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Simo Ali-Löytty, Niilo Sirola & Robert Piché
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Abstract

A filter is consistent if predicted errors are at least
as large as actual errors. In this paper, we evaluate
the consistency of three filters and illustrate what
could happen if filters are inconsistent. Our appli-
cation is hybrid positioning which is based on sig-
nals from satellites and from mobile phone network
base stations. Examples show that the consistency
of a filter is very important. We evaluate three
filters: EKF, EKF2 and PKF. Extended Kalman
Filter (EKF) solves the filtering problem by lin-
earizing functions. EKF is very commonly used in
satellite-based positioning and it has also been ap-
plied in hybrid positioning. We show that nonlin-
earities are insignificant in satellite measurements
but often significant in base station measurements.
Because of this, we also apply Second Order Ex-
tended Kalman Filter (EKF2) in hybrid position-
ing. EKF2 is an elaboration of EKF that takes into
consideration the nonlinearity of the measurement
models. The third filter is called Position Kalman
Filter (PKF), which filters a sequence of static po-
sitions and velocities. We also check what kind of
measurement combinations satisfy CGALIES and
FCC requirements for location.

1 Introduction

In navigation, filters are used to compute an estimate of
the position using current and past measurement data.
When the number of measurements is insufficient to spec-
ify a unique position solution, the filtered estimate may
veer away from the true route and get stuck in an incor-
rect solution branch. For filters to avoid and recover from
such mistakes, it is important that they are consistent,
that is, their predicted errors should be at least as large
as actual errors. In Section 3.5, we define a filter consis-
tency and introduce a test for filter inconsistency. In this
study, we evaluate the consistency of three filters which
are representative of the Kalman type filters used in hy-
brid navigation based on signals from satellites and from
mobile phone network base stations. The reason why we
concentrate on Kalman type filters is that they are fast to
compute. It is possible, for example with particle filters
and grid-based methods, to get a more accurate estimate,
but such filters are slower and because of this they do not
yet suit mobile positioning.

2 Problem statement

2.1 Target

In this section, we introduce our problem. First of all, we
model the user state x and measurements y as stochastic
processes. We have an initial state x0 and a dynamic
system

xk = fk−1(xk−1) + wk−1

yk = hk(xk) + vk,
(1)

where subscript k represents time moment tk, k = 1, 2, . . ..
We assume that all errors (wk and vk) are zero mean,
white and independent. The aim is to solve state condi-
tional probability density function (cpdf)

f(xk|y1:k = y1:k)
△
= fcpdf(xk), (2)

when conditional y1:k
△
= {y1, . . . ,yk} are past and current

measurements. These densities are usually called posterior
densities and densities f(xk+1|y1:k = y1:k) are called prior
densities. Knowledge of the posterior density enables one
to compute an optimal state estimate with respect to any
criterion. For example, the minimum mean-square error
(MMSE) estimate is the conditional mean of xk [1, 15]. In
general and in our case the conditional probability density
function cannot be determined analytically.

In our applications, the state x =
[

rTu , v
T
u

]T
consists of

user position vector ru and user velocity vector vu. State
dynamics are specified in (6). Measurements y (19) con-
sist of satellite pseudorange ρs (11) and delta pseudorange
ρ̇s (12) measurements, and base station range measure-
ments ρb (18). We do not model user clock because it is
quite difficult to get a realistic clock model. Therefore, we
must use the difference measurements of satellites.

2.2 State dynamics

We use the position-velocity (PV) model, where the user
velocity is a random walk process [2]. The user state is
the solution of a stochastic differential equation

dx(t) = F(t)x(t)dt + G(t)dβ(t), (3)

where

F(t) =

[

03×3 I3×3

03×3 03×3

]

, G(t) =

[

03×3

I3×3

]

, and (4)

β is an Brownian motion process of diffusion

Qc =

[

σ2
planeI2×2 02×1

01×2 σ2
altitude

]

, (5)

where σ2
plane represents the velocity errors on the East-

North plane and σ2
altitude represents the velocity errors in

the vertical direction. We can write the solution of equa-
tion (3) as a difference equation [13]

xk = Φk−1xk−1 + wk−1

△
= fk−1(xk−1) + wk−1

(6)



where xk = x(tk),

Φk−1 = e(tk−tk−1)F =

[

I3×3 ∆tkI3×3

03×3 I3×3

]

, (7)

∆tk = tk− tk−1, and wk−1 is white, zero mean and Gaus-
sian noise, so that

Qk−1 = V(wk−1) =

∫ tk

tk−1

Φ(tk, t)G(t)QcG(t)TΦ(tk, t)
Tdt

=

[

∆t3k
3 Qc

∆t2k
2 Qc

∆t2k
2 Qc ∆tkQc

]

.

(8)

2.3 Measurement equation

In this study, we use quite general measurement equations
and we do not restrict ourselves on any specific satellite
system (e.g. GPS, GALILEO) or mobile phone network
(e.g. GSM, 3G).

2.3.1 Satellite measurements

From satellites we get usually two different measurements:
pseudorange (PR) and delta pseudorange (DPR) measure-
ments [8]. We denote ρs

i the pseudorange measurement
from the ith satellite and ρ̇s

i the delta pseudorange mea-
surement from the ith satellite. The measurement equa-
tions are

ρs
i = ‖rs

i − ru‖ + b+ ǫρs
i
, (9)

ρ̇s
i =

(rs
i − ru)T

‖rs
i − ru‖

(vs
i − vu) + ḃ + ǫρ̇s

i

△
= (us

i)
T (vs

i − vu) + ḃ+ ǫρ̇s
i
,

(10)

where rs
i is the ith satellite position vector, vs

i is the ith

satellite velocity vector, b is clock bias in meters, ḃ is clock
drift, us

i is the unit vector from the user to the ith satellite,
ǫρs

i
is PR error term and ǫρ̇s

i
is DPR error term. Let ns be

the number of satellites, then the measurement equations
are

ρs =







‖rs
1 − ru‖

...
‖rs
ns

− ru‖






+ b1 + ǫs

ρ

△
= hs

ρ(ru) + b1 + ǫs
ρ, (11)

ρ̇s = diag(Us(Vs)T ) − Usvu + ḃ1 + ǫs
ρ̇ (12)

where

ρs = [ρs
1, . . . , ρ

s
ns

]T , ǫs
ρ = [ǫρs

1
, . . . , ǫρsns

]T ,

ρ̇s = [ρ̇s
1, . . . , ρ̇

s
ns

]T , ǫs
ρ̇ = [ǫρ̇s

1
, . . . , ǫρ̇sns

]T ,

Us = [us
1, . . . ,u

s
ns

]T , Vs = [vs
1, . . . ,v

s
ns

]T , and

1 is a vector of 1’s.

(13)

We suppose that ns ≥ 2, otherwise we do not use satel-
lite measurements. We get difference measurements when
we multiply earlier equations by D ∈ R

(ns−1)×ns , where

D1 = 0 and rank(D) = ns − 1. In simulations, we use
D =

[

I −1
]

. The difference measurement equations
are

Dρs = Dhs
ρ(ru) + bD1 + Dǫs

ρ = Dhs
ρ(ru) + Dǫs

ρ, (14)

Dρ̇s = D(diag(Us(Vs)T ) − Usvu + ḃ1 + ǫs
ρ̇)

= D(diag(Us(Vs)T ) − Usvu) + Dǫs
ρ̇

△
= Dhs

ρ̇(ru,vu) + Dǫs
ρ̇.

(15)

2.3.2 Base station measurements

There are many possible different measurements in base
station positioning, such as time of arrival (TOA), round
trip delay (RTD), received signal strength (RSS), time dif-
ference of arrival (TDOA), angle of arrival (AOA), and cell
identity (Cell-ID). [4, 18, 19, 20] We can also use cell av-
erage altitude for positioning if it is known. TOA, RTD
and RSS have the same mathematical form

ρb
i = ‖rb

i − ru‖ + ǫρb
i
, (16)

where rb
i is ith base station position vector and ǫρb

i
is

error term. Let nb be the number of base stations, then
the measurement equations are

ρb =







‖rb
1 − ru‖

...
‖rb
nb

− ru‖






+ ǫb

ρ

△
= hb

ρ(ru) + ǫb
ρ, (17)

where

ρb = [ρb
1 , . . . , ρ

b
nb

]T , ǫb
ρ = [ǫρb

1

, . . . , ǫρbn
b

]T . (18)

In this study, we do not use AOA or Cell-ID measure-
ments.

2.3.3 Compound measurements

All measurements (11, 12, 18) can be written in a com-
pound form

yk = hk(xk) + vk, (19)

where

yk =





ρs
k

ρ̇s
k

ρb
k



 and hk(xk) =





Dhs
kρ(rku)

Dhs
kρ̇(rku,vku)

hb
kρ(rku)



 .

Measurement errors are

vk =





Dǫs
kρ

Dǫs
kρ̇

ǫb
kρ



 , and V(vk)
△
= Rk.

2.4 Initial state

Filtering is performed within the framework of sequential
Bayesian estimation, which requires the initial state x0.
We assume that this initial state is Gaussian so

x0 ∼ N(x0,P0). (20)

One possibility to get the initial state is to use the first
position and velocity solutions (see Section 3.3).



3 Filters

The Kalman filter extensions considered are Extended
Kalman Filter (EKF), Second Order Extended Kalman
Filter (EKF2) and Position Kalman Filter (PKF). The
common feature of these filters and one reason why we
call these filters Kalman filter extensions is that these fil-
ters “remember” and use only the last state mean and
covariance matrices. These filters solve approximately the
filtering problem (see Section 2).

Initial state E(x0) = x0,V(x0) = P0

State dynamic xk+1 = fk(xk) + wk

E(wk) = 0,V(wk) = Qk

Measurement equation yk = hk(xk) + vk
E(vk) = 0,V(vk) = Rk

3.1 EKF

The Extended Kalman Filter solves the filtering problem
by linearizing the measurement function. EKF is very
commonly used in satellite-based positioning and it has
also been applied in hybrid positioning [12]. The EKF
algorithm is [1, 7]

Algorithm 1 (EKF).

Prior mean x̂−k = fk−1(x̂k−1)

Prior covariance P̂−
k = Φk−1P̂k−1Φ

T
k−1 + Qk−1

Φk−1 =
∂fk−1(xk−1)

∂xk−1

∣

∣

∣

xk−1=x̂k−1

Posterior mean x̂k = x̂−k + Kk(yk − hk(x̂
−
k ))

Posterior covariance P̂k = (I − KkHk)P̂
−
k

Hk = ∂hk(xk)
∂xk

∣

∣

∣

xk=x̂−

k

Kalman gain Kk = P̂−
k HT

k (HkP̂
−
k HT

k + Rk)
−1

In hybrid positioning, the derivative of hk(xk) (19) is

Hk =





D 0 0
0 D 0
0 0 Inb×nb









−Us 0ns×3

U̇s
Vs − U̇s

vu
−Us

−Ub 0nb×3



 ,

(21)

where Us = [us
1, . . . ,u

s
ns

]T , us
i =

r
s

i−ru

‖rs

i
−ru‖

,

Ub = [ub
1 , . . . ,u

b
nb

]T , ub
i =

r
b

i −ru

‖rb

i
−ru‖

,

U̇s
vu

=









−vTu He
‖rs

1
−ru‖

...
−vTu He

‖rs
ns

−ru‖









and

U̇s
Vs =









−(vs
1)
THe

‖rs

1
−ru‖

...
−(vs

ns
)THe

‖rs
ns

−ru‖









,

where Hessian matrix of ‖rs
i − ru‖ is

He
‖rs

i
−ru‖

=
1

‖rs
i − ru‖

(

I −
(rs
i − ru)

‖rs
i − ru‖

(rs
i − ru)T

‖rs
i − ru‖

)

.

3.2 EKF2

The Second Order Extended Kalman Filter is an elabora-
tion of EKF that takes into consideration the nonlinearity
of the measurement models. Modified Gaussian Second
Order Filter [7, 14] is the same as EKF2. The EKF2 al-
gorithm is [1]

Algorithm 2 (EKF2).

x̂−k+1 = fk(x̂k) + 1
2

∑nx

i=1 ei tr(Φ
ei

k P̂k)

Φel

k =
(

∂2(fk(xk))l

∂xj∂xi

)∣

∣

∣

xk=x̂k

P̂−
k = Φk−1P̂k−1Φ

T
k−1 + Qk−1 + Qextra

Qextra = 1
2

∑nx

i=1

∑nx

j=1 eie
T
j tr(Φei

k P̂kΦ
ej

k P̂k)

Φk−1 =
∂fk−1(xk−1)

∂xk−1

∣

∣

∣

xk−1=x̂k−1

ŷ−k = hk(x̂
−
k ) + 1

2

∑ny

i=1 ei tr(H
ei

k P̂−
k )

Hel

k =
(

∂2(hk(xk))l

∂xj∂xi

)∣

∣

∣

xk=x̂−

k

x̂k = x̂−k + Kk(yk − ŷ−k )

P̂k = (I − KkHk)P̂
−
k

Hk = ∂hk(xk)
∂xk

∣

∣

∣

xk=x̂−

k

Kk = P̂−
k HT

k (HkP̂
−
k HT

k + Rk + Rextra)
−1

Rextra = 1
2

∑ny

i=1

∑ny

j=1 eie
T
j tr(Hei

k P̂−
k H

ej

k P̂−
k )

where nx is the dimension of state, in our applications
nx = 6, ny is the number of measurements, which can be a
function of time. In hybrid positioning the Hessian matrix
of eTl hk(xk) (19) is

Hel

k =

ns
∑

j=1

[

(D)ljH
e
‖rs

j
−ru‖

0

0 0

]

, if l = 1, . . . , ns,

Hel

k =

ns
∑

j=1

(D)lj

[

∂
∂ru

(

He
‖rs

j
−ru‖

(vu − vs
j)
)

He
‖rs

j
−ru‖

He
‖rs

j
−ru‖

0

]

,

if l = ns + 1, . . . , 2ns,

Hel

k =

[

He

‖rb

l
−ru‖

0

0 0

]

, if l = 2ns + 1, . . . , 2ns + nb,

(22)

where

∂

∂ru

(

He
‖rs

j
−ru‖

(vu − vs
j)
)

=
(I − us

ju
s
j
T )(vu − vs

j)
Tus

j

‖rs
j − ru‖2

+

(vu − vs
j)u

s
j
T + us

j(vu − vs
j)
T (I − 2us

ju
s
j
T )

‖rs
j − ru‖2

.

3.3 PKF

The Position Kalman Filter works by filtering a sequence
of static position and velocity solutions. The idea is that
we first solve position and velocity and then filter these;
this idea is called two-stage estimator [3]. When we have
enough measurements, we can find position and velocity
for example by Weighted Least Squares (WLS) or closed-
form methods [17]. WLS also approximates the errors of
solution. At times instants when there are not enough
measurements to fix position and velocity, we do not use
any measurements. The PKF algorithm is



Algorithm 3 (PKF). First solve static position and
velocity and then use Kalman filter.

Prior mean x̂−k = fk−1(x̂k−1)

Prior cov. P̂−
k = Φk−1P̂k−1Φ

T
k−1 + Qk−1

Φk−1 = ∂fk−1(xk−1)
∂xk−1

∣

∣

∣

xk−1=x̂k−1

Posterior mean x̂k = x̂−k + Kk(yk − Hkx̂
−
k )

Hk =

{

I6×6, pos. and vel.
[

I3×3 03×3

]

, only pos.

Posterior cov. P̂k = (I − KkHk)P̂
−
k

Kalman gain Kk = P̂−
k HT

k (HkP̂
−
k HT

k + Rk)
−1

Because now fk−1(x̂k−1) = Φk−1x̂k−1 the previous algo-
rithm is Kalman filter algorithm [7], but it is important
to notice that errors of position solutions are not indepen-
dent from state dynamics errors, so the system does not
fulfill the assumptions of Kalman Filter.

3.4 Nonlinearities

Our model has nonlinearities only in the measurement
model. We say that the measurement nonlinearities are
significant if they are comparable to, or larger than, the
measurement noise [7]:

Rextra & R. (23)

In the following we use the notation A ≥ B to signify that
A − B is positive semidefinite.

First we study the significance of nonlinearities in satellite
measurements, i, j ∈ {1, . . . , 2 · ns}:

‖Rextra‖ ≤
ny

2
max
i,j

|tr(Hei P̂−Hej P̂−)|

≤
nynx

2
‖P̂−‖2 max

i
‖Hei‖2

(24)

If we suppose that ny ≤ 10, D =
[

I −1
]

,

‖vu‖ ≤ 5 000(m
s ), ‖P̂−‖ ≤ 1002, these last two approx-

imations are quite overpessimistic in personal satellite
positioning. We know that ‖rs

i − ru‖ ≥ 20 000 (km),
‖vs

i‖ ≤ 5 000(m
s ) [8]. Thus we get

‖Rextra‖ ≤
nynx

2
‖P̂−‖2 4n2

x

‖rs
i − ru‖2

≤ 0.00108. (25)

In our simulation, the smallest eigenvalue of R, when we
consider satellite measurements, is 0.12. So Rextra < R
and there are no significant nonlinearities in satellite mea-
surements. The difference between Rextra and R is even
bigger if we use only satellite pseudorange measurements.
Because of this, we linearize all satellites measurements
and use those in our simulations.

Secondly, we concentrate on base station measurements
nonlinearities, i ∈ {2 · ns + 1, . . . , 2 · ns + nb}. Now we

suppose that P̂− = ‖P̂−‖I.

‖Rextra‖ ≥
1

2
|tr(Hei P̂−Hei P̂−)|

≥
‖P̂−‖2

‖rb
i − ru‖2

(26)

In our simulation the eigenvalues of R, when we consider
base station measurements, are 802. It is very common
in urban areas that the distance from base station is very
short, say ‖rb

i − ru‖ ≈ 250 m, but the error can be quite

large, say ‖P̂−‖ ≈ 1502. We get

‖Rextra‖ & 902 > 802 = ‖R‖, (27)

so there are in some cases significant nonlinearities in base
station range measurements.

3.5 Inconsistency tests

We say that filter is consistent if inequality

Efcpdf (xk)

[

(xk − x̂k)(xk − x̂k)
T
]

≤ Pk (28)

holds in every k = 1, 2, . . . [9]. The normalized estimation
error squared test (NEES) and the normalized innovation
squared test (NIS) [1] are popular ways of testing filter in-
consistency [9, 10, 16]. Both NEES and NIS tests assume
that distributions are Gaussian, so that test statistics are
chi-square distributed. However we know that distribu-
tions are usually not Gaussian. Because of this we apply
Chebyshev’s inequality to our hypothesis testing. Our null
hypothesis is

H0 : Efcpdf (xk)

[

(xk − x̂k)(xk − x̂k)
T
]

≤ Pk (29)

We assume that det(Pk) 6= 0. Now there is a matrix Ak

such that Pk = A−1
k (AT

k )−1. Hypothesis test statistic is

‖ψk‖ = ‖Ak(xk − x̂k)‖. (30)

If H0 is true then

n = tr(AkPkA
T
k ) ≥ Efcpdf (xk)

[

tr(ψkψ
T
k )
]

= Efcpdf (xk)

[

‖ψk‖
2
]

≥

∫

‖ψk‖≥ǫ

‖ψk‖
2fcpdf (xk)dxk

≥ ǫ2P(‖ψk‖ ≥ ǫ)

⇒ P(‖ψk‖ ≥ ǫ) ≤
n

ǫ2
,

(31)

where n is the dimension of xk. If α is the risk level then

P

(

‖ψk‖ ≥

√

n

α

)

≤ α. (32)

So if ‖ψk‖ ≥
√

n
α

is true, it indicates that the null hy-
pothesis can be rejected at the risk level of α. We call this
test the general inconsistency test. If we also assume that
xk − x̂k is zero mean and Gaussian then ‖ψk‖2 ∼ χ2(n).
This is the above-mentioned NEES. If we do not assume
that det(Pk) 6= 0 we get (the same way as earlier (31))

P

(

‖xk − x̂k‖ ≥

√

tr(Pk)

α

)

≤ α. (33)



4 Simulations

In our simulations, we use East-North-Up (ENU) coordi-
nate system. We assume that errors ǫρs

i
, ǫρ̇s

i
and ǫρb

i
are

zero mean, independent Gaussian white noise, with

σρs = 10 m, σρ̇s = 0.1
m

s
and σρb = 80 m. (34)

As parameters of state dynamics we use

σ2
plane = 2

m2

s3
, σ2

altitude = 1
m2

s3
. (35)

The first parameter is the same as in [12]. The initial state
x0 of our simulations is

x0 ∼ N(x0,P0), (36)

where x0 = [rT0 ,0
T ]T , r0 is true place at time t0 and

P0 =

[

1002I3×3 03×3

03×3 102I3×3

]

. (37)

The positions and velocities of satellites are based on real
ephemeris data. Ephemeris data was measured in the
Tampere University of Technology campus region on June
18th 2003. Base station positions are rb

1 = [1 000, 0, 0],
rb
2 = [−1 000, 0, 0] and rb

3 = [0, 1 000, 0], see Figure 1.
Measurements and true route are simulated using mea-
surements equation (19) and state dynamics (6) with given
parameters. In some tests we simulate also altitude mea-
surements. The altitude measurements are modelled as
same kind of measurements as base station range mea-
surements, with the ”base station” in the center of Earth.

A typical simulation is shown Figure 1, which shows base
stations, true route (red, 2 minutes), filters mean: PKF
(black), EKF (blue), EKF2 (magenta), and covariance el-
lipses which illustrate dispersion of distribution. The co-
variance ellipses satisfy the equation

(x − x̂)T P̂−1(x − x̂) = 2.2173. (38)

The constant was chosen so that if the distribution is
Gaussian then there is 67% probability mass inside the
ellipse. Ellipses are drawn every half minute. In this ex-
ample, we get three base stations range measurements and
altitude information every second.

From Figure 1, we can see that filters work very similarly
in this case and that they give much better position esti-
mates than the static WLS solutions. Table 1 shows that
in many cases all filters work very similarly.

We generated one hundred true routes and for every true
route 10×18 measurement sets so that every satellite (SV)
and base station (BS) set have ten measurement sets for
every true route. The satellites and base stations are the
same throughout all simulations, although we would get
better results if we used different satellites and base sta-
tions in different time instants. Tables 1 and 2 have error
limits from these simulations. Filters’ error limits are in
Table 1 and WLS error limits are in Table 2, where we also
have a column which tells how many times WLS does not
have a unique position solution. In these tables the 67%

1. base station2. base station

3. base station

Start

True Route
EKF
EKF2
PKF
WLS

Figure 1: Simulation example with measurements
from three base station and altitude information.

column gives limit so that 67% of all 2 dimensional errors
(norm of true position minus posterior mean) are smaller
than this limit, and similarly for the 95% column. Every
measurement set has also altitude measurement, except
the measurement sets where BS column has ∅ sign.

Table 1: Two-dimensional error limits for filters, in
simulations have 100 true routes and every true route
was run 10 times

Meas. PKF EKF EKF2
SV BS 67% 95% 67% 95% 67% 95%
0 1 944 2448 731 2731 764 2160
0 2 944 2448 212 2243 403 2038
0 3 61 117 56 104 56 104
2 ∅ 944 2448 710 2119 710 2119
2 0 944 2448 698 2117 698 2117
2 1 944 2448 59 219 60 214
2 2 37 74 35 72 35 72
2 3 35 70 33 69 33 69
3 ∅ 944 2448 247 710 247 710
3 0 18 31 14 26 14 26
3 1 18 30 13 25 13 25
3 2 17 29 12 24 12 24
3 3 17 29 12 23 12 23
4 ∅ 5 9 5 9 5 9
4 0 5 9 5 9 5 9
4 1 4 8 4 8 4 8
4 2 4 9 4 9 4 9
4 3 4 8 4 8 4 8

In Table 1 we see that EKF and EKF2 errors have notice-
able difference only when we have only one or two base
station range measurements. If we consider 95% errors
limits we see that EKF2 gives better position estimates
than EKF. Actually, when we have only one base station
range measurement, PKF gives better estimate than EKF
although PKF has no position solutions (see Table 2). We
see in Section 4.2 that in this case EKF is very often in-
consistent. It is useful to notice that the ratio of 95%
error limits and 67% error limits is usually about two.



There are however some cases, especially (0,2) and (2,1),
(SV,BS) combinations, where this ratio is much bigger.
We see that in all of these cases where this ratio is about
three or bigger there is a problem with consistency (see
Section 4.2). PKF has noticeable difference with respect
to EKF or EKF2 only when there are no unique posi-
tion solutions. We can also see that even quite rough
altitude information gives much better position estimates
than without that information.

Table 2: Two dimensional error limits for WLS and
how many times we do not have unique WLS solution.

Meas. WLS no unique WLS
solution (%)SV BS 67% 95%

0 1 ∞ ∞ 100
0 2 ∞ ∞ 100
0 3 150 ∞ 7
2 ∅ ∞ ∞ 100
2 0 ∞ ∞ 100
2 1 ∞ ∞ 100
2 2 85 190 1
2 3 81 187 2
3 ∅ ∞ ∞ 100
3 0 39 68 0
3 1 36 65 1
3 2 35 62 1
3 3 33 61 2
4 ∅ 20 36 0
4 0 20 36 0
4 1 20 36 0
4 2 20 36 0
4 3 20 35 0

In Table 2, we see that WLS position solutions’ (esti-
mated) errors are many times larger than estimated errors
of filters, so it is reasonable to use statistical approach (fil-
ters) with as many measurements as possible if we want
more accurate position estimates.

4.1 Requirements of CGALIES and FCC

Both American federal Communications Commission
(FCC) and European Coordination Group on Access to
Location Information for Emergency Services (CGALIES)
have their own requirements emergency call positioning
accuracy. These requirements are briefly summarized in
Tables 3 and 4.

The limits in Table 3 are intended for 67% of calls, but in
the future the requirements may be tightened to apply to
95% of calls. A summary of CGALIES 67% accuracy re-
quirements is approximately 150 m in urban environment
and 500 m in rural environment [11]. The main differ-
ence between urban and rural environments is that in ur-
ban environment there is a high density of mobile phone
base stations but the satellite visibility is reduced. Vice
versa, in rural environment there is good satellite visibility
but the mobile phone base stations are very sparsely laid
out [6].

If we compare CGALIES and FCC requirements and our
simulation results, we can conclude that WLS estimates

Table 3: CGALIES requirements for location (val-
ues indicated between parenthesis correspond to the
requirements obtained through a questionnaire to the
Member States)[11]

CGALIES Urban Rural
Caller cannot provide
any information

10 - 150 m 10 - 500 m
(10 - 50 m) (10 - 100 m)

Caller can provide
general information

25 - 150 m 50 - 500 m
(10 - 50 m) (30 - 100 m)

Table 4: FCC requirements for location[5]

FCC
Accuracy for
67% of calls

Accuracy for
95% of calls

Handset-based 50 m 150 m
Network-based 100 m 300 m

satisfy all requirements only if they use at least three
satellite measurements and altitude information. WLS
estimates satisfy CGALIES and FCC network-based re-
quirements if they use measurements from two satellites,
altitude information and at least two base stations. WLS
satisfy CGALIES requirements by a whisker with altitude
information and measurements from three base stations.

With the above-mentioned measurement sets, all three
filters satisfy almost all requirements. Only the FCC
handset-based requirement of accuracy for 67% of calls is
not fulfilled with altitude information and measurements
from three base stations. EKF and EKF2 satisfy also
CGALIES and FCC network-based requirements with al-
titude information and measurements from two satellites
and one base station. Furthermore, EKF and EKF2 sat-
isfy CGALIES rural environment requirement with mea-
surements from three satellites or two base stations and
altitude information. Although in our simulation, using
measurements from only one base station does not satisfy
any requirements, it is possible that in urban environments
with very high base station density these requirements can
be satisfied. This is possible if base stations are always suf-
ficiently close to users. Of course, then the base station
where measurements come from must be changed quite
often.

4.2 Consistency

In our simulations, we saw that there are consistency prob-
lems with some base station and satellite measurement
combinations. Now we study whether the filters work cor-
rectly or not. One way to test this is to use the general
inconsistency test, which tells if true estimate errors co-
incide with the error covariance matrix given by the filter
(see Section 3.5).



Figure 2 shows one case where EKF estimate veers away
from the true route and gets stuck in an incorrect solution
branch. In this case, filters get measurements from two
base stations and altitude information for the first 110
seconds. During the last 10 seconds, there is an additional
base station measurement, making unique WLS position
fixes possible.

The covariance ellipses as defined in (38) are drawn at time
instants t0, t60, t110, t111, and t120. We see that here EKF
covariance matrices are very small if we compare them to
true estimates errors. Because of this, EKF is inconsistent
which is also verified by the general inconsistency test (see
Figure 3). Note that in this kind of situation NIS test is
not relevant, for example in this case EKF passes NIS test
when it uses measurements only from two base station and
altitude information. From Figure 2, we can also see that
after the third base station becomes available at t110, it
takes a long time for EKF to become consistent again.

In this example, the covariance matrices of EKF2 are large
enough so that EKF2 is not inconsistent (see Figure 3).
Also, although the PKF estimate remains at the starting
point for the first 110 seconds, the filter is not inconsistent
as its covariance grows fast enough.

It is useful to notice that both EKF2 and PKF start giv-
ing accurate estimates as soon as the third base station
becomes available. Note that although both filters EKF2
and PKF are not inconsistent in this case, we can say that
EKF2 gives better, or more accurate, estimates.

1. base station2. base station

3. base station

Start

Here and after that filters use      
measurements from three base stations

True Route
EKF
EKF2
PKF

Figure 2: EKF estimate veers away from the true
route and gets stuck in an incorrect solution branch.
EKF2 increases covariance matrix.

All in all, we can observe from the foregoing example that
it is very important that a filter be consistent. Now we
study more precisely how often and with which measure-
ment combinations filters are inconsistent. We use the
same simulations as in Table 1. All general inconsistency
test results which are non-zero are tabulated in Table 5.
Tabulated quantity tells how many percent of 1 000 runs
have at least one time instant in which the filter is incon-
sistent at some risk level. We use both 5% and 1% risk
level.
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Figure 3: Inconsistency test of the situation of Fig-
ure 2. In this case, only EKF fails this test, test statis-
tic is bigger than red line. Black dashed line is NEES
test. Risk level of both test is α = 0.01.

Table 5: Percentage of times filters are inconsis-
tent (the general inconsistency test), same simulations
than Table 1.

Meas. EKF EKF2
SV BS α 5% 1% 5% 1%
0 1 71 50 14 9
0 2 40 32 15 15
2 ∅ 6 0 6 0
2 0 6 0 6 0
2 1 6 5 5 4
3 ∅ 4 0 4 0

First of all, PKF never has problems with consistency and
because of this PKF is not mentioned in Table 5. From
Tables 5 and 2 we can see that EKF and EKF2 only
have problems with consistency when the system is un-
derdetermined (when there is no unique position solution).
These problems are significant when there are base station
measurements. EKF2 works better than EKF. However,
EKF2 does have some problems with consistency. One
reason is that although EKF2 takes into consideration the
nonlinearity of the base station range measurement mod-
els, there are still small errors. These small errors can ac-
cumulate because the measurement model depends on the
previous state estimate. EKF also has this same problem
that measurement model depends on the previous state
estimate. PKF does not have this problem and this is one
reason why PKF never fails this test.



5 Conclusions

In this article, we have shown that nonlinearities are in-
significant in satellite measurements, but often significant
in base station measurements. In these cases EKF2 works
better than EKF, and the 95% error limits of EKF2 are
smaller and EKF2 is not so often inconsistent. Unfortu-
nately, EKF2 also is sometimes inconsistent. PKF does
not have a problem with consistency, but the error limit
of PKF is usually larger than in other filters. Our simula-
tions results indicate that static WLS position estimates
can fulfill FCC and CGALIES requirements only when
there are satellite measurements available. On the other
hand, filtered position estimates can fulfill these require-
ments even using only base station measurements.
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