoted with “_i”.

The 11 most essential MCAPI functions for this study are
listed and described in Table 1. They are divided into 3
categories as follows:

1. Functions 1-5 are initialize the system and called
only once at the beginning of application.

2. Functions 6-9 are used to pass and receive data
between MCAPI nodes in different MCAPI
communication formats.

3. With functions 10-11 user can query the status of
the non-blocking operation. More specific
descriptions about the MCAPI functions can be
found from the MCAPI specification.

Required buffers are statically reserved at compile time just
like endpoints and channels to increase overall reliability and
ease of debugging. Applications must take care of data
alignment, endian-ness and the internal structure of messages
in general.

D. Example

An example execution sequence is described in Figure 4 for
initialization and transfer of a single message. The 4 leftmost
lifelines depict the software, namely application, the two layers
of MCAPI, and the DMA driver. On the right, there is the HW
network. The receiving PE is not shown for brevity.

Before the actual message passing can be done, node and
outgoing endpoint initialization is needed. In the first phase,
sender initializes itself with a unique tuple <node_id, port_id>
and creates an endpoint for sending messages. Similarly,
receiving side must execute the same initializations.

In the 5th phase, user application obtains a handle for the
target endpoint from the (static) MCAPI database and uses that
for sending messages. This phase could omitted in a
completely static system. However, it ensures the validity of
target endpoint and retains code portability to dynamically
configured systems.

Phases 1-6 are executed only once in applications boot
sequence. Note that no data is sent over the network during the
initialization, which simplifies API a lot in the absence of
shared memory. It should be noted that this is possible only
when the node topology is static. In general, nodes can also be
created dynamically as threads, and then initialization is done
between a thread and MCAPI implementation.

After initialization, the message data is ready to send to
network using HIBI_PE_DMA driver. The FUNCAPI top
layer forwards message to transport layer which implements
MCAPI endpoint abstraction transformation to HIBI address
space. For example, sending to endpoint <node=3, port=1> is

transformed to target address 0xF000_0000. Once the HIBI PE
DMA has been configured, MCAPI returns.

It is obvious that the actual communication functions are
more important regarding the performance than the
initialization. Therefore the implementation is focused more to
transfer functions.

Table 1. The most essential MCAPI functions and their meaning.

VI. IMPLEMENTATION

We implemented nearly all MCAPI functions but excluded
certain tests for non-blocking transfers. As mentioned, the
configuration of nodes, endpoints, and channels is static. Total
lines of current C code in FUNCAPI transport for Nios is about
1.500 and low-level DMA driver 266 without comment lines.
MCAPI transport for PC takes 1.450 lines of C and PCIe
driver 248 lines. These give a rough estimate of the modest
complexity and ease of portability of the MCAPI
implementation itself.

It must be noted, that although transport layer is specific to
each platform, large portions of it can be reused. For example,
in our case 95% of the source code remains the same despite
the differences between Nios without OS and PC with Linux.
The latter communicates using PCIe that is accessed with
Linux driver functions that are implemented as regular user-
space applications in this study. Table 2 shows main software
components for Nios implementation; a similar set is used in
PC as well.

For remapping a MCAPI node from one processor to
another we show a simple case with the test application in
Figure 2. At first, the left part (nodes 0+1) was implemented on
Nios processors Figure 2. On the second step, we remapped
node 1 from Nios to PC. Example code snippet from
mcapi_mapping.h below shows the address definition that is
the only modification needed in addition to re-compilation to
target processor.

Function Meaning

initialize(…) Initializes the MCAPI implementation

create_endpoint(…) Creates an endpoint into local database

connect_pktchan_i(…) Connects send & receive side endpoints with a
channel (non-blocking function)

open_pktchan_recv_i(…) Creates a typed, local representation of the

reception channel. It also provides
synchronization for channel creation between

two endpoints (non-blocking)

open_pktchan_send_i(…) Same as previous function for sender’s endpoint

msg_send(…) Sends a (connectionless) message

msg_recv(…) Receives a (connectionless) message. Blocks

until the whole message has arrived.

pktchan_send(…) Sends a (connected) packet on a channel

pktchan_recv(…) Receives a data packet on a (connected) channel

test(…) Tests if non-blocking operation has completed

wait(…)

Waits for a non-blocking operation to complete

// address_map[Nios_0_addr, Nios_1_addr];

address_map[Nios_0_addr, pc_addr];

Hence, the remapping node from other processor to another
requires changing just one line in this example. Without
standardized API, the developer has to study the underlying
communication media driver usage and rewrite the application
code. Consequently, MCAPI offers even hours save in the code
reuse with different processors.

Table 2 Nios-related software components.

Code Content

app_x.c, Test application code

mcapi.c MCAPI top layer implementation

funcapi_transport_Nios.c MCAPI transport layer implementation

mcapi_config.h Defines constants, e.g. MCAPI packet sizes

mcapi_mapping.h Defines endpoints and mapping to physical
addresses

mcapi_datatypes.h Defines MCAPI data types

hibi_pe_dma_driver.c Hardware abstraction for DMA controller

hpd_regs_and_macros.h Low-level register and macro definitions

VII. PERFORMANCE MEASUREMENTS

We measured the memory footprint, communication
latencies, and throughputs. Latency statistics are listed in Table
3 and Table 4. The latency measurements were repeated 100
times for each transfer size to obtain reliable results.
Measurements are divided into two different parts:
initialization and data transfer.

Latencies are measured by using different type of MCAPI
communication methods between two NIOS processor: node_0
and node_1. In transfer measurements, we assume that the
node_1 is ready to receive data from sending PE node_0 and
vice versa. Thereby, we are able to distinguish the different
parts of the transfer and see the difference of MCAPI
communication methods.

The first row (connection-less message, 21 clock cycles) in
the Table 3 represents used time in initialization phases 1-6 in
Figure 4. Packet and scalar channels are connection-oriented
channels and their initialization takes more time than message
channel. However, initializations are done only once in the
beginning of the application execution and it is independent of
the message or packet size. Thus, the latency caused by
initialization functions is negligible with long term stream-like
data transfers.

Actual data transfer translates into DMA driver function
call HPD_SEND(), phase 9 in Figure 4. It initializes the DMA
transfer with data size, data address, receive address and
transfer size parameters. After this, HIBI_PE_DMA handles
autonomously the rest of the transfer. Correspondingly, in the
receive node, HIBI_PE_DMA is initialized to copy the
received message to a desired address in local memory.
Function msg_recv() just polls the status of the DMA driver
whether the data is ready or not.

Packets size affects obtained throughput notably. For
example, with 16 B packets Nios to Nios throughput is about
25 MB/s, whereas 1KB packets yield 120 MB/s. Without
MCAPI throughputs are 8 % and 2% higher, respectively.
Theoretical maximum is 4B × 100 MHz = 400 MB/s.
Throughput between PC and Nios processor via PCIe is
significantly lower, only 15 MB/s but this is caused by the
general purpose, simple PCIe Linux driver that handles only
single 32/64-bit transfers. Its optimization is not on the scope
of this paper.

Table 3. Initialization latencies for message, packet and scalar channels.

Communication type Initialization time [clock cycles]

Message 21

Packet 90

Scalar 90

Figure 4. An example sequence of MCAPI execution in Funbase software platform.

NIOS_ msg_ sendscl_se nd_PCinteraction []

FUNCAPI_TRANSPORT_LAYER (NIOS) HIBI_PE_DMAmsg_send.c FUNCAPI HIBI

[]

loop

SUCCESS13:

HPD_SEND(...)9:

SUCCESS11:

HIBI_WR10:

 mcapi_create_endpoint (...)3:

mcapi_initialize(...)1:

mcapi_msg_send(...)7:

mcapi_get_endpoint(...)5:

MCAPI_SUCCESS2:

MCAPI_SUCCESS4:

MCAPI_SUCCESS12:

mcapi_trans_msg_send(...)8:

MCAPI_SUCCESS6:

{init}

Table 4. Data transfer roundtrip latencies for various packet/message size.

Words(32-Bit) Data transfer [clock cycles]

1 63

2 63

4 67

8 71

16 79

32 105

64 127

128 191

A. Memory footprint

Program memory footprint of the FUNCAPI code library is
about 25KB, from which 7KB is for top and 18 KB for
transport layer. HIBI_PE_DMA driver library consumes only
1KB slice from the system memory.

The total data memory footprint depends on the used
maximum packet/message size. With 2KB packet/message
size, the memory buffer usage is channel_count ×
max_packet_size. The channel count differs between nodes.
For example, system in Figure 2 has one channel of each type:
message, packet and scalar.

Thus, the complete buffer memory usage is sum of
message, packet and scalar buffers: 1 × 2KB + 1 × 2KB + 4B ≈
4 KB. Program and data memory in total takes about 25+1+4=
30 KB.

B. Comparison to other API implementations

Table 5 shows results from literature. Columns are divided
into different features: Used API; HW platform; memory
footprint; inclusion of OS; system frequency; one-way
communication latency; used transfer type. Many sources
report latencies in microseconds and we converted them to
clock cycles to ease comparison. Similarly, we converted the
reported roundtrip times to one-way latencies. The roundtrip
latency in our MCAPI implementation between two PE is from
63 to 191 cycles depending on the size of sent data, hence one-
way minimum latency is about 32 cycles.

Three sources report results from MPI implementations.
Saldana et al. report 340 clock cycles communication latency
for zero-length message transfer. Minhass et al. measured
clearly larger, ~1150 clock cycles latency for minimum size
data transfer and they considered that as “bottleneck of the
system” [7]. Implementation by Mahr, on the other hand, had
even larger latency, ~9 000 clock cycles for 128B packet [14].

Overhead of MPI and OpenMP was recognized also by
Hung et al. They presented MSG API which obtained at
minimum ~1100 clock cycles latency for minimum size data
transfer [8]]. Hence, MSG is faster than native CELL SDK
communication functions of the platform but practically
doubles the communication latency compared to memory
mapped I/O (mmio) [8]. StepNP can perform message-passing
in less than 40 cycles. Fast communication is absolutely
necessary in network processing where the tasks are short, even
less than 500 instructions [16]. In summary, our MCAPI
implementation performs very well compared to these
implementations.

As seen from the table, memory footprint of the API is
rarely reported in the related works. Data and program memory
footprint was classified even less frequently. Nevertheless,
Saldana et al. presented 8.76 KB communication library size,
which is one third of our implementation. However, Saldana et
al. does not inform thoroughly which part of the MPI is
supported in their function subset. Mahr et al. were able to
implement MPI in 16 KB or less, depending on configuration.
For comparison, eCos library memory footprint in NIOS
processor was about 53 KB in our earlier prototypes. In [16],
accelerator units for message-passing and object request broker
required 27 kilogates of logic and 12.5 KB memory per system
plus 3 kilogates/PE and 0.5 KB/PE.

C. Performance considerations

The factors contributing to API performance originate from
the underlying HW and SW layers and also what operations are
included in measurements. Buffer management was here done
by the application and hence excluded from the measurements.
For example, IPC mechanism presented by Setälä et al. had to
use memory copy in receive/send side due to limited on-chip
memory. This caused heavy overhead for the transfer latency
(~5 clock cycles/Byte) in addition to context switch in OS.

Our MCAPI implementation has few restrictions which
may cause the performance gap compared to many other API
implementations. Firstly, all nodes, endpoints and channels are
decided in design time. Secondly, MCAPI offers only 50
communication functions. Compared to MPI’s over 200
functions, this is a huge difference [5]. And thirdly, buffer
management is mostly done by user application.

We notice from Table 5 that OS causes major overheads;
for example in Cell transfers to/from PPE running Linux are
much slower than between SPEs that do not have OS.
Normally the context switch in an embedded processor takes
hundreds of clock cycles, whereas in another extreme StepNP’s
HW-accelerated context switch takes only one cycle and
scheduling only around 40 clock cycles [9].

 Other aspects that should be avoided are dynamic memory

allocation (175 clock cycles in our platform) and inefficiently

planned thread creation (e.g. 1.68 ms which equals over 5

million cycles [10]). Similarly, table look-aside buffer (TLB)

is needed in virtual memory system but may incur notable

runtime overheads, e.g. in the range 500-1500 cycles for TLB

miss and 85K-500K cycles for replacement [13].

VIII. CONCLUSIONS

We have implemented, as far as we know, for the first time
Multicore Association MCAPI for an FPGA-based MPSoC
including virtual endpoint support for hardware IP-blocks.
With layered structure, we separated the platform specific parts
in a transport layer, thereby porting MCAPI conveniently to
NIOS without OS and PC with Linux. Portability and
performance evaluation was demonstrated in the case study. In
addition, comparison to other API implementation from the
literature was done.

It seems obvious that unified and standardized
communication API is needed for embedded solutions, when
the application parallelization is increasing all the time.

MCAPI is one solution to this dilemma and seems to be fairly
promising one.

Our future work will be to improve the transport layer
structure to decrease memory footprint and support to handle
multiple low-level communications media drivers for a single
MCAPI transport implementation. Furthermore, we will
investigate more thoroughly the differences between APIs with
respect to their overheads and ease of use.

 REFERENCE

[1] W Wolf, A. A. Jerraya, G. Martin, “Multiprocessor System-on-Chip

(MPSoC) Technology,” Computer-Aided Design of Integrated Circuits
and Systems, 2008, vol 27, pp.1701

[2] R. Leupers, L. Thiele, Xiaoning Nie, B. Kienhuis, M. Weiss, T. Isshiki,
“Cool MPSoC programming,” in Proc. DATE, 2010, pp. 1488

[3] Multicore Association. Multicore Communications API Specification
Version 1, 2008. http://www.multicore-association.org.

[4] Woo-Chul Jeun, Soonhoi Ha, “OpenMP Effective OpenMP
Implementation and Translation For Multiprocessor System-On-Chip
without Using OS,” in Proc. ASP-DAC, 2007, pp 44-49

[5] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 2.2, http://www.mpi-forum.org

[6] Objective Interface Systems, Inc.,
http://www.ois.com/Products/orbexpress-fpga.html

[7] W. H. Minhass, J. Öberg, I. Sander, “Design and Implementation of a
Plesiochronous Multi-Core 4x4 Network-on-Chip FPGA Platform with
MPI HAL Support,” in Proc. FPGAworld, 2009, pp 52-57

[8] Shih-Hao Hung, Wen-Long Yang, Chia-Heng Tu, “Designing and
Implementing a Portable, Efficient Inter-core Communication Scheme
for Embedded Multicore Platforms,” in Proc. RTCSA, 2010, pp. 303-
308

[9] J. Holt et al., ”Software standards for the multicore era”, IEEE Micro
May/June 2009, pp. 40-51.

[10] J.L. Abellan, J. Fernandez, M.E Acacio, “CellStats: A Tool to Evaluate
the Basic Synchronization and Communication Operations of the Cell
BE,” in Proc. PDP, pp. 261-268.

[11] P. G. Paulin, C. Pilkington, M. Langevin E. Bensoudane, and G.
Nicolescu, Parallel Programming Models for a Multi-Processor SoC
Platform Applied to High-Speed Traffic Management, in Proc.
CODES+ISSS, 2004, pp. 48-53.

[12] Altera Arria II Device Handbook, Altera Corporation, 2010,
http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf

[13] F. Khunjush, N. J. Dimopoulos,” Extended Characterization of DMA
Transfers on the Cell BE Processor,” in Proc. IPDPS, 2008, pp. 1 – 8.

[14] P. Mahr, C. Lörchner, H. Ishebabi and C. Bobda, “SoC-MPI: A flexible
Message Passing Library for Multiprocessor Systems-on-Chips,”
Reconfigurable Computing and FPGAs, in Proc. ReConFig International
Conference, 2008, p. 187 - 192

[15] M. Saldaña, P. Chow, “TMD-MPI: An MPI Implementation for Multiple
Processors Across Multiple FPGAs,” in Proc. Field Programmable
Logic and Applications International Conference, 2006, p. 1 – 6

[16] P. G. Paulin et al., Parallel Programming Models for a Multiprocessor
SoC Platform Applied to Networking and Multimedia, TVLSI, Vol 14,
Iss. 7, 2008, pp. 667-680.

[17] M. Setälä, P. Kukkala, T. Arpinen, M. Hännikäinen, T. D. Hämäläinen,
“Automated Distribution of UML 2.0 Designed Applications to a
Configurable Multiprocessor Platform,” in Proc. SAMOS VI, 2006, pp.
27-38.

Table 5 Performance and memory comparison.

1st Author Ref API Platform MEM footprint

[code, data buffer]

[KB]

OS f

[MHz]

One-way

latency [us]

One-way

latency

[cycles]

Transfer type

Saldana

[15] MPI MicroBlaze 8.7KB library No 40 8.5 340 on-chip TMD-MPI zero-length

message

Minhass [7] MPI NIOS 10KB / core,Rx 2KB,

Tx 1KB

No 50 23 1 150 "MPI minimum size packet" to near

neighbor in same FPGA

Mahr [14] MPI MicroBlaze 11.5 - 16 KB No 100 - 9 000 128 Bytes MPI message

Hung [8] mmio()
Cell SDK

MSG

MSG
MSG

MSG

CELL BE total <256KB Yes (PPE)
Yes (PPE)

No

Yes (PPE)
No

Yes (PPE)

3200 0.06
2.96

~0.35

~1.5
~0.4

~1.8

 198
 9 469

~1 100

~4 800
~1 300

~5 800

mailbox PPE->SPE
mailbox PPE->SPE

16 B SPE -> SPE

16 B PPE -> SPE
2 KB SPE -> SPE

2 KB PPE -> SPE

Khunjush [13] Cell SDK CELL BE N/A No 3200 0.07 220 16 B put/get SPE -> SPE

Abellan [10] Cell SDK CELL BE N/A No
Yes (PPE)

Yes (PPE)

No
No

Yes

3200 0.08
0.18

3

~0.1-0.15
~0.2-0.25

1680

 256
 512

 9 600

~320-500
~640-800

~5.4M

mailbox SPE->SPE
mailbox PPE->SPE (direct)

mailbox PPE->SPE (sys call)

16 B SPE DMA (priv. mem)
2 KB SPE DMA (-“-)

Thread creation on PPE

Paulin [16] DSOC StepNP 12.5 KB + n * 0.5KB No 200 <0.2 <40 Message passing

Matilainen This MCAPI NIOS, PC 24.8KB, 4KB No 100 - 32 4 Bytes message

http://www.multicore-association.org/
http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf

