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Abstract—The design and implementation of an application 

programming interface (API) is a trade-off between abstraction it 

provides and overheads it causes. This paper presents an 

implementation of Multicore Communications API (MCAPI) on 

a heterogeneous platform consisting of FPGA-based 

multiprocessor system-on-chip (MPSoC) connected via PCIe  to 

an external CPU board. The purpose is to provide a unified 

programming API to different processor and OS types as well as 

hardware IP-blocks. MCAPI is shown to meet these 

requirements. We show the MCAPI transport implementation on 

three processors and two buses, measure the overhead cost, and 

analyze the effort required to port an application from a PC to 

the MPSoC. The measured library memory footprint is less than 

25KB and the roundtrip communication latency is diminishing 

low - only few dozen clock cycles - compared to non-MCAPI 

implementation.  

Keywords-parallel programming, multiprocessor, programming 

interface, FPGA 

I. INTRODUCTION  

Modern embedded applications are becoming increasingly 
complex and more demanding with respect to code reuse as 
platforms develop and applications should be implemented 
rapidly. The implementation is combination of software and 
hardware and may even change several times during product’s 
lifetime. Hence, efficient hardware alone is not enough but 
needs the support of programming models and tools. 

Figure 1 depicts the goal of this paper. The overall 
functionality is specified using, for example model based 
techniques, and mapped to physical implementation consisting 
of various processors and fixed-function HW IP-blocks. In 
addition, efficient software platform services like operating 
systems, drivers and compatibility layers are needed. 

The goal is to implement an interface layer that provides 
suitable abstraction for both SW- and HW-blocks and still 
offers feasible performance, small memory and area 
requirements, as well as fast code porting and re-mapping of 
application tasks.  

There are already several programming models and tools 
for MPSoC programming [1] [2]. These tools help, for 
example, in partitioning and mapping the problem to the 
specific platform. Application portability is often provided by 
some compatibility layer API (Application Programming 
Interface). However, traditional multicomputer APIs are too 

heavy-weight and lack support for extreme heterogeneity like 
treating HW IP-blocks as “processors”. 

Multicore Communications API (MCAPI) [3] was developed 
for multi-core environment where inter-core communication is 
expected to be faster and more reliable than inter-computer. 
Thus, MCAPI aims to be more lightweight and efficient than 
other parallel computing APIs.  

We adopted MCAPI for an FPGA-based MPSoC environment. 
Modern FPGA devices very flexible and can include up to tens 
of soft-core processors and IP-blocks. Main goal is a practical 
solution that is immediately usable in embedded product 
development. The main contributions of this paper are: 

1. The first MCAPI implementation for FPGA MPSoC. 

2. Analysis of memory footprint and performance 

overhead. 

3. An example demonstrating code portability effort. 
 

 
Figure 1 Application tasks are implemented in processor programs and fixed-

function HW blocks using unified interface layer abstraction. Intel Atom, 

Customizable TTA-processors and Altera NIOS are example processors used 

in this work. 

 

Rest of the paper is organized as follows: In section II we 
discuss related work. Section III presents an overview of 
MCAPI specification and Section IV illustrates our own 
implementation. Section V presents the obtained results and 
Section V the conclusions.  
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II. RELATED WORK 

An API is an abstraction that describes an interface for the 
interaction between system components. In practice, an API is 
a set of functions in a program, e.g. send_data() or 
connect_channel(). Such common interface is needed in order 
to develop efficiently complex portable applications. The same 
functions should be available to programmer regardless of API 
implementation that can be e.g. PC running Linux and NIOS 
without any OS. Consequently, most of the development and 
functional verification can be carried out on a workstation, and 
porting the tested software into target MPSoC should go 
smoothly. However, some APIs make certain assumption from 
the HW platform, such as utilization of shared memory. 

A. OpenMP, MPI, and CORBA 

OpenMP is an API for shared-memory multiprocessing 
programming in C/C++ and Fortran on many architectures 
ranging from desktops to supercomputers, e.g. Unix and 
Windows NT platforms [4]. OpenMP requires special support 
from the compiler which, on the other hand, makes it quite 
easy to adopt. The code can still be compiled for serial 
execution and parallelization can be added gradually. 

MPI is a message-passing library interface specification [5]. 
Unlike OpenMP, MPI can be used on either shared or 
distributed memory architectures. However, MPI requires more 
changes to source codes than OpenMP but does not require any 
special compilers. 

CORBA (Common Object Request Broker Architecture) is 
meant for inter-object communication between computers. It 
provides high abstraction and several services. Attempts have 
been made to use CORBA on embedded systems and even 
some parts have been implemented in VHDL for hardware [6]. 
CORBA is, however, too heavy-weight to our goals. 

Unfortunately generic solutions originating from 
workstation environment may easily consume too many 
resources from an embedded system. Moreover, the sheer 
number of functions (e.g. ~300 in MPI) might prove overkill as 
all of them might not be needed. 

Another challenge is memory footprint. For example, Cell 
Broadband Engine includes 8 slave cores (synergistic 
processing engine, SPE) each having 256KB of local memory. 
This is “far too small to host a full MPI library” [8], but some 
reduced MPI versions are available [7] [10]. 

B. Research proposals and experiments 

Among several multiprocessing interface proposals we 
consider some cases close to our goals. Cell processor is one 
interesting platform since its satellite processors offer good 
performance but optimized software is often laborious. To 
develop. Khunjush [13], Abellan [10], Hung [8] have used and 
analyzed Cell SDK which offers low-level primitives to access 
parallel resources. Hung has also implemented a hybrid API 
combining parts of MPI and MCAPI and their work is closest 
to our MCAPI implementations. 

Several MPI implementations have been presented for 
FPGA-based MPSoCs as well. Minhass [7] uses Altera NIOS 
as we do, whereas Saldaña [15] and Mahr [14] Xilinx 
MicroBlaze. Setälä et al. have presented distribution embedded 

applications modeled in UML 2.0 and the associated inter-
process communication [17]. 

Paulin et al. [11] [16] have presented a custom MPSoC 
exploration environment called StepNP. It offers hardware 
support message-passing and multithreading to minimize 
latencies. We compare our results with the related work in later 
sections. 

III. MULTICORE COMMUNICATIONS API (MCAPI) 

The MCAPI [3] is targeted primarily towards inter-core 
communication whereas MPI and sockets are mainly 
developed for inter-computer communication. Thus, a principal 
design goal of MCAPI was to specify a low latency API to 
enable efficient use network-on-chip. MCAPI’s 
communications latencies and memory footprint are expected 
to be significantly lower than MPI or sockets, at the expense of 
less flexibility. 

MCAPI’s objective is to provide a limited number of calls 
with sufficient communication functionality while keeping it 
simple enough. Additional functionality can be layered on top 
of the API set. The calls in the specification serve as examples 
of functionality and are not mapped to any particular existing 
implementation [3]. 

A. Communicating entities 

The MCAPI specification is both an API and 
communications semantic specification. It does not define 
which link management, device model or wire protocol is used 
underneath it. As such, by defining a standard API, it is 
intended to provide source code compatibility for application 
code to be ported from one environment to another (from PC to 
MPSoC, in our case). The implementation of MCAPI hides 
also the differences in memory architectures. 

MCAPI communication is based on node and endpoint 
abstraction, as shown in Figure 2. An MCAPI node is a logical 
concept that can be denote to many entities, including a 
process, a thread, a hardware accelerator, or a processor core. 
Nodes are always unique and, in our case, statically defined at 
design time.   

Each node can have multiple endpoints that are socket-like 
termination points. For example, an encryption node could be 
implemented as single thread receiving plain text from one 
endpoint, and sending encrypted data via another endpoint. 
Endpoints are defined with a tuple <node_id, endpoint_id>. 
Endpoints can be created at runtime. 

MCAPI channels can be dynamically created between pairs 
of endpoints. However, channel type and direction cannot be 
changed without deleting and recreating the channel. Multicast 
and broadcast is not supported. Channels are normally set up 
once during initialization. MCAPI runtime library performs 
operations like name lookup, route determination, and buffer 
allocation between a specific pair of endpoints. After that the 
channel sends and receives are carried out with less overhead. 

 We use static endpoint names and channel definitions to 
explicitly embed the topology in the source code. This also 
enables the use of external tools to generate topologies 
automatically and facilitates simple initialization.  



B. Communication types 

MCAPI defines three communications types:  

1. Messages – connection-less datagrams. 

2. Packet channels – connection-oriented, uni-directional, 
FIFO packet streams. 

3. Scalar channels – connection-oriented single word uni-
directional, FIFO packet streams. 

MCAPI messages transmit data between endpoints without 
first establishing a connection. The memory buffers on both 
sender and receiver sides must be provided by the user 
application. MCAPI messages may be sent with different 
priorities. The topmost communication arc in Figure 2 depicts a 
message transfer. 

MCAPI packet channels provide a method to transmit data 
between endpoints by first establishing connection, thus 
potentially removing the message header and route discovery 
overhead (marked with darker color in Figure 2). Packet 
channels are unidirectional and deliver data in a first in first out 
(FIFO) manner. The buffers are provided by the MCAPI 
implementation on the receive side, and by the user application 
on the send side, as depicted in the middle.  

MCAPI scalar channels transmit 8-bit, 16-bit, 32-bit and 
64-bit words between endpoints by first establishing a 
connection. Like packet channels, scalar channels are 
unidirectional and deliver data in a FIFO manner. 

Each of these communications types has its own API calls, 
the total number being ca. 50. About one fourth are for 
initialization and setup, whereas the rest are for 
communication. Channel API calls are designed to be simple 
and statically typed, which minimizes overhead of dynamic 
software structures. This allows applications to access the 

underlying multicore hardware with low, preferably 
deterministic latency.  

Messages are the most flexible form, and are useful when 
senders and receivers are dynamically changing and 
communicate infrequently. These are commonly used for 
synchronization and initialization.  

Packet and scalar channels provide light-weight socket-like 
stream communication mechanisms for senders and receivers 
with static communication graphs. In a multicore, these 
channel APIs provide a low-overhead ASIC-like uni-
directional FIFO communications capability. 

IV. HARDWARE PLATFORM IN CASE STUDY 

Figure 3 shows the MPSoC platform used in this study. 
Platform includes two processing elements (PEs), HIBI 
network, as well as direct memory access (DMA) interfaces for 
IP-blocks (HIBI PE DMA) and external memory (HIBI MEM 
DMA). Processors have local, private instruction and data 
memories, and inter-processor communication is implemented 
using message-passing. The architecture is in a FPGA on a 
development board that is connected via PCIe to a PC, or 
embedded CPU board. The platform was synthesized to 
Altera’s Arria II GX FPGA development board [12] at 
100MHz. 

A. Bus interfaces 

Blocks are connected to the bus by DMAs that take care of 
copying data to/from network and local dual port memory in 
order to speed up the communication and overlap it with 
computation. The difference is in their usage: HIBI PE DMAs 
are configured by the local PE (Nios) whereas HIBI MEM  

 

Figure 2. Example with 4 MCAPI nodes that are using the three available communication schemes. Communicating endpoints must have the same type, hence 

there are 6 of them. 

 



 
Figure 3 Case study architecture with PC and MP-SoC on FPGA. 

 

DMA is configured by the remote host (Nios or PC) from 
the HIBI side. Configuration needs 4 parameters: source 
address, target address, amount, and command. Processors’ 
DMA can have one ongoing TX to the network but can be 
waiting for multiple RX data streams from the network. PE is 
either interrupted upon the completion of reception, or it can 
actively poll the status of RX channels. Transfers to/from the 
local on-chip dualport data memory are controlled explicitly by 
the programmer. Here, these scratch-pad memories run with 
the same frequency as the processors. Similarly to SPE 
memories in Cell processor i.e. PEs cannot access each other’s 
local memory space. Instead, each HIBI wrapper has a set of 
target addresses and PE DMA performs address translation 
between local memory and HIBI addresses. 

Memory DMA offers multiple transfer channels to both 
directions. Memory can be accessed transparently but DMA 
controller allows using single bus address in the transfers. For 
example, reading a large block of data from memory using 
DMA is clearly more efficient than using one request per data 
word. This is beneficial in HIBI that utilizes multiplexed 
address and data lines, and also in packet-switched NoCs.  

B. PC 

A regular PC (2.4 GHz, 1024 MB) running Debian GNU 
/Linux 5.0.6, is used for application development and FPGA 
synthesis. The main purpose is here to demonstrate that an 
application code can easily run either on PC or Nios since 
MCAPI takes care of the inter-processor communication be it 
PCIe, HIBI, or any other. Hence, the applications can be 
developed in a workstation environment that allows simpler 
debugging. Then, application code can be transferred to FPGA 
or be distributed among PC and FPGA processors. 

V. MCAPI IMPLEMENTATION 

Figure 3 shows also the software layers implementing 
MCAPI on our platform. Nearest to hardware is a DMA driver 

that was previously presented in [17] and was used with eCos 
operating system. In this case study we have excluded the 
operating system. We name our MCAPI implementation as 
FUNCAPI according to a research project “Funbase” 
(Function-based platform).  

A. Layered approach 

The implementation of FUNCAPI is divided into two 
layers: top and transport. The top layer implements MCAPI 
specified endpoint abstraction for user application and does 
only simple error checking for function calls.  

Transport layer implements interface between the top layer 
and the underlying HAL (Hardware Abstraction Layer) layer, 
namely the DMA drivers in this case. HAL layer abstracts the 
underlying communication media and protocol. In this case 
study, we use HIBI network inside FPGA and PCIe between 
FPGA and PC. Other responsibilities are to handle MCAPI 
databases and send/receive data and messages to/from other 
physical PEs. It transforms the used endpoint identifiers to 
target PE’s HIBI addresses. Transport layer also performs error 
checking features concerning illegal endpoint accesses or 
splitting too long transmissions. Application cannot access 
non-existing nodes or endpoints which gives safety for the 
application developer point of view. 

B. Using virtual nodes for fixed-function units 

A new feature in our implementation is that also HW 
accelerators are seen as MCAPI nodes. Hence they can be 
accessed with regular MCAPI functions, although IP-blocks 
itself does not support MCAPI natively at all. This is done by 
virtualizing the IP-block’s endpoint abstraction to transport 
layer in a processor. Hence, MCAPI acts also as a HW/SW 
interface and a node is not aware with which type of PE it is 
communicating. A major benefit is that this allows gradually 
accelerating the application by including more and more 
hardwired accelerators. 

A simple pseudo code example below shows how the 
virtual node for a discrete cosine transform (DCT) HW IP-
block is handled. The IP-block is given a unique node number 
at design time, “1” in this case. By default the MCAPI 
msg_send function calls the driver of DMA controller (a C-
macro HPD_send), but for this virtual node number 1 it 
forwards execution to a DCT driver. This eventually calls 
HPD_SEND function, perhaps multiple times, to configure the 
DCT and send raw data to be transformed. The same procedure 
is easily repeated for other accelerators. 

 send_msg(…) { 

... 

    switch(node_id){ 

    case ‘1’ : 

     ... 

       dct_drv(…); 

     ... 

    default : 

       ... 

       HPD_SEND(…); 

       ... 

    } 

} 

 



C. Functions 

The connectionless message and packet channel API 
functions have both blocking and non-blocking variants. For 
example mcapi_msg_recv(…) function blocks the execution of 
the application node until all the message data has been 
received. The non-blocking variants will return immediately 
and therefore their names are denoted with “_i”. 

The 11 most essential MCAPI functions for this study are 
listed and described in Table 1. They are divided into 3 
categories as follows: 

1. Functions 1-5 are initialize the system and called 
only once at the beginning of  application. 

2. Functions 6-9 are used to pass and receive data 
between MCAPI nodes in different MCAPI 
communication formats.  

3. With functions 10-11 user can query the status of 
the non-blocking operation. More specific 
descriptions about the MCAPI functions can be 
found from the MCAPI specification. 

Required buffers are statically reserved at compile time just 
like endpoints and channels to increase overall reliability and 
ease of debugging. Applications must take care of data 
alignment, endian-ness and the internal structure of messages 
in general. 

D. Example 

An example execution sequence is described in Figure 4 for 
initialization and transfer of a single message. The 4 leftmost 
lifelines depict the software, namely application, the two layers 
of MCAPI, and the DMA driver. On the right, there is the HW 
network. The receiving PE is not shown for brevity. 

Before the actual message passing can be done, node and 
outgoing endpoint initialization is needed. In the first phase, 
sender initializes itself with a unique tuple <node_id, port_id> 
and creates an endpoint for sending messages. Similarly, 
receiving side must execute the same initializations.  

In the 5th phase, user application obtains a handle for the 
target endpoint from the (static) MCAPI database and uses that 
for sending messages. This phase could omitted in a 
completely static system. However, it ensures the validity of 
target endpoint and retains code portability to dynamically 
configured systems. 

Phases 1-6 are executed only once in applications boot 
sequence. Note that no data is sent over the network during the 
initialization, which simplifies API a lot in the absence of 
shared memory. It should be noted that this is possible only 
when the node topology is static. In general, nodes can also be 
created dynamically as threads, and then initialization is done 
between a thread and MCAPI implementation. 

After initialization, the message data is ready to send to 
network using HIBI_PE_DMA driver. The FUNCAPI top 
layer forwards message to transport layer which implements 
MCAPI endpoint abstraction transformation to HIBI address 
space. For example, sending to endpoint <node=3, port=1> is 

transformed to target address 0xF000_0000. Once the HIBI PE 
DMA has been configured, MCAPI returns. 

It is obvious that the actual communication functions are 
more important regarding the performance than the 
initialization. Therefore the implementation is focused more to 
transfer functions.  

Table 1. The most essential MCAPI functions and their meaning. 

 

VI. IMPLEMENTATION 

We implemented nearly all MCAPI functions but excluded 
certain tests for non-blocking transfers. As mentioned, the 
configuration of nodes, endpoints, and channels is static. Total 
lines of current C code in FUNCAPI transport for Nios is about 
1.500 and low-level DMA driver 266 without comment lines. 
MCAPI transport for PC takes 1.450  lines of C and PCIe 
driver 248 lines. These give a rough estimate of the modest 
complexity and ease of portability of the MCAPI 
implementation itself.  

It must be noted, that although transport layer is specific to 
each platform, large portions of it can be reused. For example, 
in our case 95% of the source code remains the same despite 
the differences between Nios without OS and PC with Linux. 
The latter communicates using PCIe that is accessed with 
Linux driver functions that are implemented as regular user-
space applications in this study. Table 2 shows main software 
components for Nios implementation; a similar set is used in 
PC as well. 

For remapping a MCAPI node from one processor to 
another we show a simple case with the test application in 
Figure 2. At first, the left part (nodes 0+1) was implemented on 
Nios processors Figure 2. On the second step, we remapped 
node 1 from Nios to PC. Example code snippet from 
mcapi_mapping.h below shows the address definition that is 
the only modification needed in addition to re-compilation to 
target processor. 

  

Function Meaning 

initialize(…) Initializes the MCAPI implementation 

create_endpoint(…) Creates an endpoint into local database 

connect_pktchan_i(…) Connects send & receive side endpoints with a 
channel (non-blocking function) 

open_pktchan_recv_i(…) Creates a typed, local representation of the 

reception channel. It also provides 
synchronization for channel creation between 

two endpoints (non-blocking) 

open_pktchan_send_i(…) Same as previous function for sender’s endpoint 

msg_send(…) Sends a (connectionless) message 

msg_recv(…) Receives a (connectionless) message. Blocks 

until the whole message has arrived. 

pktchan_send(…) Sends a (connected) packet on a channel 

pktchan_recv(…) Receives a data packet on a (connected) channel 

test(…) Tests if non-blocking operation has completed 

wait(…) 

 

Waits for a non-blocking operation to complete 

// address_map[Nios_0_addr, Nios_1_addr]; 

address_map[Nios_0_addr, pc_addr]; 



Hence, the remapping node from other processor to another 
requires changing just one line in this example. Without 
standardized API, the developer has to study the underlying 
communication media driver usage and rewrite the application 
code. Consequently, MCAPI offers even hours save in the code 
reuse with different processors.  

 
Table 2 Nios-related software components. 

Code Content 

app_x.c, Test application code 

mcapi.c MCAPI top layer implementation 

funcapi_transport_Nios.c MCAPI transport layer implementation 

mcapi_config.h Defines constants, e.g. MCAPI packet sizes  

mcapi_mapping.h Defines endpoints and mapping to physical 
addresses 

mcapi_datatypes.h Defines MCAPI data types 

hibi_pe_dma_driver.c Hardware abstraction for DMA controller 

hpd_regs_and_macros.h Low-level register and macro definitions 

 

VII. PERFORMANCE MEASUREMENTS 

We measured the memory footprint, communication 
latencies, and throughputs. Latency statistics are listed in Table 
3 and Table 4. The latency measurements were repeated 100 
times for each transfer size to obtain reliable results. 
Measurements are divided into two different parts: 
initialization and data transfer.  

Latencies are measured by using different type of MCAPI 
communication methods between two NIOS processor: node_0 
and node_1. In transfer measurements, we assume that the 
node_1 is ready to receive data from sending PE node_0 and 
vice versa. Thereby, we are able to distinguish the different 
parts of the transfer and see the difference of MCAPI 
communication methods. 

The first row (connection-less message, 21 clock cycles) in 
the Table 3 represents used time in initialization phases 1-6 in 
Figure 4. Packet and scalar channels are connection-oriented 
channels and their initialization takes more time than message 
channel. However, initializations are done only once in the 
beginning of the application execution and it is independent of 
the message or packet size. Thus, the latency caused by 
initialization functions is negligible with long term stream-like 
data transfers. 

Actual data transfer translates into DMA driver function 
call HPD_SEND(), phase 9 in Figure 4. It initializes the DMA 
transfer with data size, data address, receive address and 
transfer size parameters. After this, HIBI_PE_DMA handles 
autonomously the rest of the transfer. Correspondingly, in the 
receive node, HIBI_PE_DMA is initialized to copy the 
received message to a desired address in local memory. 
Function msg_recv() just polls the status of the DMA driver 
whether the data is ready or not. 

Packets size affects obtained throughput notably. For 
example, with 16 B packets Nios to Nios throughput is about 
25 MB/s, whereas 1KB packets yield 120 MB/s. Without 
MCAPI throughputs are 8 % and 2% higher, respectively. 
Theoretical maximum is 4B × 100 MHz = 400 MB/s. 
Throughput between PC and Nios processor via PCIe is 
significantly lower, only 15 MB/s but this is caused by the 
general purpose, simple PCIe Linux driver that handles only 
single 32/64-bit transfers. Its optimization is not on the scope 
of this paper.  

Table 3. Initialization latencies for message, packet and scalar channels. 

Communication type Initialization time [clock cycles] 

Message 21 

Packet 90 

Scalar 90 

 

 

 

Figure 4. An example sequence of MCAPI execution in Funbase software platform. 

 

NIOS_ msg_ sendscl_se nd_PCinteraction [   ]

FUNCAPI_TRANSPORT_LAYER (NIOS) HIBI_PE_DMAmsg_send.c FUNCAPI HIBI

[ ]

loop

SUCCESS13: 

HPD_SEND(...)9: 

SUCCESS11: 

HIBI_WR10: 

 mcapi_create_endpoint (...)3: 

mcapi_initialize(...)1: 

mcapi_msg_send(...)7: 

mcapi_get_endpoint(...)5: 

MCAPI_SUCCESS2: 

MCAPI_SUCCESS4: 

MCAPI_SUCCESS12: 

mcapi_trans_msg_send(... )8: 

MCAPI_SUCCESS6: 

{init}



Table 4. Data transfer roundtrip latencies for various packet/message size.  

Words(32-Bit) Data transfer [clock cycles] 

1 63 

2 63 

4 67 

8 71 

16 79 

32 105 

64 127 

128 191 

 

A.  Memory footprint 

Program memory footprint of the FUNCAPI code library is 
about 25KB, from which 7KB is for top and 18 KB for 
transport layer. HIBI_PE_DMA driver library consumes only 
1KB slice from the system memory.  

The total data memory footprint depends on the used 
maximum packet/message size. With 2KB packet/message 
size, the memory buffer usage is channel_count × 
max_packet_size. The channel count differs between nodes. 
For example, system in Figure 2 has one channel of each type: 
message, packet and scalar.  

Thus, the complete buffer memory usage is sum of 
message, packet and scalar buffers: 1 × 2KB + 1 × 2KB + 4B ≈ 
4 KB. Program and data memory in total takes about  25+1+4= 
30 KB. 

B. Comparison to other API implementations 

Table 5 shows results from literature. Columns are divided 
into different features: Used API; HW platform; memory 
footprint; inclusion of OS; system frequency; one-way 
communication latency; used transfer type. Many sources 
report latencies in microseconds and we converted them to 
clock cycles to ease comparison. Similarly, we converted the 
reported roundtrip times to one-way latencies. The roundtrip 
latency in our MCAPI implementation between two PE is from 
63 to 191 cycles depending on the size of sent data, hence one-
way minimum latency is about 32 cycles.  

Three sources report results from MPI implementations. 
Saldana et al. report 340 clock cycles communication latency 
for zero-length message transfer. Minhass et al. measured 
clearly larger, ~1150 clock cycles latency for minimum size 
data transfer and they considered that as “bottleneck of the 
system” [7]. Implementation by Mahr, on the other hand, had 
even larger latency, ~9 000 clock cycles for 128B packet [14]. 

Overhead of MPI and OpenMP was recognized also by 
Hung et al. They presented MSG API which obtained at 
minimum ~1100 clock cycles latency for minimum size data 
transfer [8]]. Hence, MSG is faster than native CELL SDK 
communication functions of the platform but practically 
doubles the communication latency compared to memory 
mapped I/O (mmio) [8].  StepNP can perform message-passing 
in less than 40 cycles. Fast communication is absolutely 
necessary in network processing where the tasks are short, even 
less than 500 instructions [16]. In summary, our MCAPI 
implementation performs very well compared to these 
implementations.  

As seen from the table, memory footprint of the API is 
rarely reported in the related works. Data and program memory 
footprint was classified even less frequently. Nevertheless, 
Saldana et al. presented 8.76 KB communication library size, 
which is one third of our implementation. However, Saldana et 
al. does not inform thoroughly which part of the MPI is 
supported in their function subset. Mahr et al. were able to 
implement MPI in 16 KB or less, depending on configuration. 
For comparison, eCos library memory footprint in NIOS 
processor was about 53 KB in our earlier prototypes. In [16], 
accelerator units for message-passing and object request broker 
required 27 kilogates of logic and 12.5 KB memory per system 
plus 3 kilogates/PE and 0.5 KB/PE. 

C. Performance considerations  

The factors contributing to API performance originate from 
the underlying HW and SW layers and also what operations are 
included in measurements. Buffer management was here done 
by the application and hence excluded from the measurements. 
For example, IPC mechanism presented by Setälä et al. had to 
use memory copy in receive/send side due to limited on-chip 
memory. This caused heavy overhead for the transfer latency 
(~5 clock cycles/Byte) in addition to context switch in OS.  

Our MCAPI implementation has few restrictions which 
may cause the performance gap compared to many other API 
implementations. Firstly, all nodes, endpoints and channels are 
decided in design time. Secondly, MCAPI offers only 50 
communication functions. Compared to MPI’s over 200 
functions, this is a huge difference [5]. And thirdly, buffer 
management is mostly done by user application. 

We notice from Table 5 that OS causes major overheads; 
for example in Cell transfers to/from PPE running Linux are 
much slower than between SPEs that do not have OS. 
Normally the context switch in an embedded processor takes 
hundreds of clock cycles, whereas in another extreme StepNP’s 
HW-accelerated context switch takes only one cycle and 
scheduling only around 40 clock cycles [9]. 

 Other aspects that should be avoided are dynamic memory 

allocation (175 clock cycles in our platform) and inefficiently 

planned thread creation (e.g. 1.68 ms which equals over 5 

million cycles [10]). Similarly, table look-aside buffer (TLB) 

is needed in virtual memory system but may incur notable 

runtime overheads, e.g. in the range 500-1500 cycles for TLB 

miss and 85K-500K cycles for replacement [13]. 

VIII. CONCLUSIONS 

We have implemented, as far as we know, for the first time 
Multicore Association MCAPI for an FPGA-based MPSoC 
including virtual endpoint support for hardware IP-blocks. 
With layered structure, we separated the platform specific parts 
in a transport layer, thereby porting MCAPI conveniently to 
NIOS without OS and PC with Linux. Portability and 
performance evaluation was demonstrated in the case study. In 
addition, comparison to other API implementation from the 
literature was done. 

It seems obvious that unified and standardized 
communication API is needed for embedded solutions, when 
the application parallelization is increasing all the time. 



MCAPI is one solution to this dilemma and seems to be fairly 
promising one. 

Our future work will be to improve the transport layer 
structure to decrease memory footprint and support to handle 
multiple low-level communications media drivers for a single 
MCAPI transport implementation. Furthermore, we will 
investigate more thoroughly the differences between APIs with 
respect to their overheads and ease of use. 
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Table 5 Performance and memory comparison. 

 

1st Author Ref API Platform MEM footprint 

[code, data buffer] 

[KB] 

OS f 

[MHz] 

One-way 

latency [us] 

One-way 

latency 

[cycles] 

Transfer type 

Saldana  

 

[15] MPI MicroBlaze 8.7KB library No 40 8.5      340 on-chip TMD-MPI zero-length 

message 

Minhass [7] MPI NIOS 10KB / core,Rx  2KB, 

Tx 1KB 

No 50 23    1 150 "MPI minimum size packet" to near 

neighbor in same FPGA 

Mahr [14] MPI MicroBlaze 11.5 - 16 KB No 100 -    9 000 128 Bytes MPI message 

Hung [8] mmio() 
Cell SDK 

MSG 

MSG 
MSG 

MSG 

CELL BE total <256KB  Yes (PPE) 
Yes (PPE) 

No 

Yes (PPE) 
No  

Yes (PPE) 

3200 0.06 
2.96 

~0.35 

~1.5 
~0.4 

~1.8 

     198 
  9 469 

~1 100 

~4 800 
~1 300 

~5 800 

mailbox PPE->SPE  
mailbox PPE->SPE 

16 B SPE -> SPE 

16 B PPE -> SPE 
2 KB SPE -> SPE 

2 KB PPE -> SPE 

Khunjush [13] Cell SDK CELL BE N/A No 3200 0.07      220 16 B put/get SPE -> SPE 

Abellan [10] Cell SDK CELL BE N/A No 
Yes (PPE) 

Yes (PPE) 

No 
No 

Yes 

3200 0.08 
0.18 

3          

~0.1-0.15 
~0.2-0.25 

1680 

     256 
     512 

  9 600 

~320-500 
~640-800 

~5.4M   

mailbox SPE->SPE 
mailbox PPE->SPE (direct) 

mailbox PPE->SPE (sys call) 

16 B SPE DMA  (priv. mem) 
2 KB SPE DMA (-“-) 

Thread creation on PPE 

Paulin [16] DSOC StepNP 12.5 KB + n * 0.5KB No 200 <0.2     <40 Message passing 

Matilainen This MCAPI NIOS, PC 24.8KB, 4KB No 100 -         32 4 Bytes message  

http://www.multicore-association.org/
http://www.altera.com/literature/hb/arria-ii-gx/arria-ii-gx_handbook.pdf



