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ABSTRACT

In order to speed up satellite position and velocity
computation, the ephemeris orbit model is approximated
by simple curves. Piecewise polynomial interpolation is
shown to be appropriate for the purpose, and especially
splines and Hermite polynomials of different degrees and
sampling intervals are compared. Cubic Hermite
interpolation, along with its other beneficial properties,
attains more than tenfold efficiency compared to
ephemeris evaluation. 

INTRODUCTION

The quality of satellite position estimates is essential for
the accuracy of navigation solutions. Given ephemeris, the
best estimate is achieved by directly calculating the
satellite’s position from the orbit model. However, this
calculation includes evaluating a number of functions,
including also transcendental ones, causing quite a lot of
cost per second for 1Hz navigation solution updates. On
the other hand, such an intensive computation seems to be
needless: looking at each dimension of the orbit separately,
during short periods, the stretches of orbit are nearly linear,
and even in four hours’ time they resemble curves of
degree at most three. Thus, they are ideal to be
interpolated: the actual values are computed only at rather
sparse intervals and a polynomial that is cheaper to
evaluate is fitted in between the sampling instants.

Interpolation reduces the cost of satellite location and
velocity determination remarkably. Furthermore, the
position precision does not suffer, if the interpolation is
carried out in a suitable way. The most natural choice for
orbit interpolation is a polynomial of rather low degree.
Polynomials of too high degree introduce undesired
oscillations between sampled orbit points. However, to
keep the relative error small enough, a low-degree
polynomial is not sufficient for long interpolation areas.
The best alternative is then introduced by dividing the
interpolation area into shorter intervals and using
piecewise polynomial interpolation, such as splines or
piecewise Hermite interpolation [3], [4].

SATELLITE ORBITS

In GPS, the satellite position function is formed based on
the sixteen parameters transmitted in the ephemeris data.
Six of the parameters are equivalent to Keplerian elements
and nine are perturbation corrections to the Keplerian
model. All the parameters are time variant, and their
applicability time is given by the remaining parameter,
time of ephemeris which is the reference time used in
ephemeris equations. The ephemeris data is valid during
about four hours’ period around the time of ephemeris.
During this time the satellite position is specified with a
one-sigma accuracy of less than 0.35m [7]. Ephemeris
parameters and equations are presented in the Appendix.

It is seen from the ephemeris equations that the formulas
for satellite’s x-, y- and z-coordinates are combinations of
sinusoidal curves, x and y being the same curve in
different phases and z consisting of a single sinusoidal
component. The period of x and y is two times the
satellite’s orbital period, while the period of z is the same
as the orbital period. However, this periodicity does not
apply in practice, as the ephemeris parameters change
several times during a day. The x-, y- and z- ECEF
coordinates computed from one ephemeris model during
two orbital periods are plotted in Figure 1.

In the plots, the time of ephemeris is marked as a circle and
instants one hour before and after time of ephemeris are
shown as asterisks, to give some idea of how the satellite’s
tracks behave during shorter times.
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The same (ideal) periods that x-, y- and z- positions have
apply to velocities and accelerations in each of the
dimensions. The velocities corresponding to the satellite
tracks above are shown in Figure 2, and the two hour time
stretch is marked in the same way as above.

It is seen that during a couple of hour’s time, the satellite
coordinates and velocities resemble linear or at most cubic
polynomials.

ORBIT INTERPOLATION

In the previous section, it was observed that a lot of
calculations are needed to evaluate points in the seemingly
so simple orbital curves. The positions of all the satellites
in sight have to be updated as often as a new navigator
position fix is computed. For 1Hz update rate, the satellite
positioning introduces a notable computational burden, let
alone applications where many satellite orbital stretches of
several minutes’ length need to be constructed in a short
time, e.g. assisted GPS time reconstruction [8]. To
decrease the cost, only sparse samples of the orbit are
calculated and interpolation is carried out in between the
sampled positions. Some of the most suitable
approximation methods are compared in the following
paragraphs.

Requirements for Approximation Algorithms

The properties required for orbit approximating curves
include continuity, precision and low evaluation cost.
Continuity is important because of the navigation solution

stability; a jumpy satellite position induces rapid and
incorrect changes in the navigator’s position. The term
precision is used here to quantify how closely the
approximation follows the calculated orbit. Since the
ephemeris-based orbit is only a simplified model of the
satellite’s motion, the approximation error is not the same
as the accuracy of the approximation versus the satellite’s
true orbit. Evaluation cost is composed of the intensity of
constructing the approximating interpolation polynomial,
including calculation of samples, and the cost of the
interpolation polynomial evaluation.

The satellite’s velocity in the three dimensions can be
determined by differentiating the ephemeris equations. The
computation of velocity and position from ephemeris is
only a few percent more computationally expensive than
computing position alone; the formulas are given in
Appendix. Here, the velocity is computed from the first
time derivative of the fitted polynomial. The derivatives of
basic polynomial fits with no conditions of derivatives do
not produce good velocity approximations, whereas cubic
splines and Hermite curves are suitable for the purpose
already by definition.

The velocity determination could, of course, also be
carried as its own interpolation process. However, this
requires more computation, and as the velocity precision
achieved by position approximation differentiating are
good enough for this application, velocity interpolation is
not explicitly carried out though, in fact, in Hermite
interpolation, velocities are actually interpolated too.

Figure 2. Satellite’s ECEF x-, y- and z- velocity track during two orbital periods.
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Figure 1. Satellite’s ECEF x-, y- and z- coordinate’s track during two orbital periods.



Notation 

Throughout the paper, the sampling instants will be
denoted as , and they are assumed to be in strictly

increasing order, i.e.  for all . Sampling instants

may also be called knots as in spline applications. The
intervals  between consecutive knots are called

sampling intervals. At the sampling instants, the ECEF
coordinates of the satellite are calculated from ephemeris.
For Hermite polynomials, also velocity or velocity and
acceleration in ECEF are determined. Based on these
sampled data, a separate one-dimensional polynomial is
constructed for each of the dimensions.

Linear Piecewise Polynomials

The simplest way to interpolate satellite orbit based on 

samples calculated at  is to draw a segment line 

through consecutive samples,

. (1)

This kind of piecewise first-degree polynomial is a special
case of both splines and Hermite polynomials. More on
spline and Hermite interpolation theory will be covered in
the following sections.

Linear splines are continuous but their derivatives are not.
Thus, the approximated satellite position is not affected by
jumps but the velocity, if computed from the slope  of

the line segment, changes discontinuously at knots.

Another alternative for velocity computation, of course,
would be the evaluation of velocities from ephemeris at
sampling instants and construction of a separate linear
spline for velocity interpolation. This, however, has the
disadvantage that the velocity spline value differs from the
derivative of the position spline.

The construction and evaluation of linear splines are
computationally very cheap. However, the bulk of the cost,
as well as precision, depend on the number of calculated
samples of satellite position. As the orbits are not linear by
nature, it is clear that a straight line approximation is good
only on a very short sampling interval. Thus, only frequent
sample computation assure satisfactory precision, reducing
the efficiency.

Cubic Splines

Polynomial splines of degree k and the set of samples
evaluated at knots ,  are piecewise

polynomials  defined by the conditions [6]

• On each interval ,  is a polynomial of 

degree .

•  has a continuous st derivative on .

The linear splines introduced above are splines of degree
1. The most commonly used splines are of degree 3, also
called cubic splines. In general, piecewise polynomials of
odd degree behave better and are easier to construct than
those of even degree. As for degree 3, the spline
construction and evaluation are rather simple and cheap
compared to higher degree splines, and still, cubic
polynomials interpolate usually precisely enough also in
longer sampling intervals

The definition of splines yield for interpolating cubic
splines three sets of conditions:  interpolation

conditions  and , 

continuity conditions for the first derivatives
, and  continuity conditions for

the second derivatives , where  is

the evaluated value of the function to be approximated.
Altogether,  conditions result, while the number of

unknown polynomial coefficients is , 4 for each of the

 intervals. Hence, two additional equations are needed to
construct the piecewise polynomial. The choice

 defines natural cubic spline,

which has a minimum curvature over the interpolation
area, and is therefore sometimes very suitable. If possible,
however, it is better to set the free conditions so that they
use additional information of the approximated function.
Some alternatives are to use the function’s first or second
derivatives at the endknots. If the derivatives are not
available, they can also be roughly approximated by
averaging the sample points near the ends of the
interpolation area. In this application, the true second
derivatives at the interpolation area endpoints are used.

Continuity in position and even in velocity is ensured by
the definition of cubic splines. The only continuity
problem occurs when the interpolation interval reaches its
end and a new spline needs to be constructed. If the first
knot of the new interpolation interval is the same as the last
in the previous interval, then position continuity is
achieved. Also velocity continuity would be obtained, if
velocity instead of acceleration at the end points was used.

The construction of a cubic spline involves solving for the
spline’s second derivatives at knots from a tridiagonal

system of  equations. Once this has been done, the
spline evaluation of the cubic polynomials are easily
carried out. The most serious drawback in cubic spline
construction is the need for batch processing: all the
sample points have to be evaluated before the spline can be
constructed. In a situation where there is a need to
construct splines for several satellite orbits simultaneously,
the sudden processing load may slow down the other
operations of the receiver. This kind of case appears every
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time a receiver is turned on and it has received ephemeris
messages from the satellites. 

Cubic and Quintic Hermite Interpolation

In Hermite interpolation, not only the approximated
function  is interpolated at the nodes , but also the

derivatives of  up to a certain order. The set of samples at

n sampling nodes consists of the function values  and

the derivatives from  to , forming

 conditions ,

, . A unique polynomial of

degree  exists that fulfils these conditions, whenever the
knots are distinct

Hermite interpolation is a special case of the interpolation
form known as Birkhoff interpolation. Unlike Hermite
interpolation, in the more general conditions, derivatives
of order  are permitted to be given at a sampling point 

even if some of the lower order derivatives were not
prescribed. The resulting set of equations may be singular,
while in Hermite interpolation it is always of full rank,
guaranteeing the unique solution. A special case of
Hermite interpolation is truncated Taylor series expansion,
where the number of nodes is one, and the number of
derivatives k is the number of terms in the truncated series.

In the satellite orbit application the Hermite interpolation
is restricted to polynomial pieces with two sampled points
and one or two orbit derivatives at the points. The orbit
approximation in each of the three dimensions is made up
of a sequence of these pieces. In the first configuration to
examine, a cubic polynomial was fitted between instants 

and , interpolating satellite’s position and velocity at

these points, i.e. using the orbit value and its first
derivative as conditions. In the other examination,
accelerations at the sampling points were added to the
conditions, resulting quintic interpolating polynomial.

The addition of velocity and/or acceleration information
ensures more reliability to the approximating polynomial,
while the increase in the cost is low, because the sample
evaluation is carried out so rarely. Furthermore, no batch
processing is needed, and as the derivatives at the ends are
known, no oscillation of the interpolating polynomial
appears. Also, the derivative of the interpolating
polynomial is truly a polynomial fit of the velocity
function, not just a differentiated position fit. Notice,
however, that the continuity of acceleration is not ensured
for piecewise cubic Hermite polynomials, while for cubic
splines it is, as well as for piecewise quintic Hermite
polynomials. As expected, quintic polynomials produce
highly precise approximations, even with intervals as long
as 15 minutes. On the other hand, the bulk of the cost is
caused by the 1Hz position and velocity updates, which is

significantly more expensive for quintic polynomials than
for cubic.

Other Possible Approximation Methods

To justify the choice of taking only Hermite polynomials
and cubic splines into comparison, the reasons for
discarding other methods are briefly stated. 

There are several good reasons to choose Hermite
interpolation as the orbit approximation method. First of
all, a Hermite polynomial fit is easily constructed based on
a set of calculated orbit points only. Taylor series
truncation or some tangential estimations are quite costly
to be evaluated, and thus not practical. Ordinary
polynomial interpolation, on the other hand, would not be
reasonable, since for a large set of datapoints, it often leads
to a polynomial of unnecessarily high order, and unstable
behaviour between interpolation points. Noninterpolatory
fitting of a polynomial with a fixed order, say 2, would be
possible too, but it is not considered here since a simple
and efficient interpolatory scheme is found. An example of
least squares spline fitting in orbit determination case is
given in [1].

As for cubic splines, there are several other ways to
determine the end conditions than the one used here.
Natural splines can be made precise by introducing
densely spaced initialization knots near the interpolation
area ends. Also, the second derivatives in the ends can be
approximated by using so called not-a-knot conditions [2].
However, as the true satellite accelerations at the endpoints
are available, they should be used as they provide the most
precise approximation.

Particular approximation algorithms for periodic functions
are also available [6]. Unfortunately, they are not
applicable to the orbit interpolation problem for two
reasons. First of all, although orbit coordinates and
velocities ideally are periodic if calculated with one set of
ephemeris parameters, the same parameters are not valid
through the whole period. Hence, the functions are not
periodic in reality. Even if they were, the periods are about
24 hours for x and y positions and velocities and 12 hours
for z positions and velocities. It is not practical to assume
that positioning in a hand-held device would continue this
long. A more probable positioning time is a couple of
hours. During that time, there would be no benefit of the
periodicity, anyway.

THEORETICAL ERROR BOUNDS

A number of results are known concerning the goodness of
polynomial fit. A way to measure the closeness of the
interpolating polynomial p to the interpolated function f is
to determine the norm of the error  [4]. Two usable
norms are the Euclidean norm
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(2)

and the infinity norm

. (3)

The function  in (2) is a positive weighting function
that can be used if anomalies for some values of t are more
significant than for others. The following error bounds
give results on how large values  get, and can be
seen as bounds for the infinity norm (3). The results are
very general, applying for any continuous function f and
are therefore rather pessimistic for the orbital curves,
which are of simple shapes.

First, consider polynomial approximation in general.
Weierstrass’ Theorem states that if f is continuous in

, then for any , a polynomial of degree 

exists such that . Thus, any continuous

function can be approximated as precisely as wanted in a
closed interval by increasing the degree of approximating
polynomial as needed. A further result, the Strong Unicity
Theorem [6], says that among polynomials of fixed degree
n, the best approximation is unique. 

For the basic form of polynomial interpolation, where a
polynomial of degree n-1 is fitted according to n sampled
points ,  inside the interval , the

increase in polynomial degree also means the increase in
the number of sampled points, which clearly contradicts
the cost reduction idea of interpolation. A bound for the
error  at point  is given by

[4]

, (4)

where  is any point in the interpolation interval,

 is defined inside the interval, and

. (4) bounds the error only in one point

and is not practical if an overall error bound is needed.
Then,  should be replaced by , which is not

usually easily evaluated. When an overall error bound is
needed, the sampling nodes can be chosen as Chebyshev
polynomial roots translated into interval  [4]. For

this node spacing, the error is bounded by 

. (5)

The error in Chebyshev polynomial root -node spacing is
not smaller than for other spacings in general, but the

benefit is that an a priori maximum error can be
determined.

Bounds for Hermite polynomials  of degree  and
their kth derivatives are given by [6]

, (6)

where  is the constant interval length. The corresponding
bound for cubic splines is

, (7)

where  and  [2]. According to

the formulas, the maximum bound for cubic spline
position error is 5 times greater than for Hermite
polynomial, but for spline velocity error 4 times smaller. It
will be seen in the tests of next section that in the orbit
application, the two interpolation methods perform
approximately equally well. To give some examples of the
error bound magnitudes, the infinity norms for orbital
derivatives estimated of typical orbital data were coarsely

of the order ,

 and . With
these approximations, the error bound for linear spline
with one minute interval length is 405m with three minute
intervals, while the three minute interval error is bounded
by 3cm for cubic Hermite and 14cm for cubic spline. Both
of the cubic results seem to be large compared to the errors
observed in practice. The quintic position error bound,

however, is very truthful, giving a bound of m for
three minute interval and only 11cm for the interval of 15
minutes length.

To compare the methods in the special case of orbit
approximation, tests with real orbital data were carried out.
The results are given in the following section.

COMPARISON AND RESULTS

The purpose of the comparison was to examine the
suitability of the four forms of interpolation to the satellite
orbit application and find out the combination of algorithm
and sampling frequency with highest efficiency versus
sufficient precision. The tests were carried out with real
ephemeris data, using 12 hour test periods to find out the
maximum errors during a whole orbital period.

Criteria

The two most important figures of merit for the algorithms
were cost and precision. An additional criterion was
memory consumption. Cost was evaluated by measuring
the performance time spent by Fortran implementations of
the algorithms computing 1Hz updates of positions and
velocities of a fixed length orbital stretch. The results are
given as the ratio to the performance time taken by the
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update computation from ephemeris data without
interpolation.

As a precision measure, the infinity norm given by (3) is
approximated by the maximum absolute error of the
updates. The deviations differ in each of the ECEF
dimension according to the satellite’s position, but the
overall maximum errors during the 12 hour orbital period
are of the same magnitude for every dimension. Therefore,
the results are given only in the direction of x.

Calculations are done using quad precision (113-bit
mantissa) floating point numbers to ensure that roundoff
errors would be negligible compared to interpolation error.

The objective was not to obtain extremely high precision
but to get an interpolation scheme with high efficiency and
sufficiently low error. The errors are in negligible range as
long as their absolute values are below 10 centimeters,
because even with DGPS corrections, the navigation
solution is affected by far more significant error sources
than satellite position errors of a couple of centimeters.
The corresponding tolerable error level for velocities can
be set to 1mm/s.

The need for storage is an issue mostly for the cubic spline.
Because of the batch processing, a number of sampled
positions and coefficients or spline second derivatives
need to be stored during the whole interpolation
subinterval of two hours. In the other methods, the
computation of samples and coefficients is carried out only
when needed, and therefore just a couple of variables are
stored at a time. A comparison of storage requirements is
not presented.

Tests

Two tests were carried out: one comparing the
effectiveness of the Hermite interpolation of different
degrees, with different interval lengths, and another

comparing the interpolation error versus the interval
length. In the latter test, also cubic splines were evaluated.
The interval lengths varied between 4 and 512 seconds in
both tests.

The effectiveness results are seen in Figure3, where the
maximum x position and velocity errors (in logarithmic
scale) are plotted against performance times relative to the
non-interpolatory performance time. The errors versus
interval lengths are both plotted in logarithmic scale in
Figure 4. The slopes of the lines agree with the theoretical
error estimates. The values for different interval lengths
are marked on the curves

It is seen from the plots that for reasonable position error
values of 1-10cm, the cubic Hermite polynomials with
interval lengths of about three minutes are the most
efficient, performing 16 times faster than the non-
interpolatory method. As for cubic splines, it was
mentioned before that for interval lengths of several
minutes, the computational load is mostly composed of the
cost of evaluation of the interpolating polynomial. Thus,
the average cost for cubic splines is nearly the same as that
for cubic Hermite polynomials, though the load is
differently distributed because of the batch calculation of
the cubic spline coefficients. From the error versus
sampling interval length plots, it is seen that also the
precision of cubic splines is very close to that of the cubic
Hermite polynomials.

As a conclusion, the most efficient method in terms of low
computational cost, easy implementation and sufficient
precision of less than 10cm and 1mm/s is piecewise cubic
Hermite interpolation with sampling intervals of about
100-200s. This is approximately 20 times faster than
computing ephemeris orbits directly.
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APPENDIX: EPHEMERIS PARAMETERS, ORBIT 
MODEL EQUATIONS AND DERIVATIVES

8 16 32 64 128 256 512

10
-10

10
-5

10
0

interpolation interval length (seconds)

m
ax

 e
rro

r i
n 

x 
ve

lo
ci

ty
 (

m
/s

)

Maximum velocity error vs. interval length

quintic Hermite 

cubic spline and
cubic Hermite

linear Hermite/spline 

8 16 32 64 128 256 512

10
-10

10
-5

10
0

interpolation interval length (seconds)

m
ax

 e
rro

r i
n 

x 
(m

)

Maximum position error vs. interval length

quintic Hermite 

cubic spline
and cubic Hermite 

linear spline/Hermite 

Figure 4. Maximum position and velocity errors versus interval length.

TABLE 1. Ephemeris Data Definitions [5].

Reference time of ephemeris

Square root of semimajor axis

Eccentricity

Inclination angle at time 
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weekly epoch)

Argument of perigee at time 
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Rate of change of inclination angle

Rate of change of longitude of the 
ascending node
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Amplitude of cosine correction to 
argument of latitude

Amplitude of sine correction to argument 
of latitude

Amplitude of cosine correction to orbital 
radius
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inclination angle
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inclination angle
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TABLE 2. Satellite’s ECEF position, velocity and acceleration models.

Parameter  Value First time derivative Second time derivative
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