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1. Introduction  
 

Micro-patterns and micro-structures on flat or curved 

surfaces are attracting more and more interest in different 

research and industrial applications. If one focuses on 

micro/meso-scale textures, there are many interesting 

applications. Micro-structures (e.g., gratings) on optical 

surfaces change their refractive and diffractive properties. 

Arrayed dimples on contact surfaces under lubrication help to 

establish hydrodynamic pressure and to decrease the friction 

force [1]. Micro-channels are widely adopted to accelerate 

heat exchange and mass flow. Carefully designed pillar arrays 

can create superhydrophobic (a.k.a, lotus effect) surfaces, 

which could lead to the development of self-cleaning surfaces. 

Other novel applications include surface texturing on biopsy 

needles to enhance their performance [2], etc. 

The elliptical vibration texturing process is an innovative 

and fast method to generate micro-structures on engineered 

surfaces. It is an adaptation of the elliptical vibration cutting 

(EVC) process [3]. The cutting tool vibrates both in the cutting 

direction and in the depth-of-cut direction with respect to the 

workpiece surface to form an elliptical trajectory. This higher 

order motion (tertiary motion) of the cutting tool creates 

periodic dimples on the machined surface. The principle of the 

process is shown in Fig. 1. 

  

 

Fig. 1 Schematic of the elliptical vibration texturing process 

 

 

Fig. 2 Illustration of the elliptical vibration texturing process in 

cylindrical turning 
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Elliptical vibration texturing is an innovative and fast method to generate micro-structures on 
engineered surfaces. The core part of the process is the tertiary motion generator (TMG) that can 
produce spatial trajectories at a high frequency. The non-resonant mode version of the TMG has the 
advantages of arbitrary operating frequencies, better control of the motion output, and generation of 
complex trajectories for complex micro-patterns; however, it requires special considerations in the 
driving technique to achieve large displacements at high frequencies. A sequential drive strategy for 
the piezo stacks is proposed to address the difficulties in driving the non-resonant TMG. Each piezo 
chip in the stack is excited in sequence, so that each of the chips works only intermittently a fraction 
of the total time. A special drive circuit is designed to distribute the excitation voltage to each of the 
chips. A one dimensional piezo actuator is developed to verify the principle of the proposed idea. 
Future work for the design of a three dimensional non-resonant mode TMG, based on the sequential 
drive technique, is also discussed. 
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The implementation of this new process is illustrated in 

Fig. 2 for the turning operation. The radial vibration of the 

cutting tool periodically changes the cutting depth, which 

generates peaks and valleys along the cutting direction. This 

motion is the key driving factor for the texturing process. The 

cutting direction vibration additionally brings the benefits of 

vibration assisted machining to the process. Moreover, it adds 

extended freedom to create more complicated micro-structures. 

The difference between the elliptical vibration cutting and 

texturing processes is also shown in the figure: the cutting tool 

vibrates in two different orthogonal planes in the two 

processes. One example surface of dimple arrays using this 

texturing technique is shown in Fig. 3. 

 

 

Fig. 3 Example surface produced by elliptical vibration texturing 

 

The key technological problem of the process is to design 

a tertiary motion generator (TMG) that can produce spatial 

trajectories at high frequencies. This paper tackles the 

problems in driving a non-resonant TMG. The operational 

principles of non-resonant TMGs are introduced in Section 2 

followed by the detailed description of the sequential drive 

strategy that alleviates excessive heat generation at high 

frequencies in Section 3. Section 4 outlines the design of a one 

dimensional non-resonant TMG whose performance is 

demonstrated in Section 5. A preliminary design of a 3D TMG, 

based on the proposed driving technique, is briefly discussed 

in Section 6 followed by conclusions in Section 7. 

 
 
2. Non-resonant mode tertiary motion generator  
 

There are two possible principles for the design of the 

TMG: the resonant mode and the non-resonant mode. The 

resonant TMG works at discrete natural frequencies of the 

system structure; while the non-resonant TMG operates in a 

continuous range of frequencies. The resonant TMG is able to 

achieve a higher operating frequency and is more energy 

efficient, but it is very hard to obtain precise control of the 

trajectory due to the nature of resonant vibration and the phase 

lag between the excitation and mechanical responses. The 

non-resonant TMG is not limited to a fixed operating 

frequency and has more precise control of the motion. It also 

has the potential to create an arbitrary motion trajectory for 

complex texture patterns. However, it is very difficult to 

achieve a high operating frequency due to various technical 

problems involved. The detailed design of the resonant 

vibrator for the texturing application is described in [4].  

The non-resonant mode TMG usually utilizes “soft” PZT 

materials, since they have higher piezoelectric strain constants 

and a low mechanical quality factor, which leads to a larger 

displacement at off-resonance frequencies. It often has a 

mechanical amplification mechanism to boost the vibration 

amplitudes (Fig. 4) [5]. 

Non-resonant mode TMGs work at arbitrary working 

frequencies instead of a fixed frequency as the resonant mode 

TMGs do. Moreover, the geometry of its motion can be more 

precisely controlled. The trajectory only depends on the 

geometrical design of the transducer with a known 

magnification factor. While in the resonant mode, there’s 

unpredictable phase shift in the mechanical response; and the 

vibration frequency and amplitudes are very sensitive to the 

mass and geometrical configuration. It is very hard to 

analytically model the actual trajectory of the motion for the 

resonant mode TMG. 

 

 

Fig. 4 Design schematic of a 2D non-resonant mode TMG 

 

The non-resonant mode TMG, however, has its own 

technical problems. It requires a more powerful amplifier and 

is less energy efficient. Due to the dielectric loss and 

electromechanical loss, there are serious self-heating problems, 

especially when operating at a very high frequency. Although 

its operating frequency is in a continuous range, the upper 

bound is often limited by the first natural frequency of the 

mechanical structure, the capability of the power amplifier, 

and the self-heating issues. 

The one dimensional design of a non-resonant motion 

generator is usually in the research field of fast tool servos 

(FTS). They could achieve several microns of stroke up to the 

operating frequency of 1 kHz [6]. In the EVC area, Overcash 

and Cuttino [7] developed a 1D non-resonant vibrator for 

vibration assisted cutting, which generates pulse motion up to 

40 kHz. Negishi et al. [8] designed a 2D non-resonant vibrator 

for EVC, which generates an elliptical trajectory of 18 μm x 3 

μm up to 4 kHz. 
 
 
3. Sequential drive of micro piezo actuator stacks 
 

In order to address the issues mentioned above, the idea of 

sequential drive of piezo actuators is adopted [7]. For example, 

three piezo chips are stacked vertically as a group. They are 

excited in sequence, so that each of the chips works only 

intermittently one third of the total time. This operating 

principle greatly alleviates the self-heating issues. An added 
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benefit is that a single high-power and high-voltage amplifier 

can be used to drive the three piezo chips. This, however, 

requires a special drive circuit that divides the amplified 

output signals (high voltage and high current). 

 
3.1 Drive circuit design  

The schematic of the developed drive circuit is shown in 

Fig. 5. The circuit takes inspiration from Chatterjee's work [9]. 

The piezo chips are connected in series mechanically and in 

parallel electronically. They are taken as capacitors in the 

schematic. There is a high-side switch for each piezo chip to 

control the connection to the amplifier output. If, for example, 

S1H is closed, piezo chip #1 will be charged through the solid 

route in the figure. The low-side switch for each piezo chip 

controls the discharge process. If then S1H is opened and S1L 

is closed, piezo chip #1 will be discharged through the dotted 

route in the figure. The PIC32 micro-controller interfaces with 

a function generator chip to provide sinusoidal signals to the 

amplifier and controls the drive circuit to open and close the 

switches at accurate time instances for precise durations. 

These switches are MOSFETs in essence, which have the 

capabilities to pass through several amperes of current and to 

open and close almost instantaneously (in less than 100 ns). 

The high-side MOSFET connects the output of the amplifier 

to the positive side of the piezo chip. The low-side MOSFET, 

unlike a normal low-side driver, connects the positive side of 

the piezo actuator to the ground. Two MOSFETs, operating in 

a group, are driven by a half bridge driver chip. The 

manufactured PCB of the circuit is shown in Fig. 6. 

 

 

Fig. 5 Schematic diagram of the sequential drive circuit 

 

 

Fig. 6 PCB layout of the sequential drive circuit 

 
3.2 Sequential drive strategy  

The drive strategy is illustrated in Fig. 7. The sinusoidal 

signal is the output signal from a single output power amplifier. 

Piezo chip #1 is connected to the amplifier output at time t1, 

where the amplified signal begins to rise. The piezo chip #1 is 

then disconnected at time t2, where a full sine wave cycle ends. 

At time t3, piezo chip #2 is connected to the amplifier and 

disconnected at time t4. The small time gap between t2 and t3 

is to ensure that only one piezo chip is connected to the 

amplifier at one time. Three piezo chips take turns to operate 

under sinusoidal excitation. The driver circuit acts like a 

rectangular window function. The key issue here is to keep 

precise control of the timing of the MOSFETs to synchronize a 

full 2π cycle starting from 0 V. This will provide minimum 

energy leakage and smoothness of the actuator motion. During 

each cycle, the piezo chip is charged to its maximal operating 

voltage and fully discharged. The low-side MOSFETs are used 

to keep the piezo chips grounded when discharging. For 

example, the low-side MOSFET for piezo chip #1 is turned on 

slightly after time t2 to assure only one of the high-side and 

low-side MOSFETs are in effect. This time instance is 

irrelevant to time t3 and does not interfere with the operation 

of the next piezo chip. The low-side MOSFET for piezo chip 

#1 is kept on until some time slightly before the next operation 

(time t7) to make sure that no charge builds up while it is not 

in operation.  
 

 

Fig. 7 Sequential drive scheme 

 

 

 

 

Fig. 8 CAD model of the 1D piezo actuator 

 
 
4. Design of a 1D non-resonant transducer  
 
4.1 Mechanical design  

A 1D prototype of a non-resonant mode piezo actuator is 

designed to verify the idea of the proposed sequential drive 

method. The CAD model of the actuator is shown in Fig. 8. 

The three piezo chips are stacked in series. The output of the 

actuator is at the free end of the lever structure. When voltage 

is applied to the piezo chips, they expand in the thickness 

Output motion 

Piezo stack 

Preload block 

Set screw 
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direction, thus push the lever to generate one dimensional 

motion. The lever serves as a magnification mechanism. The 

lever is connected to the piezo chips via a flexure joint, which 

decouples the bending load to the piezo chips. There is a 

preload block and an ultra-fine set screw to provide enough 

preload to the piezo chips. The pin on the preload block 

constrains its movement only in the vertical direction by 

sliding in the slot on the main structure. The set screw has a 

3/16-100 ultra-fine thread. It pushes the preload block up to 

provide a precise pre-tightening force. The existence of the 

preload block decouples the rotational movement of the set 

screw to the piezo chips. The ball head of the set screw 

decouples the bending load to the piezo stack. 

 
4.2 Modal analysis  

FEM simulation is carried out to study the characteristics 

of the actuator. The device is modeled as a monolithic 

structure in the simulation. From the frequency extraction 

analysis, the first natural frequency of the structure is at 23.2 

kHz. The mode shape is in-plane bending, as shown in Fig. 

9(a). The second natural frequency is at 24.5 kHz. The mode 

shape is out-of-plane bending, as shown in Fig. 9(b). The 

results are compared to the experimental data from sine sweep 

tests. The actual first natural frequency of the device is at 16 

kHz. The difference comes from the increased stiffness of the 

monolithic model. Also, from the simulation results, the piezo 

actuator has a static stiffness of 10 N/μm; and the 

magnification factor of the lever structure is around 2.95. 
 

 

Fig. 9(a) 1st vibration mode: in-plane bending at 23.2 kHz 

 

 

Fig. 9(b) 2nd vibration mode: out-of-plane bending at 24.5 kHz 

 
 
5. Experimental verification 
 
5.1 Static test  

The experimental setup is shown in Fig. 10. The main 

piece of the piezo actuator is made by wire EDM. The testbed 

consists of the 1D piezo actuator and the capacitance sensor 

probe holder. The piezo actuator is attached horizontally to the 

base to eliminate gravity effects. There is a clearance between 

the lever and the base to assure free movement. The 

capacitance sensor points to the free end of the lever. The 

sensor has a range of 50 μm and a bandwidth up to 100 kHz. 

 

 

Fig. 10 Testbed and the piezo actuator 

 

The piezo chip, closest to the lever, is labeled as the top 

chip. The one attached to the preload block is the bottom chip. 

The one in between is labeled as the middle chip. A DC 

voltage is applied to three piezo chips separately to test the 

static displacement of the actuator. The voltage outputs from 

the capacitance sensor are recorded and listed in Table 1. 

 

Table 1 Static test results for the piezo actuator 

Voltage Top chip Middle chip Bottom chip 

10V -2.653 V -2.554 V -2.678 V 

30V -2.709 V -2.612 V -2.742 V 

∆20V 0.28 μm 0.29 μm 0.32 μm 

 
5.2 Dynamic test 

The frequency analysis results for the sine sweep tests on 

the top piezo chip are plotted in Fig. 11. The first natural 

frequency of the device is at 16 kHz. The second peak is at 

19.5 kHz. In between these two peaks, there are two minor 

peaks at around 17.9 kHz and 18.5 kHz. The frequency 

responses are identical for all three piezo chips. All tested 

frequencies are denoted in the figure, including frequencies 

below, around and above the first natural frequency. The test 

conditions and results are summarized in Table 2. 

 

 

Fig. 11 Frequency analysis results for the piezo actuator 

 
 

Table 2 Dynamic test results for the piezo actuator 

Test case 1 2 3 4 5 6 

Frequency (kHz) 5 15 17.5 20 25 30 

Voltage (Vpp) 60 40 40 40 40 40 

Displacement 

amplitude (μm) 
1.2 4.2 1.26 1.58 1.58 ~ 
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Fig. 12(a) Dynamic test result @ 5 kHz 

 

 

Fig. 12(b) Dynamic test result @ 15 kHz 

 

 
Fig. 12(c) Dynamic test result @ 17.5 kHz 

 

 

Fig. 12(d) Dynamic test result @ 20 kHz 

 

 
Fig. 12(e) Dynamic test result @ 25 kHz 

 

 
Fig. 12(f) Dynamic test result @ 30 kHz 

(1) magenta: displacement (2) yellow: output voltage 

(3) cyan: gate voltage    (4) green: output current 

All test results with four channel information are plotted in 

Fig. 12(a)-(f). The signal labeled as (1) (in magenta) is the 

displacement output from the free end of the lever. The signal 

labeled as (2) (in yellow) denotes the output voltage from the 

amplifier. The cyan signal (3) is the gate voltage, or the control 

signal, over the top piezo chip. The green signal (4) is the 

output current from the amplifier. 

The series of tests confirms the feasibility of the proposed 

idea of the sequential drive strategy. For example, in Fig. 12(a), 

the control signal for piezo chip #1 is turned on for one full 

cycle in every three cycles. Piezo chip #1 is charged to the 

amplifier output voltage in this cycle, while the other piezo 

chips are kept grounded. Three piezo chips take turns to 

operate under the sinusoidal excitation; and the displacement 

output of the actuator is continuous. The current and voltage 

signals have a 90 degree phase shift because the piezo 

materials act like capacitors in the circuit. The displacement 

output and voltage signals have no phase shift in the 5 kHz 

case (negatively related), which verifies the operation 

principle of the non-resonant actuator. 

The result at 15 kHz, shown in Fig. 12(b), shows larger 

displacement outputs since the excitation frequency 

approaches the first natural frequency of the system. The 

phase shift between the driving voltage and the displacement 

outputs increases to around 180 degree, which also indicates 

the phase change at the natural frequency.  

The rest of the test results show the operation conditions 

beyond the first natural frequency. The actuator performs as 

expected until reaching 30 kHz, where the displacement 

output fails to follow the excitation signal. It sets the upper 

bound of the operating frequency.  
 
 
6. Future work 
 

The ultimate goal is to design a non-resonant mode TMG, 

which is able to generate 3D space trajectories. Besides this 

unique 3D feature compared with the current state-of-the-art, 

this 3D TMG will be capable to operate near the ultrasonic 

frequency range using our newly developed sequential drive 

strategy. These two combined advances in the piezo actuator 

design will require special considerations in mechanical and 

electronic design. 
 

 

Fig. 13 Preliminary design of the 3D TMG 
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The mechanical structure of the 3D TMG has to minimize 

its mass to increase the first natural frequency, which sets the 

upper limit of the operating frequency. There is a trade-off for 

the mechanical amplification mechanism design to choose 

between a larger magnification factor and larger stiffness. 

Large mechanical amplification will decrease the stiffness of 

the system, which reduces the first natural frequency of the 

device and deteriorates its dynamic performance. The other 

trade-off is between a longer stroke and lower capacitance for 

the piezo actuator. Higher capacitance generates a longer 

stroke, but has higher power requirements. Other design 

considerations include precise preload mechanisms for the 

piezo actuator, piezo actuator alignment, piezo actuator load 

decoupling, etc. The preliminary design uses the tripod 

mechanism, which is shown in Fig. 13. The diaphragm acts as 

the mechanical amplifier.  
 
 
7. Conclusion 
 

In this paper, the sequential drive technique for the piezo 

stacks is proposed. Its application is for the operation of the 

non-resonant mode tertiary motion generator in the elliptical 

vibration texturing process. In the sequential drive scheme, 

each piezo chip in the stack is excited in sequence, so that each 

of the chips works only intermittently a fraction of the total 

time. A special drive circuit is designed to distribute the 

excitation voltage to each piezo chip. A one dimensional piezo 

actuator is developed to verify the principle of the proposed 

idea. Future work of the design of three dimensional non-

resonant mode TMG based on the sequential drive technique 

is also discussed. 
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1. Introduction  
In a recent publication, Zhu et al. [1] proposed a design for 

a porous-restricted aerostatic lead screw actuator (ALSA). 
ALSAs have been found to be particularly suitable for the 
actuators used in high performance micro-scale machine tools 
(mMTs) due to their ability to achieve high accuracy as well as 
attain increased static/dynamic stiffness [2-4]. A nut housing is 
designed to hold porous graphite disk inserts in a helical 
pattern pressing against a lead screw to create multiple 
simultaneous air bearing surfaces. The simple geometry of the 
porous graphite disk inserts and the low tolerance on the nut 
housing reduce costs dramatically. The analyses performed on 
the design indicate that such an ALSA design is capable of 
providing sufficient actuator stiffness while maintaining stable 
operation. A preliminary manufacturing process was proposed, 
however, it was found that maintaining the precise air gap 
between the screw and the nut over the entire helical thread 
surface posed a major challenge. 

Several manufacturing processes for the ALSA have been 
attempted [5-7], however, there have always been deficiencies 
in these past designs. These previous developments all 
struggled with precisely controlling the air gap, often resulting 

in either pneumatic hammering (instability/vibrations) of the 
nut [5] or inadequate stiffness characteristics [6-7]. Tachikawa 
et al. [6] was able to achieve a positioning accuracy of 10 nm, 
but only managed to obtain a stiffness of 30 N/µm while 
requiring the nut engagement with eight (8) lead screw 
revolutions. 

The objective of this research is to expand upon the 
manufacturing process of the porous-restricted ALSA design 
proposed by Zhu et al. [1]. Specifically, improvements are 
made upon lapping procedures and the porous media 
configuration in the aerostatic nut. These developments have 
resulted in a manufacturing process that ensures a uniform air 
gap across the entire helical thread surface. Several 
experimental trials are performed to evaluate the performance 
of the ALSA as well as investigate the trade-offs between 
stiffness and stability. 

The rest of this paper is organized as follows. Section 2 
discusses the specific performance requirements for the ALSA 
followed by a review of the overall design. Section 3 explains 
the overall manufacturing process and describes each 
operation in detail. Section 4 details the experimental trials of 
the manufacturing process and the resulting ALSA 

 
 
 

Manufacture and Testing of an Aerostatic 
Lead Screw Actuator for High Performance 
Micro-Scale Machine Tools 
 
 
 

James Zhu1, Shiv G. Kapoor1,# and Richard E. DeVor1 

1 Department of Mechanical Science and Engineering, University of Illinois: Urbana-Champaign, Urbana, Illinois, USA, 61801  
# Corresponding Author / E-mail: sgkapoor@illinois.edu, TEL: 217-333-3432, FAX: 217-244-9956 

 
KEYWORDS : Aerostatic Lead Screw, Frictionless Motion, Micro-Scale Machine Tool, Porous Air Bearing, Precision Actuator, Sub-Micron Accuracy 

 
 

The manufacturing process for a porous-restricted aerostatic lead screw actuator (ALSA) is presented. 
The ALSA provides near-frictionless motion with sub-micron accuracy, high stiffness at low inlet air 
pressures (<830 kPa), and a travel length of 50 mm. Porous graphite disk inserts are held in a helical 
pattern in an aerostatic nut housing against a lead screw thread to create multiple simultaneous air 
bearing surfaces. The manufacturing process developed herein aimed to achieve a uniform air gap 
across the entire helical thread surface. To do this, the following steps were employed, 1) Rough lapping 
operation to match graphite disks profile with the helical thread form; 2) Potting operation to secure 
the porous media in the aerostatic nut housing; 3) Application of a surface restriction layer to control 
permeability of the porous media; and 4) Final lapping operation to generate appropriate air gap. 
Experimental trials were performed to evaluate the performance of the manufactured ALSA. It was 
found that a stable nut with a per-thread stiffness of 9.7 N/µm was achievable with a 3.5 µm air gap 
and an overall permeability of 5.4e-15 m2. Applications requiring higher stiffness may couple two or 
more single-threaded nuts to achieve the desired actuator stiffness. 
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performance. Finally, conclusions are drawn from this work.  
 
 
2. ALSA Design Overview 

In this section, the ALSA design proposed by Zhu et al. [1] 
will be reviewed. The review will include a discussion of 
ALSA requirements, design parameters, and key components. 
A novel concept of pre-loading the porous media during 
manufacture with a wave spring flexure will also be 
introduced. 

 
2.1 Porous-Restricted ALSA Configuration 

ALSA performance requirements are similar to those 
described by Adair et al. [5]. The four key evaluation 
parameters for this ALSA include: 1) friction torque, 2) 
stiffness, 3) air supply pressure, and 4) travel length. The 
following requirements are needed to accommodate high 
dynamic cutting forces while maintaining sub-micron actuator 
accuracy. Typical air compressors in factory settings limit the 
inlet air pressure available to the ALSA.  

Table 1 summarizes the requirements for the ALSA 
described herein. 
 
Table 1 Actuator Requirements 

 Requirement 

Friction Torque < 0.1 N-m 

Stiffness 20 N/µm 

Air Supply Pressure 830 kPa (120 PSI) 

Travel Length 50mm 

 
The porous-restricted air bearing configuration is 

illustrated in Fig. 1. Air enters into the plenum chamber that is 
connected to the porous graphite insert. The porous media is 
mechanically fixed in the housing and acts as a restrictor that 
controls the air flow. Air flow through the porous graphite will 
reach the critical air bearing surface and create a lift-off force, 
forming an air gap. Because of the porous nature of the 
graphite material, air flow is distributed evenly across the 
entire air bearing surface. The balance between the air flow 
lift-off force and the reaction force provided by the aerostatic 
nut will generate the air gap that provides the necessary 
stiffness for the ALSA. 

 

 
Fig. 1 Porous-Restricted Air Bearing Concept 

 
Figure 2 depicts the approach taken by Zhu et al. [1] to 

incorporate porous graphite media into an aerostatic nut. In 
order to obtain bi-directional stiffness, disks on opposing faces 
in the aerostatic nut must be paired. These pairs of disks are 
held against the flanks of the lead screw thread and act as the 
medium for air to travel through to create an air gap. Each disk 
includes an O-ring that is used to center the disks within their 
locating holes. The porous disks are all interconnected by a 
helical plenum chamber that supplies the same inlet pressure 
to each porous disk.  
 

 
 

Fig. 2 Aerostatic Nut Housing 

 
2.2 Porous Air Bearing Design Parameters   

With the use of porous graphite as the air flow restriction 
media, there are two major parameters that can be controlled 
to influence the air bearing performance, viz., inlet pressure 
and permeability. The inlet pressure is the pressure applied to 
each of the porous graphite inserts. The permeability is a 
measure of the ability of a porous material to transmit fluids.  

Figure 3 plots stiffness against air gap for several different 
configurations of inlet pressures and permeability constants. 
This plot was generated using a one-dimensional generalized 
flow method developed by Plante et al. [8] to analyze porous 
air bearing characteristics. Because stiffness is desired in the 
two directions along an axis, Fig. 3 provides the stiffness of a 
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pair of porous graphite disks. As seen in Fig. 3, tightening the 
manufacturing tolerance on the lead screw profile can provide 
higher stiffness since it reduces the range of available air gaps 
over the entire length of travel. A profile tolerance of ±4 µm 
was chosen based on the upper limit of traditional precision 
lead screw grinding techniques. On top of the profile variation 
of the lead screw, an air gap must be added to ensure no 
contact between the lead screw and the porous graphite disks 
during operation. For manufacturability purposes, a 4 µm air 
gap was chosen in this initial analysis. Assuming this limit on 
the profile variation and air gap, one option to increase 
stiffness in the ALSA involves increasing the total number of 
graphite disks, i.e., increasing the thread count through 
coupling multiple aerostatic nuts.  
 

 
Fig. 3 Stiffness for a Pair of Air Bearing Disks with Increasing 

Thread Count  

 
The aerostatic nut design described in Section 2.1 contains 

18 graphite disks (nine pairs). From Fig. 3, for a single-
threaded ALSA to achieve 20 N/µm of static stiffness, each 
pair of graphite disks must achieve at least 2.2 N/µm (i.e., 20 
N/µm / 9 pairs of disks). For two coupled nuts (i.e., 20 N/µm / 
18 pairs of disk), each pair of disks will only require stiffness 
of 1.1 N/µm to meet the initial stiffness requirement. By 
coupling multiple aerostatic nuts together, the inlet air pressure 
can be lowered to bring the supply pressure requirement more 
in line with common factory availability. According to Fig. 3, 
two coupled aerostatic nuts operating at 830 kPa with a 
permeability of either 6.6e-15 m2 or 12.3e-15 m2 appear 
capable of achieving the stiffness requirements for this ALSA 
configuration.  
 
2.3 Key Components of ALSA Design 

There are three (3) key components in the ALSA design. 
These include the aerostatic nut, the lead screw, and the 
lapping system platform, which supports the manufacturing 
process. 
 
2.3.1 Aerostatic Nut 

The presence of 18 separate air bearings in the aerostatic 
nut makes the creation of a uniform air flow essential to 
maintaining a consistent air gap. This is achieved by inserting 
wave spring flexures behind each disk to provide a pre-load, 

forcing contact between the disk and the lead screw thread. 
Wave spring flexures provide a pre-load of approximately 18 
N and have over 380 microns of deflection. The use of the 
wave spring flexure provides a more robust design in the face 
of manufacturing variation when the 18 graphite disk surfaces 
must be precisely matched with the helical lead screw profile. 
This configuration is depicted in Fig. 4. 

 
Fig. 4 Wave Spring Flexure Configuration 

 
2.3.2 Precision Ground Lead Screw 

The lead screw is made of a 440C stainless steel hardened 
to HRC 58. The profile tolerance of the thread geometry was 
set at ±4 µm. The geometry of the thread profile is depicted in 
Fig. 5. It must be noted that the threads are thinner than the 
standard trapezoidal thread. This is done in order to increase 
the spacing between the threads such that porous graphite disk 
inserts could be incorporated into the aerostatic nut housing.  

 

 
Fig. 5 Modified Trapezoidal Thread Profile (mm) 

 
2.3.3 ALSA Lapping System Platform 

The aerostatic nut design enables porous graphite inserts to 
be assembled to follow the contour of the thread profile. 
However, there must be a mechanism that enables the surfaces 
of the porous graphite inserts to mate with the helical surface 
of the lead screw such that the air gap is maintained in the 
range of several microns. This calls for a lapping system that 
is essential to the ALSA manufacture. Figure 6 depicts the 
design of such a system for the ALSA.  

The integrated lapping system consists of a set of guide 
rails that are precisely offset from the lead screw such that the 
axes of the guide rails and that of the lead screw are on the 
same plane. Once aligned, the aerostatic nut can be attached to 
the guide rails through two outriggers. The guide rails serve 
two purposes. First, the guide rails constrain the rotational 
degrees of freedom of the aerostatic nut during manufacture. 
Second, the guide rails provide the greatest contribution to 
radial stiffness of the actuator and are therefore considered an 
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essential part of the ALSA system during operation. 
 

 
Fig. 6 ALSA with Precision Lapping System 

 
 
3. ALSA Manufacturing Process 

In [1], authors proposed a general ALSA manufacturing 
process. During experimental testing, however, several 
difficulties were found when attempting to achieve the target 
air gap specification. In this section, the steps of a modified 
general process are laid out followed by a description of 
proper manufacturing technique for each step. 
 
3.1 Generalized Manufacturing Process 

Given the design of the ALSA using porous air bearings, 
the generalized manufacturing process involves the following 
steps: 

 
Step 1: Perform rough lapping operation on porous graphite 

material against lead screw to mate the graphite 
disks to helical thread form; 

Step 2: Pot the graphite disks while wave spring flexures 
pre-load the graphite disks against the lead screw 
flank to ensure a consistent mate among all graphite 
disks; 

Step 3: Apply surface restriction layer on roughly lapped 
graphite surfaces to control permeability; 

Step 4: Perform final lapping operation to obtain proper air 
gap. 

 
The basic components were manufactured and the ALSA 

platform is shown in Fig. 7.  
 

 
Fig. 7 ALSA Platform for Manufacturing and Testing Purposes 

 
3.2 Rough Lapping Operation 

A rough lapping operation on the graphite disks ensures 
that the critical air bearing surfaces roughly matches the 
geometric profile of the lead screw thread. Because the thread 
form follows a helical trajectory, the graphite surfaces must 
have some curvature, as seen in Fig. 8. During the rough lap, 
only one side of the nut is lapped at a time. 

 

 
Fig. 8 Graphite Disk after Rough Lap 

 
The disks are lapped until the nut can freely slide onto the 

lead screw with both sets of graphite disks assembled in the 
nut housing. At this point, the ALSA is reassembled with wave 
spring flexures placed behind each disk to provide a pre-load 
against the lead screw profile. Rough lapping is again 
performed with all graphite disks and wave spring flexures in 
place to ensure good contact between the lead screw thread 
and the disks. These wave spring flexures also guarantee that 
the angular orientation of the graphite disks are aligned with 
the curvature of the lead screw since the graphite disks will 
tend to rotate towards having a flush surface with the lead 
screw flank. Table 2 lists recommended abrasive compounds 
for lapping operations performed during ALSA manufacture. 
 
Table 2 Recommended Lapping Compounds 

Abrasive Particle Type Grit Size Operation 

Garnet 4 µm Rough Lapping 

Iron Oxide 3 µm Final Lapping 

Red Rouge 1 µm Final Lapping 

 
3.3 Permanent Potting of Graphite Disks 

The graphite disks must be permanently potted in the 
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locating holes of the aerostatic nut housing after the rough 
lapping operation. The ALSA is disassembled and each 
graphite disk is matched with its corresponding locating hole 
and roughly oriented using alignment markers. The graphite 
disks are potted in place using a slow-cure epoxy (Loctite 
Hysol E-120HP [9]) to provide ample time to reassemble the 
ALSA. The epoxy also acts as a sealant to block the pores on 
the side-walls of each graphite disk. While curing, wave spring 
flexure pre-loads the graphite disks against the lead screw, 
enabling each graphite disk to self-align itself into the correct 
orientation for a flush mate against the lead screw. Once cured, 
this epoxy provides enough strength to withstand the air 
pressures up to 1.4 MPa (200 PSI) inside the nut housing. 
Figure 9 shows the aerostatic nut during the permanent potting 
process. 

 
 

 
Fig. 9 Aerostatic Nut During Permanent Potting 

 
3.4 Surface Layer Restriction Method. 

Permeability of the porous graphite disks is an important 
parameter that affects the both the stiffness and stability of the 
ALSA. Permeability is controlled through a surface layer 
restriction technique [10] depicted in Fig. 10. In this technique, 
an acrylic resin dissolved in a solvent is applied to the critical 
air bearing surface and pulled into the pores through vacuum. 
The air flow is measured and depending on whether the 
measured value is greater than or less than the target air flow, 
either more resin is applied or a solvent (toluene or acetone) is 
used to wipe away some of the pre-existing lacquer already 
bonded to the surface. This method is repeated until the 
desired flow rate is achieved. By engineering this restriction, 
the porous material will provide the correct volumetric air 
flow to ensure stable air bearing operation.  

 

 
Fig. 10 Surface Restriction Layer Process 

 
3.5 Final Lapping Operation 

Final lapping ensures that both sides of the aerostatic nut 
have matching surface profiles with the correct air gap. From 
Fig. 11, the air gap in the ALSA can be calculated from the 
amount of backlash seen in the actuator. Backlash is measured 
from the linear encoder attached directly to the aerostatic nut. 
For instance, a backlash measurement of 5 µm would produce 
a calculated air gap of 4.83 µm. The assumption when making 
this kind of measurement is that all of the disks have the same 
air gap. With the use of wave spring flexures in previous steps 
in the manufacturing process, this is a reasonable assumption. 
Final lapping is complete once the friction torque requirement 
of 0.1 N-m is achieved with an appropriate air gap. 

 

 
Fig. 11 Air Gap Calculation 

 
Once final lapping is complete, ALSA components are 

sent through an ultrasonic cleaner to remove abrasive particles 
and then reassembled. 

 
 

4. Evaluation of Manufactured ALSA 
In this section, the ALSA evaluation procedure will first be 

described. From here, the experimental results from ALSA 
manufacturing trials will be examined. 
 
4.1 Evaluation Procedure 

Three trials of the manufacturing process were carried out 
to evaluate the ALSA performance. Stiffness was tested by 
first constraining all degrees of freedom of the aerostatic nut 
and outriggers while a constant torque was applied to the lead 
screw. Rotation of the lead screw caused by the applied torque 
was measured with a rotary encoder. Based on the pitch of the 
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lead screw, rotary deflection was correlated to linear deflection, 
i.e., 1° is equivalent to 1/360th of the pitch (25mm).  Figure 12 
shows the ALSA set-up for a stiffness test. Assuming perfect 
efficiency (due to the ALSA frictionless nature), the force was 
calculated according to Eq. 1, 

� �
���

�
��������	�
�, (1) 

where F is the force, T is the torque, P is the lead screw pitch, 
and efficiency is assumed to be 1. 
 

 
Fig. 12 Stiffness Measurement on ALSA 

 
Stability was qualitatively determined by ramping up the 

inlet air pressure until the nut exhibited the pneumatic 
hammering effect. Stability must be maintained over the 
desired length of travel of the actuator. 
 
4.2 Trial 1: Initial ALSA Evaluation 

From Section 2.2, it was determined that in order to 
achieve adequate per-thread stiffness, a permeability in the 
range between 6.6e-15 m2 and 12.3e-15 m2 would be 
necessary with an air gap of 4 µm. A target permeability on the 
lower end of the range, 8.0e-15 m2, was chosen to improve 
stability in this initial trial. Final lapping resulted in an air gap 
of 5 microns. 

At inlet pressures of less than 550 kPa, the ALSA 
exhibited stable operation with a per-thread stiffness in the 
range of 3-5 N/µm. As inlet pressures were increased past 550 
kPa, the nut began to vibrate due to the pneumatic hammering 
phenomenon. 

When dealing with 18 separate air bearings, there will be 
some variation in permeability among all of the porous disks. 
After measuring the mass flow rate of each disk, the 
permeability can be calculated using Darcy’s law, given in Eq. 
1. Table 3 provides permeability data for Trial 1. 

 
Table 3 Summary of Permeability of 18 Graphite Disks 

Permeability Statistic  
N 18 

Minimum (m 2) 6.50e-15 
Average (m2) 8.14e-15 

Maximum (m2) 1.18e-14 
Std. Dev. (m2) 1.37e-15 

Coefficient of Variation 16.83% 

 
To improve the stability of the ALSA, higher consistency 

of permeability among all 18 disks should be achieved. The 
coefficient of variation is used as a relative measure of 
variation in permeability. A coefficient of variation of less than 
10% will be considered a target for the ALSA. 

As permeability is increased, stability of the ALSA is 
jeopardized and there is an increased likelihood of vibration 
due to pneumatic hammering [11]. Therefore, to increase the 
stability of the aerostatic nut at higher pressures, the overall 
permeability may be reduced further. However, to obtain the 
high stiffness required by a precision actuator, the air gap must 
be decreased (See Section 2.2). To obtain the maximum 
stiffness for a given permeability and air gap, the aerostatic nut 
should operate at the highest supply pressure that still provides 
stability. 
 
4.3 Trials 2 & 3: Further Testing to Improve Stiffness and 
Stability 

In trial 2, improved stability was the primary goal. To 
achieve higher stability over a wider range of inlet pressures, 
the overall permeability was reduced and higher consistency 
of permeability among the 18 air bearings was targeted in this 
trial. The target permeability of the graphite disks was set at 
5.0e-15 m2. In attempting to increase the per-thread stiffness 
of the aerostatic nut in this trial, the target air gap was reduced 
to 3.5 microns. Table 4 provides the trial 2 ALSA performance 
results. 

 
Table 4 Trial 2 ALSA Performance Results 

ALSA Operating Parameters  
Pressure (kPa) 830 
Air Gap (µm) 3.5 

Average Permeability (m2) 5.43e-15 
Coefficient of Variation 7.73% 

Floatation Yes 
Stable Yes 

 
In trial 2, the ALSA demonstrated stable floatation at high 

inlet pressures; trial 2 achieved stability over 50 mm of travel 
with inlet pressures greater than 1.4 MPa. In this trial, the 
ALSA exhibited a per-thread stiffness values on the range of 
4-6 N/µm at an inlet pressure of 830 kPa.  

To increase stiffness while maintaining stability up to 830 
kPa, a third trial was conducted. In this trial, the overall 
permeability of the aerostatic nut was increased. Table 5 
summarizes the trial 3 ALSA performance results. The average 
permeability measured was 9.54e-15 m2 with a coefficient of 
variation of 2.93%. In this trial, the ALSA maintained both 
frictionless motion and stability over a 50 mm length of travel. 
The final per-thread stiffness attained was 9.7 N/µm. 
Therefore, to meet the pre-specified stiffness ALSA 
requirement, two single-threaded nuts may be coupled. 

 
Table 5 Trial 3 ALSA Performance Results 

ALSA Operating Parameters  
Pressure (kPa) 830 
Air Gap (µm) 3.5 

Average Permeability (m2) 9.54e-15 

 Stiffness Test 

Fixture 

Constant 

Torque 

20 mm 
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Coefficient of Variation 2.93% 
Floatation Yes 

Stable Yes 
Per-Thread Stiffness @ 830 kPa (N/µm) 9.7 

 
 

5. Conclusions 
 
Specific conclusions drawn from this work are: 

1. The porous-restricted ALSA design features a 
unique nut design that consists of a set of porous-
restricted air bearings backed by wave spring 
flexures and a helical plenum chamber. The wave 
spring flexures create a self-aligning method to 
consistently match all graphite disk insert surfaces 
to the helical profile of the lead screw thread. 

2. A manufacturing process has been developed to 
ensure a uniform air gap across the entire helical 
thread surface to meet desired stiffness and stability 
criteria. Rough and final lapping are capable of 
producing air gaps as small as 3.5 µm. 

3. The surface restriction layer technique has been 
implemented to achieve target permeability. Using 
this technique, the permeability values among all 
disks have a coefficient of variation of less than 3%. 

4. Based on the results of several tests, a stable ALSA 
with a per-thread stiffness of 9.7 N/µm operating at 
830 kPa over 50 mm of travel has been 
demonstrated. 

5. This ALSA design is adaptable to accommodate 
applications requiring varying degrees of actuator 
stiffness by coupling two or more single-threaded 
nuts. 
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NOMENCLATURE 

 

Ton = pulse on time 

F = frequency of the discharges 

I = peak current 

U = voltage 

 

 
1. Introduction  
 

The trend towards the downsizing of mechanical parts is 

increasing in many fields. Several microfabrication 

technologies are available today and they are used to 

fabricate microcomponents and systems. The advances of 

modern process technology enable the access to many new 

research and product ideas, other than classical 

microelectronics. These activities are grouped under the label 

“micromechanics”, “micromachining”, “MEMS” (micro-

electromechanical systems) or “MOEMS” integrating optics.  

For the production of micro components, many 

possibilities based on different technologies are available: 

lithographic technologies (bulk and surface micromachining, 

LIGA, EBL), conventional technologies (micro drilling, 

micro turning and micro milling) and special technologies 

(micro-EDM, micro-laser, micro-ECM, micro-USM). The 

selection of the process or, in some cases, the combination of 

more processes, is a function of the technical and functional 
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The current technological and productive scenario requires the fabrication of industrial components, 
characterized by dimensions and precision in the order of micron, in several sectors like 
manufacturing, optical, electronics, medical and biotechnological. Currently, various devices 
characterized by small dimensions, are fabricated using different processes; micro fluid, micro 
mechanical, micro optical and microelectronic functionalities are combined on very small areas of 
micro systems, which lead to new products in bio and medical technology, in information and 
communications technologies, in automotive engineering. Micro electro discharge machining 
(micro-EDM) is one of the recent and most promising micromachining techniques in the precision 
manufacturing field and it is used to fabricate products having geometrically complex profiles with 
high aspect ratio. Micro-EDM is an effective technology for machining any type of electrically 
conductive materials, regardless of the hardness, by means of rapid and repetitive spark discharges 
striking between a tool and a workpiece. The EBL technology consists in the electron irradiation of a 
surface covered with a resist which is sensitive to a focused electron beam. For this reason, EBL can 
generate arbitrary patterns without fabricating a mold first. Then, the very small structures in the 
resist can subsequently be transferred to the substrate material, often by etching. The use of the 
narrow electron beam, the same used also for the Scanned Electron Microscope (SEM), allows high 
resolution images and in the same way high resolution patterns. 
Aim of this work is the integration of micro-EDM and EBL processes in silicon manufacturing. A 
Sarix SX200 micro EDM machine and an electron beam lithography system based on a SEM 
microscope Zeiss Evo 40 were used for this purpose. In particular, features having different 
dimension, were executed. As a first step, a set of engravings was performed using the EBL system. 
After development process, dissolving of the residual resist and transferring the engraved path on the 
silicon wafer, the EDM technology was applied to the same workpieces. Both geometrical and 
dimensional analyses were carried out on the produced features using a SEM microscope. 
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specifications of the final components. 

LIGA (German acronym for Lithographie, 

Galvanoformung and Abformung), plays an active role in 

emerging and competitive micro-technologies through the 

fabrication of high aspect ratio structures having very good 

quality and surface roughness. LIGA is now being evaluated 

for industrial applications and commercial exploitation. 

Several efforts are being made to standardize the process [1]. 

Some market segments like gear and watch industries are 

facing the technological barriers of their production methods 

(like punching, precision milling etc) to explore the 

potentiality of LIGA technology [2]. 

In LIGA the exposure phase can be made using X-ray, 

UV light, ion beam or electron beam. X-ray lithography 

offers extremely accurate patterning capabilities, but the high 

cost related to the exposure procedure (synchrotron radiation 

is needed) may represents a limit for the industrial 

applications. Another limit concerning X-ray process is the 

need for a mask containing the drawing to be engraved on 

the specimens. UV-Lithography, using UV light, is cheaper 

but it has a minimum feature size larger than 1 µm [3]. Ion 

beam lithography is a new technique for the 3D structuring 

of photoresist materials; it is a direct-write (maskless) 

technique that uses high energy (0.5–3.5 MeV) light ions 

(protons or helium ions) for the irradiation of photoresist 

materials [4]. Electron beam lithography (EBL) is a maskless 

technology which combines excellent resolution with high 

flexibility [5]. The electron beam can be highly focused and 

can produce very fine structures, (smaller than 100 nm). 

However the process is affected by electrons scatter 

(resulting in a loss of resolution), especially when high 

thickness resist is concerned. 

Electrical Discharge Machining (EDM) is an effective 

technology for machining any type of electrically conductive 

materials, regardless of its hardness, by means of rapid and 

repetitive spark discharges striking between a tool and a 

workpiece. The workpiece and the electrode are submerged 

in a dielectric fluid and they are separated by a small gap 

known as sparking gap. The pulsed discharges remove the 

workpiece material through melting and evaporation 

processes. The melted and vaporized materials are 

transformed into tiny particles known as debris. These 

particles are removed from the machining zone by means of 

the dielectric fluid jet.  

In EDM process there is no contact between tool and 

workpiece, so eliminating physical cutting forces, 

mechanical stresses and vibration problems [6]. For this 

reason, EDM is very effective in machining very hard and 

high strength materials, generally considered “difficult to be 

cut” using conventional technologies [7, 8]. Moreover, a 

contact less and “forceless” machining process is very 

desirable, or even essential, when miniaturized components 

are machined, so enabling the production of micro-parts 

without distortions due to physical forces. Micro-electrical 

discharge machining (micro-EDM) is the application of 

EDM on the micro-manufacturing field and it can be 

considered as one of the most promising machining 

technologies for the fabrication of micro-components. In 

recent years, machining of difficult-to-cut materials has 

become an important issue in the field of micro-EDM. 

Actually, hard materials show excellent mechanical 

properties which can be useful in many important 

applications. Besides, the promising applications of micro-

EDM are not only limited to the machining of high hardness 

alloys for micro-molds or cutting tools, but also to the 

production of “difficult to make structures” (having complex 

three dimensional shape) or to machine micro-holes with 

high aspect ratio [9, 10, 11]. 

Although electrical discharge machining obviously relies 

on the electrical conductivity of the workpiece material, the 

range of machinable materials is not limited to metals and 

alloys, but includes semiconductors, as for instance, silicon 

[12]. The application of micro-EDM to the machining of 

silicon has some important advantages. The most important 

are the high material removal rate and the low electrode wear 

(in comparison with the machining of steel or tungsten 

carbide). Furthermore, the advantages given by the 

characteristics of the substrate (flatness, low surface 

roughness, low cost, etc…) are also noteworthy. Anyway, in 

silicon micro machining there are some problems that need 

to be solved. First of all, it may happen that no short circuit 

occurs, thus the machine is often unable to detect the contact 

between the electrode and the surface of the workpiece. This 

because of a lower conductivity of silicon, if compared to 

metals. Secondarily, the optimal settings for the process 

stability, strongly depend on the electrode diameter as well as 

on the desired surface roughness; in addition the accuracy of 

the machined structures relies on the accuracy of the dressed 

electrode diameter [13]. High flexibility, high accuracy and 

the possibility to generate three dimensional structures are 

relevant aspects of this technology, as compared to 

conventional methods used for the preparation of silicon 

masters. This means that silicon micro-EDM is suitable for 

the production of prototypes or small batches of products 

[14]. In fact a design change can be quickly implemented 

simply by modifying the CAM file. Furthermore, the process 

does not require to be operated in a clean room environment, 

with a consequent reduction of the manufacturing costs [13]. 

In the matter of silicon microstructure, it is demonstrated that 

the micro-EDM process is independent of the silicon crystal 

orientation. This means that a wafer can be machined in any 

direction with respect to the wafer’s top plane. For all these 

reasons, silicon micro-EDM is not only feasible but it also 

represents an important and complementary technology to 

traditional silicon micro machining [14]. 

As regards micro-EDM, the dimension of the features 

depends on the diameter of the electrode. The modern micro-

EDM manufacturing systems have a wire unit able to process 

the electrode in the spindle: it is possible to reduce the 

diameter of the electrode and, if necessary, at the same time 

to change its shape. Considering the process time of these 

operations not negligible, the manufacturing of a workpiece 

containing different features and having different dimensions, 

could not be advantageous.  
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Aim of this work is to study the integration of micro 

EDM and EBL processes in silicon manufacturing. A Sarix 

SX200 micro EDM machine and an electron beam 

lithography system based on a SEM microscope Zeiss Evo 

40 were used for this purpose. The samples used for this 

study were composed by wafers of Si having a layer of SiO2 

and a PMMA resist, deposited on the wafer. In particular, 

features having different dimension, were executed. As a first 

step, a set of engravings was performed using the EBL 

system. After the development process, the dissolving of the 

residual resist and the transferring of the engraved path on 

the silicon wafer, the EDM technology was applied to the 

same workpieces. Both geometrical and dimensional 

analyses were carried out on the produced features using a 

SEM microscope.  

 

  
2. The experimental research  
 
2.1 The systems  

The systems used in the experimental research are 

described here below. 

 

2.1.1 EBL 

The system built by the authors for this study is 

implemented on a Zeiss EVO 40 SEM and the control is 

based on a PCI-DAS (16-bit) board installed on a PC. The 

structure of the system is summarized in Figure 1a. The 

system acts by using four different signals: 

• Analogical X signal used to control the X coordinate 

of the electron beam. 

• Analogical Y signal used to control the Y coordinate 

of the electron beam. 

• TTL control, digital signal adopted to take the SEM 

control.  

• TTL beam blanker, digital signal adopted to blank the 

electron beam. 

A basic aspect of the system is the use of a drawing in 

neutral (.dxf) format as input data, so giving a very high 

flexibility in path design. A software in java language was 

created for drawing analysis and optimization. The aim of 

this program is to load and analyze the input file, to extract 

all the information useful for  the path generation and to sort 

all entities to optimize beam path. A software in C++ controls 

the microscope beam and the entire lithography process. The 

algorithms for movement control are optimized to make the 

most of board resolution. The solution for managing the 

electron beam speed is based on a layer approach and all the 

different entities of the drawing must belong to one layer. 

The layer number represents the inverse of the beam speed. 

This feature allows the engraving of any entity of a drawing 

by moving the beam with its own speed.  

Several tests were already performed and the effects of 

the main process parameters were partially investigated. The 

samples used for this purpose were composed by wafers of 

Si having a layer of SiO2 and a PMMA resist, deposited on 

the wafer. General good results were found, even though the 

reduction of the engraving area with increasing radial 

distance, connected to an inverse effect on eccentricity, is an 

evidence of an electron density different distribution. An 

example of the achieved results is reported in Figure 1b (logo 

of the University of Bergamo engraved on silicon) and in 

Figure 1c (detail of a very small etched part). It is important 

to remark that this system and the related technology are not 

significantly limited in engraving small parts; on the opposite, 

the lithography of large paths (tenth of millimeters) may give 

rise to some problems in terms of accuracy and high 

engraving time. 

 

(a) 

 

(b)  (c) 

Fig. 1(a) EBL system, (b) logo engraved on silicon and (c) details 

of an etched part 

 
2.1.2 Micro-EDM 

A Sarix SX-200 microEDM system is used for this research. 

Some details of the system are reported in Figure 2. A 

carbide cylindrical electrode having a diameter equal to 

0.3mm was used as tool and oil as dielectric. The wire EDM 

unit is used to machine electrodes in order to reduce the 

diameter or to change the shape. 

 

 

 

 

 

 

 

 

 

Fig. 2 Sarix SX200, details of the micro-EDM system 

 

0.2 mm 

 

2µm 
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2.2 Samples and geometries  

 The samples used for EDM machining were wafers of Si 

having a resistivity in the range 0,001 - 0,002 Ohm cm. As 

regards the EBL tests, the samples were composed by the 

wafer of Si (thickness of 0.5 mm) having a layer of SiO2 (3 

µm) and a PMMA resist, deposited on the wafer through spin 

coating technique (thickness of 0.3 µm).  

As regards the engravings executed using EBL system, once 

the engraving is achieved, the following steps are performed: 

- development process carried out in a mixture of isopropyl 

alcohol and methyl isobutyl ketone; in this way, the PMMA 

layer impressed by electron beam is dissolved; 

- bath in hydrofluoric acid solution in order to remove the 

silicon oxide layer; 

- dissolving of the residual PMMA using acetone at 45°C; 

- bath at 45°C in a potassium hydroxide in order to transfer 

the engraved path on the silicon wafer. 

Concerning with the geometries, pockets having different 

dimensions and 0.1 mm depth were engraved.  

 

3. Analyses of the results  
 
3.1 EBL results  

The following process parameters were used for the 

engraved pockets using EBL system: magnification 100X, 

voltage 20kV and probe current 4200 nA; the permanence 

time on each spot unit was equal to 10 ms. Table 1 reports 

the dimensional characteristics of the engraved pockets and 

the engraving time. It is important to remark that the reported 

engraving time does not include the time necessary to 

develop the sample.   

 

Table 1 EBL pockets and engraving time 

Test Dimension [µm x µm] Time [s] 

1 300 x 300 11160 

2 150 x 150 3000 

3 75 x 75 840 

4 37.5 x 37.5 300 

5 18.8 x 18.8 120 

6 9.4 x 9.4 60 

7 4.7 x 4.7 30 

 

The engraving time is directly proportional to the pocket area. 

Figure 3 shows some SEM photographs executed at different 

magnification of the engraved pockets after the development 

process and the etching. 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 EBL pockets: (a) 150 x 150 µm; (b) 37.5 x 37.5 µm; (c) 

18.8 x 18.8 µm  

 

3.2 EDM results  

Table 2 shows the dimensions of the engraved pockets, the 

process parameters used and the machining time. In general, 

the machining time is directly proportional to the pocket area, 

except for Test 5. In fact, in this case the pocket was 

produced using a micro electrode (0.1 µm) and the energy 

parameter, that defines pulse shape and therefore the type of 

machining (roughing, finishing, etc.), is different. In 

particular, the Energy 206 is for roughing while the 13 one is 

for finishing. 

It is important to remark that for the test 5, the reported time 

does not include the machining of the electrode using the 

wire unit. 

 

Table 2 EDM process parameters and machining time 

Test 1 2 3 4 5 

Dimension  

[mm x mm] 
5 x 5 2 x 2 1 x 1 0.5 x 0.5 0.25 x 0.25 

Polarity - - - - - 

Ton [µs] 5 5 5 5 1 

F [kHz] 130 130 130 130 160 

I 50 50 50 50 80 

U [V] 130 130 130 130 80 

Gain 1500 1500 1500 1500 600 

Gap [%] 65 65 65 65 72 

Energy 206 206 206 206 13 

Regulation 41-01 41-01 41-01 41-01 40-00 

Spindle 

rotational speed 
100% 100% 100% 100% 100% 

Time [s] 599 93 30 9 609 

 

Figure 4 shows some SEM photographs of engraved pockets 

having different dimensions.  

 

 

 

 

(a) (b) 

(c) 

50 μm 
10 μm 

10 μm 
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(a)                       (b) 

Fig. 4 EDM pockets: (a) 5 x 5 mm; (b) 2 x 2 mm 

 

Figure 5 reports a detail of the pocket having a size equal to 

0.25 x 0.25 mm. 

 

 

 

 

 

 

 

 

 

Fig. 5 Detail of a EDM pocket, 0.25 x 0.25 mm 

 

The different dimensions of the craters on the surface are 

shown in Figure 6: in (a) (pocket 1 x 1 mm) the craters 

are larger than in (b) (pocket 0.25 x 0.25 mm). This is 

justified by the different energy used. In particular, to 

obtain a finishing surface, low energy has to be used but, 

in this case, the machining time remarkably increases. If 

the finishing surface is not necessary, high energy permits 

to produce pockets in short time.    
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 6 Craters on the surface of pocket 1 x 1 mm (a) and 0.25 x 

0.25 mm (b) 

 

 

4. Conclusions  
The integration of micro-EDM and EBL processes in silicon 

manufacturing was performed. In particular pockets having 

different dimension were engraved using both the 

manufacturing systems.  

The conclusions that can be drawn are here summarized: 

- EBL is able to make engravings having smaller 

dimensions than EDM; 

- the process time is higher for EBL process and in 

general, it is directly proportional to the engraved 

area; 

- the surface obtained using EDM system is 

characterized by the formation of craters. The 

dimension of these craters is a function of the 

process parameters used;  

- the finishing surface of EBL pockets is better than 

EDM.   

The results of this experiment may give some information 

about the optimal technological window as a function of the 

features dimension. Basing on this assumption, micro EDM 

can be used for the general manufacture of a 

microcomponents while EBL is useful for the engraving of 

very small details. Further studies will take into account the 

specific procedures for the combination of these technologies 

in a single component. 
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NOMENCLATURE 

 

h = thickness of thin liquid film 

U = difference of electric potential across 

complementary electrodes 

R = radius of electrode 

ε0 = electric permittivity of vacuum 

εr = relative electric permittivity of the liquid film 

ηl = dynamic viscosity of liquid 

wp = width of the micropart 

mp = mass of the micropart 

ωp =rotational angle of the micropart 

Sp = √(x
2
+z

2
) planar distance of the part’s COM from 

the origin of the global coordinate system {G} 

d = distance between substrate and part 

complementary electrodes (misalignment) 

Felec =electrostatic force between complementary 

electrodes 

Fvisc = viscous damping force acting on the micropart 

Telec =electrostatic torque on the micropart due to Felec  

Tvisc = viscous damping torque acting on the micropart 

 

 

 

1. Introduction  
 

Micropart manipulation is a very important stage of the 

overall MEMS assembly procedure. Most of the current 

microfabrication methods are able to produce hundreds or 

thousands of components; these components need to be 

properly distinguished, sorted and aligned for the assembly 

and packaging of the final MEMS products. Robotic 

micromanipulators and part-feeders used in industrial 

production lines are generally unable to simultaneously 

achieve most or all of the following desirable operational 

characteristics: low cost, flexibility, micron or submicron 

accuracy, fast manipulation and assembly cycles, parallel 

instead of serial/sequential handling of microparts.  

An alternative approach to robotic handling is contact-free 

micromanipulation with force fields. A variety of theoretical 

artificial force fields – often called “programmable” force 

fields since they can be diffused/programmed on distributed 

manipulation systems or microactuator arrays for actual 

applications - has been presented in the literature. The use of 

such fields offers methodologies of mostly sensorless 

manipulation for a wide variety of microparts [1-2]. Many 

types of programmable force fields have been proposed, such 

as squeeze fields [3], elliptical fields [4], the combination of a 

radial and a gravity field [5], and fields formulated according 

to the shapes of the microparts to be manipulated [6] etc.  

 
 

Concept of a programmable platform for 
micromanipulation with electrostatic forces 
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In this paper, the concept of a programmable electrode platform for micromanipulation on a wafer 
using electrostatic forces is introduced. The motion mechanism consists of the successive activation 
of platform electrodes, which electrostatically attract complementary electrodes on the bottom 
surface of the parts. The dynamics modelling of motion is briefly presented and simulations are 
performed in order to investigate and assess the platform’s basic manipulation capabilities. The 
electrode activation sequences for one and two dimensional translation are presented, showing 
successful positioning as well as successful part rotation taking place in several steps. These results 
as well as the limitations and the prospects of this concept are then discussed. With this approach for 
3 degrees of freedom motion on the platform, a basis for the investigation of complex operations such 
as sorting and parallel manipulation can be established. 
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In addition to the programmable fields, various 

implementations that employ physical force fields have been 

introduced for micropart handling. Pneumatic fields created by 

platforms of inclined air jets can levitate and transport objects 

to desired positions, as evidenced in [7-8]. Precise micropart 

positioning based on superconducting magnetic levitation has 

been demonstrated [9]. In [10] fringe electric fields attract and 

position parts in structured orifices where the potential is 

minimum, while in [11-12] devices that utilize multiphase AC 

electric fields provide conveyance, smoothing, grouping, 

sorting, as well as two-dimensional handling of microparticles. 

The authors of this paper in their previous work [13-16] 

determined the electrostatic forces for alignment and self-

assembly of microparts, verified by modelling, simulations as 

well as experimental results. 

The present work follows the philosophy of contact-free 

handling with force fields and expands our previous work. 

Thus, the concept of a programmable electrode platform for 

micromanipulation on a wafer using electrostatic forces is 

introduced. The parts can be electrostatically manipulated, 

positioned and orientated on the substrate’s plane by 

sequential activation of properly selected planar electrodes. 

Simulations of micropart motion are performed in order to 

verify the feasibility of electrostatic manipulation under this 

scheme; the target is to investigate and assess the proposed 

platform’s basic capabilities of manipulation. The results are 

successful, proving that 1D, 2D translation as well as part 

rotation are feasible, thus setting the foundations for further 

investigation of more complex platform capabilities, such as 

part sorting, motion along defined trajectories and parallel 

handling of microparts.  

 

 

2. Concept Description  
 

The programmable platform for micromanipulation 

presented in this section is a continuation of the previous work 

[13-16] of the authors of the present paper. A schematic of this 

concept is shown in Fig. 1. An array of copper electrodes is 

fabricated on the upper surface of a PCB substrate; the spacing 

between the neighboring substrate electrodes should be small 

in order to achieve better resolution on the surface but also 

large enough to avoid current leakage. A detachable a thin 

layer of dielectric on top of the electrodes provides isolation as 

well as the plane where the microparts are manipulated. 

Between the dielectric and the parts lies a very thin film of 

liquid lubricant/photo-hardening adhesive in order to 

minimize friction during part motion but also to ensure the 

bonding of the parts on the wafer after the alignment phase is 

complete (for example through exposure to laser-lighting). 

The manipulation principle lies in the successive 

activation of substrate electrodes, which cause surface charge 

reallocation on the parts’ bottom conductive, interconnected 

electrodes. As a result, attractive electrostatic forces are 

exerted and thus “drag”/move the parts towards the desired 

locations. In this way, contactless micropart manipulation of 3 

degrees of freedom (two translational, one rotational) can be 

achieved. From this point on, a substrate electrode that 

electrostatically interacts with a part electrode will be 

characterized as “complementary electrodes” or 

“complementary pair”. It is possible for a substrate electrode 

to interact with more than one part electrodes simultaneously 

(depending on the part’s position and orientation), thus there 

can be more than one complementary pairs equivalently. 

An electric analogue of this manipulation mechanism is a 

system of a parallel-plate capacitor with the upper plate being 

horizontally misaligned. The upper plate moves horizontally to 

minimize the system’s electrostatic energy, but before this 

minimization is achieved the bottom plate is translated further 

away. As a result, the upper plate is continuously 

“dragged”/attracted towards the moving bottom one. 

 

 

Fig. 1 Cross-cut of the platform concept (dimensions and 

thickness of the various layers and components are indicative) 

 

 
3. Modeling and Simulations of 
Micromanipulation 
 

This section investigates the basic manipulation 

capabilities of the proposed platform, i.e. 1D and 2D 

translation and rotation. In these first tests, only one micropart 

is used in order to assess the feasibility of manipulation. Firstly, 

the motion dynamics as well as the modelling details of the 

platform and micropart are given and subsequently the 

simulation results are presented. 

 

3.1 Part dynamics 

The dynamics of a part during the manipulation procedure 

are presented in this section. As already mentioned, the driving 

force is the total electrostatic force acting on the part due to the 

electrostatic interactions between the complementary pairs of 

electrodes. For each such pair, this force is given by a semi-

empirical, fitted formula introduced in [15]: 

 

 

 

 

(1) 

 

 

 

 

where A=0.38*(2R)*ε0*εr*U
2
/h. The main limitation of this 

force model is that the difference of potential U between the 

complementary electrodes of part and substrate is considered 

to be constant for all misalignments. According to the 
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proposed concept, all the electrodes of the part are 

interconnected and therefore constitute an equipotential area 

with a floating potential (it slightly varies, depending on the 

position, rotation and geometry). However, for small 

misalignments and due to symmetry, this potential is verified 

by simulations to remain nearly constant and equal to the 

potential of the nearby activated substrate electrodes [14-15]. 

For the purposes of manipulation and alignment of the part, 

the positions near the equilibrium have the highest 

significance (thus corresponding to small misalignments). 

Additionally, it must be noted that a dielectric layer was 

omitted (based on the afore-mentioned experimental results 

with a 0.1 μm thick dielectric layer) in order to simplify the 

derivation of Eq. (1). 

The motion of the part is damped by a viscous drag force, 

whose measure depends on the velocity of the liquid medium 

near the part (assuming Couette flow) [15],[17]: 

 

 

(2) 

 

 

Therefore the differential equation describing the planar 

motion of the micropart is: 

 

 

(3) 

 

 

where 
tot

elecF  is the sum of the components of the electrostatic 

forces between complementary electrodes along the direction 

of motion (example in Fig. 2, where motion only along the x 

axis is considered). 

 

 

Fig. 2 Micropart and its electrodes (continuous lines and circles), 

substrate electrodes (dotted circles), neighboring electrodes for 

activation (color filled circles), desired horizontal trajectory of 

motion (thin arrow) and electrostatic forces between 

complementary electrodes (thick arrows) 

 

The micropart rotation around the perpendicular axis to the 

x-z plane, is similarly affected by the driving total electrostatic 

torque as well as the viscous damping torque. The electrostatic 

torque for each pair of complementary electrodes is calculated 

as the cross product of the distance vector r  of the part 

electrode to its center of mass (local coordinate system {L}) 

with the electrostatic force vector acting on that electrode 

elecF . Obviously, only the perpendicular force components 

elecF 
contribute to the part’s torque and not the parallel ones 

elecF . An example is seen in Fig. 3: in each of the four part 

electrodes an attractive electrostatic force is exerted towards 

the nearby complementary substrate electrodes. By analyzing 

the force vectors into parallel and perpendicular to ir   

components (where i=1…4), it is obvious that: a) due to 

symmetry, all the parallel force components negate each other 

and therefore no translational motion occurs, b) the 

perpendicular ones and rotate the part clockwise (clockwise 

torques) along the perpendicular to the plane axis of the local 

coordinate system {L} at the COM. 

The viscous damping torque is calculated by the following 

formula [2]: 

 

 

(4) 

 

 

 

 

Fig. 3 Micropart and its electrodes (continuous lines and circles), 

activated substrate electrodes (colour filled circles), global 

coordinate system {G}, local coordinate system {L} on the part’s 

COM and electrostatic forces analysis on parallel and 

perpendicular components (substrate electrodes directly below 

the part have been omitted for simplicity)  

 

Therefore the differential equation describing the part’s 

rotation around the axis y’ of the local coordinate system {L} 
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is: 

 

 

(5) 

 

 

Eq. (3) and Eq. (5) are used by the model of section 3.2 to 

calculate the translational and rotational motion of the part for 

each time-step of the simulations. 

 
3.2 Modelling of the platform, electrodes and micropart 

The modelling of a micropart of dimensions 

1000x1000x180 μm made of glass is considered, carrying a 

3x3 array of circular electrodes on its bottom surface. The thin 

film of fluidic medium has a relative electric permittivity εr =5, 

dynamic viscosity ηl =0.005 kg* m
-1

*s
-1

 and a thickness of 

h=5 μm. The array of substrate circular electrodes is 10x10 

and the diameter of all the electrodes is 2R=220 μm with 

vertical and horizontal spacing of approximately 100 μm. The 

choice of circular electrodes was made due to their symmetry, 

which greatly simplifies the calculations of the electrostatic 

force for planar motion [15]. 

The voltage applied is common to all the activated 

electrodes (200 V DC for planar motion and 400V DC for 

rotation). It must be noted that previous actual experiments of 

part alignment in [14],[16] were successfully performed with a 

very thin dielectric layer of a 0.1 μm thick Si3N4  and voltages 

of up to 200 V DC and 400 V AC. Based on these findings, it 

is understandable that the thickness of this dielectric layer is 

negligible compared to the thickness of the 5 μm of the fluidic 

medium and can therefore be ignored for simplicity in the 

simulations without significant error. 

Fig. 4 shows the model of the platform and micropart in 

Simulink/Simmechanics, consisting of various blocks. The 

electrostatic block calculates the total electrostatic force of Eq. 

(3) between complementary electrodes as well as the torque of 

the part of Eq. (5) for each time step of the simulation, based 

on the current pose (position and orientation). The viscous 

drag block calculates the viscous damping force and torque 

acting on the part, based on the translational and rotational 

velocity respectively. 

The actuation subsystem essentially defines the degrees of 

freedom and allows the planar motion and rotation of the part. 

The global coordinate system {G} lies at the center of the 

array of substrate electrodes, with the x and z axes defining the 

plane of motion and with the y axis being the perpendicular to 

the plane. For all the motion simulations presented below, it is 

assumed that at the micropart’s initial pose is known in 

advance. At this pose, all the part’s electrodes fully 

coincide/overlap with the electrodes of the substrate; 

additionally, the initial rotational angle is zero. 

 

 

Fig. 4 The model of the platform and micropart in 

Simulink/Simmechanics 

 
3.3 One and two dimensional translation 

First, a simple motion of the micropart along the x axis is 

demonstrated. The initial position of its COM (center of mass) 

is set at the center of substrate electrode no. 82 and it will be 

translated three “electrode positions” leftwards, at electrode no. 

52 (i.e. from 82, to 72, to 62 and 52). The global coordinate 

system, the micropart, the desired trajectory of its CG and the 

numbered substrate electrodes are shown in Fig. 2. 

In order to perform the motion of the micropart leftwards, 

three triplets of neighboring substrate electrodes must be 

activated sequentially. The attractive electrostatic forces pull 

the part towards the activated electrodes. These triplets are the 

following: (61, 62, 63), (51, 52, 53) and (41, 42, 43). Each 

substrate electrode is activated for 0.05 s with a voltage of 

200V. Fig. 5 shows the electrode activation signals of the last 

two triplets (the other is similar), whereas Fig. 6 presents the 

position of the part’s COM, the total electrostatic and viscous 

damping force over time.  

The trajectory is a straight line heading leftwards, as 

expected, and it can be observed that the COM oscillates 

briefly around the equilibrium at the centers of the electrodes 

72, 62, 52, similarly to the findings in [14-15]. The horizontal 

distance travelled by the part is approximately 0.964 mm in 

less than 0.14 ms, while the maximum translational velocity 

and maximum electrostatic force are 88.7 mm/s and 1.125x10
-

4
 N respectively. 

Similar is the behavior of the micropart for two 

dimensional motion (diagonal). In this case, the desired 

motion is again translational, from electrode 82, to 73, to 64 

and finally to 55. In order to implement the diagonal motion, 

groups of 5 electrodes are sequentially activated, essentially 

forming the shape of the head of an arrow (Fig. 7). The groups 

required are: (62, 63, 64, 74, 84), (53, 54, 55, 65, 75) and 

finally (44, 45, 46, 56. 66). Each substrate electrode is 

activated with a voltage of 200V, but this time for 0.1 s, as the 

diagonal distance the part’s COM needs to travel is slightly 

bigger and therefore it requires slightly more time in order to 

reach the next equilibrium position. The longer distance, 

however, is offset with the increased total electrostatic force 

due to two more electrodes being activated. 
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Fig. 5 Activation signals of the respective substrate electrodes for 

the two final steps of motion 

 

 

Fig. 6 Top: Position of the part’s COM over time 

 Bottom: Total electrostatic and viscous damping forces on the 

part over time 

 

Fig. 8 shows the COM’s position over time for both x and 

z coordinates as well as its actual trajectory on the plane. Due 

to symmetry, the resultant total electrostatic force has a 

diagonal direction and therefore the part moves diagonally. Its 

behavior is similar to the one dimensional translation, with 

brief oscillations when its electrodes overlap and align with 

the substrate electrodes. The diagonal distance travelled is 

approximately 1.4 mm in less than 0.3 s, the maximum 

translational velocity reaches 98.9 mm/s and, the maximum 

electrostatic force is 1.288x10
-4

 N along x and z axes. 

 

 

Fig. 7 Micropart and its electrodes (continuous lines and circles), 

substrate electrodes (dotted circles), neighboring electrodes for 

activation (color filled circles) and desired diagonal trajectory of 

motion (thin arrow) 

 

 

Fig. 8 Left: Position of the part’s COM over time  

Right: Actual trajectory of part motion on the x-z plane 

 
3.3 Rotation 

Rotation of a micropart on the platform requires a slightly 

different manipulation approach. In this example, the part is 

rotated around the perpendicular to the plane axis at the center 

of electrode no. 65. In order to avoid any possible undesired 

translational motion of the part during its rotation (although 

due to symmetry as seen in section 3.2 the parallel force 

components negate each other), electrode 65 remains 

constantly activated. It essentially acts as an “anchor” to the 

substrate at the point of the rotation axis.  

It has to be noted that the part is not automatically rotated 
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to a desired arbitrary angle. Instead, rotation takes place in 

several steps and in each of these the part is rotated by a 

specific angle. This is a limitation of the substrate electrodes’ 

resolution as well as the way they are fabricated/placed on the 

array (equidistantly). The electrodes are activated with a 

voltage of 400V each for 1 or 2 s, depending on the rotation 

step, as seen in Table 1.  

 

Table 1 Procedure steps, activation times of electrode groups and 

part’s rotation angle (minus denotes clockwise rotation) 

Step Time (s) Activated 

electrodes 

Angle of rotation 

1 0-1 46,53,65,77,84 -18.4°  

2 1-2 45,63,65,67,85 -45° (-26.6°) 

3 2-4 44,57,65,73,86 -71.56° (-26.5°) 

4 4-5 54,56,65,74,76 -90° (-18.4°) 

 

Fig. 9 shows the procedure for rotating a micropart by 90° 

in four steps, while Fig. 10 presents the rotation angle and the 

electrostatic torque acting on the part over time. The rotation 

sequences of Fig. 9 are based on the driving forces acting on 

the four corner electrodes. There are additional forces on the 

rest of the part’s electrodes but they are always less significant 

than the four driving ones due to larger distances. For t=0, the 

four activated electrodes exert electrostatic forces to the 

nearby part electrodes, resulting in torque along the 

perpendicular axis at 65, rotating the part clockwise. Rotation 

stops at t=1
-
 s at the angle of -18.4° (minus denotes clockwise 

rotation), when the electrodes 77, 65, 53 and the nearby part 

ones lie at the same straight line connecting them (similarly 

for the other group of electrodes). The driving electrostatic 

torque there becomes zero, as seen in Fig. 10 (no 

perpendicular force components). 

At t=1
+
 s the activation of the next set of electrodes takes 

place and the angle then decreases further to the value of -45° 

at t=2
-
 s. By examining Fig. 10, one can see that there is an 

increase in the magnitude of the torque in this step compared 

to the previous one. This is due to the fact that there is a small 

overlapping of complementary pairs of electrodes, which 

significantly increases the electrostatic force and torque. 

 

  

  

  

  

Fig. 9 Steps for micropart rotation by 90° and the corresponding 

electrostatic forces 

 

 

Fig. 10 Top: Rotation angle of the part over time 

 Bottom: Total electrostatic torque on the part over time 

 

The third step lasts for two seconds, as the activated 

electrodes are “initially” relatively far from the part’s nearby 
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electrodes and therefore it rotates with a slower rate (Fig 10). 

At the end of this step (t=4
-
 s) the angle is set at -71.56°. At 

this pose, there is partial overlapping with the next set of 

electrodes that will be activated at the next time step (t=4
+
 s). 

The electrostatic force and consequently the torque in this case 

are so strong (in combination with the high voltage) that they 

practically force an immediate alignment of the electrodes (t=5 

s). This can be verified by the spike in the torque’s magnitude 

and the abrupt change of the angle from -71.56° to -90° (Fig. 

10). Obviously, the values of the angular velocity and torque 

are the maximum of all of the steps of the rotation: 2424 deg/s 

and 2.606x10
-7

 N*m respectively. For further rotation angles 

these activation signals can be repeated due to the symmetry 

of the electrodes. 

 

 

4. Discussion 
 

The results of the simulations previously presented show 

that 1D, 2D translation as well as part rotation are feasible 

with the programmable platform for micromanipulation. It 

must be reminded that all the simulations are performed 

without any optimization. In the cases of translation, due to the 

partial/full overlapping of the electrodes of part and substrate, 

the aligning electrostatic force is strong and thus the positional 

error of the part lies in the submicron scale. 

For rotation, as mentioned earlier, the angle resolution 

achieved depends directly on the electrode array resolution 

and therefore completely arbitrary rotation angles are not 

feasible. A better electrode resolution would provide a better 

angle resolution and the possibility of finer and more precise 

translational motion, although the hardware complexity of the 

system would increase, so a compromise has to be made. 

Other combinations of electrode activation could possibly 

achieve smaller rotational angle steps without denser electrode 

resolution. In the stages where there is slight or partial 

overlapping of electrodes (2
nd

 and 4
th
 respectively of Table 1), 

the aligning torque is quite significant in measure and rapidly 

rotates and aligns the part with very good accuracy (two or 

three decimals of a degree). In the stages where there is no 

overlapping (1
st
 and 3

rd
) the part rests at specific angles as 

soon as the electrostatic torque becomes zero and the viscous 

damping quickly retards the rotational motion. It must also be 

stated that in these stages (1
st
 and 3

rd
) no significant rotation 

results were observed for applied voltages below 300V, hence 

the increased values of 400V.  

Although the parts for industrial manipulation and 

assembly are usually of square or rectangular shape, in this 

platform a variety of part shapes can be used, as the 

manipulation procedure is affected by the electrodes of the 

substrate and the part (provided that the material the part is 

made of isn’t highly conductive as well). Of course, different 

shapes have different dimensions and different part mass, 

affecting therefore its behavior during manipulation, but this 

can be rectified by properly adjusting the applied voltage. 

For the simpler motions presented here, only the initial 

pose needs to be known in advance. Proper activation of 

substrate electrodes can drive the part towards the desired pose 

without the need for feedback during motion (similar to the 

‘dictated’ motion of a roller-coaster moving on rails), 

assuming, however, sufficient voltage signals and timings. 

This signifies the necessity of a proper set of design 

constraints that take into account part mass, voltage and 

activation timings for proper, desired motion. For more 

complex operations, such as sorting, motion planning and 

parallel handling, feedback based on a vision or sensory 

system may be needed. 

It should be emphasized that the focus of this work lies in 

the presentation of the concept of a micropart manipulation 

platform, with its function capabilities verified through 

simulations based on theoretical analysis with some 

approximations. The main actual application target for this 

platform is non-physical contact mass positioning and 

alignment of microparts on wafers (with subsequent wafer 

bonding for the production of the final microsystems). 

Additionally, integration for the fast feeding, sorting and 

positioning of microparts and microcomponents in an 

assembly line of a microfactory should also be considered, as 

it could contribute to faster assembly rates and increased 

production yield. However, for experimental and actual 

application purposes, further research is needed and all 

possible factors that may affect or complicate the electrostatic 

manipulation procedure should be taken into consideration 

(such as proper selection of materials for dielectic layer, 

lubricant, fabrication of uniform electrodes without 

imperfections). 

 

 

5. Conclusions and Future Work 
 

In this paper the concept of a programmable electrode 

platform for micromanipulation on a wafer using electrostatic 

forces is introduced. The parts are electrostatically 

manipulated, positioned and rotated on the substrate’s plane by 

sequential activation of properly selected planar electrodes. 

Simulations of micropart motion are performed in order to 

verify the feasibility of electrostatic manipulation and self-

alignment, with the target being the investigation and 

assessment of the platform’s basic manipulation capabilities. 

These first results are successful, proving that translation and 

rotation are possible with the proper electrode activation 

sequences, albeit not simultaneously. By establishing the 

platform’s capability of driving three degrees of freedom 

micropart motion, the foundations for further investigation of 

more complex operations are set.  

Future work will be targeted towards several goals. First of 

all, the electrostatic force formula introduced in [15] will be 

updated with the parameter of a dielectric layer (initially 

omitted for simplicity) for more accurate calculations, 

according to the presented concept. Additionally, optimization 

of the manipulation procedure based on factors such as 

minimum manipulation time and least energy consumption 

will be researched. Furthermore, the creation of design and 

operation constraints will be investigated, taking into account 
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part mass, voltage signals, timings and electrode dimensions 

that will potentially constitute the usage of vision feedback or 

sensory systems unnecessary for simple manipulation. 

The ability of the proposed platform to handle more 

complex operations, such as sorting of parts, motion planning 

and parallel manipulation will also be examined, along with 

the search for sensorless manipulation sequences. The final 

desired objective is to properly mass align, sort, position and 

orient microparts of various materials (such as silicon, 

ceramics, polymers), shapes and dimensions on the detachable 

dielectric wafers, with minimum or no vision/sensor feedback. 

By subsequent bonding of such wafers with aligned parts, the 

packaging and heterogeneous integration of the final 

microdevices will be feasible. 
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This article describes the results of an extended design process of a coupling system for application in
a miniaturized tool changer for a micro production scenario. After the introduction of a desktop factory
production scenario with the “Parvus”, a size adapted assembly robot, this article covers the following:
the requirements for the design derived from this scenario, five concepts that were developed according to
these requirements, implementation and test of these concepts and introduction of a new prototype, which is
based on a shape memory alloy actuation. The scientific contribution of this article is the general discussion
of design principles for miniaturized actuated coupling devices. This article discusses which principles
are useful for a coupling device in a miniaturized environment of a desktop factory. The realization of a
prototype based on one of these discussed design principles illustrates the applicability of the designs in a
micro assembly scenario with a miniaturized handling system and tool changer.

1 Introduction

A desktop factory (DTF) is considered as a sophisticated, ver-
satile and flexible production platform that is intended to imple-
ment an innovative energy efficient production of micro com-
ponents. The potential offered by a DTF and the special re-
quirements have encouraged many researchers to build suitable
devices as parts of a DTF [15, 9, 16]. Up to now, the majority
of these devices are rarely integrated into an overall automation
platform with other devices. The “Parvus” designed at the IWF
is such a device. It is a miniaturized handling system based
on a hybrid parallel robot structure [3, 4]. Moreover, there are
still many open issues to form a complete DTF. Many research
projects concerning a flexible micro assembly showed that a
further infrastructure to rebuild a whole production process in
a DTF is still missing [13]. For example, to extend the skills
of the “Parvus” or any other handling device within its work
in a DTF it is desirable to change tools during the assembly
sequence.

This triggered the development of the miniaturized tool
changer “Cambio”, which provides storage for up to six tools.
“Cambio” was first introduced by Burisch et al. [2]. These tools
can be mounted with a special designed coupling device to any
robot hand axis. Practical experience with a first prototype of
the “Cambio” have shown that a major challenge remains in

the coupling device [2]. These challenges motivated the fur-
ther development of this tool changer to come a step closer to a
flexible DTF.

The following sections describe the results of the de-
sign process of a revised coupling device, which will operate in
the tool changer “Cambio”. The next section covers the main
limitations of the first generation coupling device, as already
presented in [2]. Chapter 3 gives a short overview of existing
technologies for possible actuation of coupling devices. Af-
ter this, chapter 4 introduces a DTF production scenario of the
interaction of “Parvus” and “Cambio” , which allows to derive
the requirements for the following design process. This chapter
also describes five core concepts that were developed accord-
ing to these requirements. The design process was followed by
the implementation and test of these concepts. This leads to
the set-up of a new prototype, which is based on a SMA (shape
memory alloy) actuation, chapter 5.

2 First Generation Coupling System
The coupling device that was originally designed for the tool
changer “Cambio” is based on a vacuum actuated ball coupling
mechanism. Figure 2.1 shows a sectional view of the first de-
sign. Three metal spheres (A) can move through a bore hole in
a guiding cylinder into a groove (C) in the robot axis. The re-
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quired force that moves the spheres through the hole is provided
by a bevel in the main coupling cylinder (D). This coupling
cylinder forces the balls into the groove and thereby locks the
axis into position. When not actuated, the cylinder is pressed
onto the balls by a spring (E), which ensures a permanent lock-
ing. A partial vacuum applied through the opening (F) lifts the
coupling cylinder against the spring force. The actuation takes
place in the “Cambio” tool changer system. With applied vac-
uum the balls are released and drop out of the groove. This
releases the axis that can now be withdrawn from the coupling
system without applying further axial or radial force. A more
detailed description of the working principle is presented in [2].

Figure 2.1: 1st Generation Coupling Device for the “Cambio” Tool
Changer System

First tests with the described first generation prototype
showed a severe lack in functionality and reliability. The vac-
uum required to move the cylinder cannot be established in a
way that is suitable for an application in a size adapted system.
The inner and outer air gaps cause a severe leak, which lets air
stream into the cylinder chamber that compensates its evacua-
tion. Thus, not enough force is generated to move the cylinder
against the spring force. Using weaker springs results in in-
sufficient reset force and an unstable locking effect. The inner
friction of the coupling cylinder against the corpus exceeds the
actuation capabilities of weaker springs. Another problem is
caused by inaccurately manufactured parts. The ball bores and
the bevel have to be extremely precise in shape, in order to
achieve the required reliability of the system. Even slight tol-
erances can cause the balls to be tilted against the corpus or sit
loosely inside the groove.

In short, the tests have shown that the current design of
the coupling mechanism does not work. These negative aspects
require a complete redesign, which is described in the follow-
ing sections.

3 Overview - Coupling and Actuation

Most conventional tool changing systems for macro scale ap-
plications can be divided into two main groups: systems for

only rotational tools and for more complex (non-rotating) tools.
Rotational tools are used for a great variety of machining tech-
niques, such as milling, turning, grinding and sawing. The tool
is usually mounted on a cone-shaped socket. This unit is locked
onto the main spindle, thus acting as an extension. The tool
rotates at a set rate and is incapable of performing any other
actions. Non-rotating tools for more complex tasks require
platform tool changers with specific interfaces, e.g. industrial
robots with manipulators for handling, spray guns, welding
guns or measuring tools. The tool is mounted on a platform that
provides the interfaces for all media that have to be transferred.
The most common locking techniques are bayonet mounts or
simple ball coupling mechanisms, similar to the one described
in chapter 2. Both are highly efficient in large scale, but it is
very difficult to realize any of them in a highly miniaturized de-
sign. The main aspect that does not allow a transition of these
systems to a miniaturized scale is their actuation. Existing ex-
amples of a tool changer for micro assembly applications have
been extensively discussed in [2]. The analysis showed that
even the smallest commercially available systems (such as [8])
are inadequately dimensioned for a size adapted robot, such as
“Parvus” or “APIS” [1, 4]. Thus, the overall goal is to develop
a system that is highly optimized for the application in a size
adapted environment, but still flexible within this application.

3.1 Actuation in Micro Applications

In the past, various materials and techniques have been identi-
fied to be particularly qualified for actuation of devices in the
mini/micro-scale. Micro technological actuators usually de-
pend on simple mechanisms. This covers electrostatic, mag-
netic and piezoelectric actuation. Further fluid based tech-
niques include pneumatic and hydraulic actuation. Magneto-
or electrorheological effects are also utilisable. Thermal actua-
tion can be achieved by using bi-metal actuators or shape mem-
ory alloys (SMA) to provoke a material deformation through
thermal variation. For example [6, 7] give an overview on ma-
terials and actuation mechanisms in a comprehensive field of
microsystems.

3.2 Shape Memory Alloys and their Technological Effects

This section highlights the group of shape memory alloys that
has great impact on the design process of the discussed cou-
pling system. SMA summarize a number of materials with
temperature-related shape changing properties. The most com-
mon material, a nickel-titanium alloy, has two stable states at
room temperature. Its basic tension-free state is an austenite
phase. When a certain stress is applied, it mechanically changes
into a martensite structure, which is also stable at room temper-
ature. By applying an electric current, the metal heats up and
exceeds a critical transformation temperature. At this point, the
martensite becomes unstable and the alloy reverts into its orig-
inal austenite structure. After the current is switched-off and
the material returns to room temperature, the process can be re-
peated. A SMA wire can be stretched by up to 8 % within this
pseudo-elastic range [12]. Upon heating, this deformation is
reversed and the wire contracts to its original length. The force
generated by the heat induced phase change is greater than the
force required to stretch the wire in its cool state. Hence, in
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combination with a common coil spring, a simple two-way ac-
tuation mechanism can be realised. It is easy to control this
mechanism via the electric current and generate much higher
forces in comparison to magnetic or pneumatic mechanisms of
the same size.

3.3 Proof of Concept - SMA in Small Grippers

An example of a successful implementation of this concept
is a SMA actuated gripper developed at the IWF, see fig. 3.1
and [10, 11]. The parallel structure of the described gripper is
equipped with two opposing SMA wires. Both wires can be
heated individually by applying an electrical current. In case
of actuation, the heated wire contracts and thus stretches the
other wire. Heating the second wire reverses the mechanism
into its original position. The wire movement is transferred
onto the parallel gripper structure. This is an example for an
extrinsic two-way actuation. Replacing the second wire by a
spring would result in a self resetting mechanism. The expe-
riences on such prototypes influenced the development of the
coupling mechanism. Further examples of the capabilities of
SMA actuated structures are summarized in the literature re-
view by Sreekumar et al. [17, 5].

Figure 3.1: SMA actuated Gripper for Micro Assembly [10, 11]

4 Development and Design Process
This chapter describes the development process that was car-
ried out to achieve the presented results. The requirements for
an improved coupling device for the “Cambio” tool changer
system are derived from a DTF scenario with a size adapted
assembly robot.

4.1 DTF Scenario and Requirements

The considerations in the described design process are based
on the following scenario: A size adapted assembly system, in
this case the “Parvus” [4], is part of a DTF. To fulfill all its as-
signed tasks the tools (e.g. grippers) have to be exchangeable.
The tool exchange is realized by the help of the size adapted
tool changer “Cambio” [2]. It is placed within the workspace
of the “Parvus”. A tool coupling device is the interface between
the two systems. Figure 4.1 illustrates this scenario. Since the
design of the “Parvus” and the “Cambio” is fix, this scenario
predetermines various parameters for the redesign of the used
coupling system. These parameters are: the shape of the axis,
maximum forces allowed, maximum dimensions. The shape
and size of the tool holder are not yet predefined and will be
adapted to the future design of the coupling device.

However, the new coupling device must not be limited
to the specific application of this scenario. Moreover, there is
the aim to design an universal tool changing system to work in
any DTF. The most important aspect during the design process
is the basic functionality and operation principle. This allows
to reuse the presented design principles for any scenario.

To fulfill its purpose, the coupling system has to provide
a stable and precise joint between the tool and the robot axis.
This joint must persist without constant energy supply. It is de-
sirable that the robot does not have to supply any sort of energy,
besides the energy to control the tool (e.g. a partial vacuum,
electric supply). The coupling has to withstand axial forces up
to 1 N1. This maximum load may occur under usual circum-
stances considering the assembly of micro parts. In contrast to
this, no radial force should be applied to the robot axis. This
might damage the high precision drives of the robot structure.
The coupling system must be able to establish a tool mounting
in any position of the robot axis. After locking, the device has
to withstand a minimal torque of 1 mNm to 3 mNm2.

Besides these basic requirements, there are further as-
pects concerning the coupling device: a maximum weight of
3 g and a maximum size of up to 20x20x15 mm3. The avail-
able energy sources that can be provided by the “Cambio” tool
changer are limited to electricity and vacuum. Prior to the ac-
tual development process, these requirements are gathered in a
product requirements document. All further design decisions
are based on this compilation.

Figure 4.1: Scenario: “Parvus” interacting with “Cambio”

4.2 Concept Phase and Five Core Concepts

A morphological analysis led to several concepts meeting the
above defined requirements. The five most promising concepts,
in the following referred to as core concepts, are thoroughly in-
vestigated within the following section. These five core con-
cepts are marked by their mechanical simplicity and innovative
actuation principle. In the new coupling device the number of
moving parts or active elements should be as low as possible.
Each concept still incorporates a unique technological approach
for the coupling task. All of them are discussed for the use in
miniaturized machine design.

1The axis of the robot in the scenario does not withstand higher forces [4].
23 mNm is the rated torque of the drive in the hand axis of the “Parvus” (MHD-8 IH 160:1, see [14]).
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4.2.1 Direct Magnetic Coupling (DM-C)

Concept The tool is connected to the axis by a per-
manent magnet. To separate the tool from the robot, an elec-
tromagnet is activated in the tool changer base. Its magnetic
field counteracts the permanent field, thus neutralizing the force
holding the two parts together. The joint remains stable with-
out any constant energy supply. Electric current controls the
coupling process precisely.

Design The coupling device is separated into two
parts, see fig. 4.2. The first part (A) contains the permanent
magnets (B), e.g. neodymium magnets, and is fixed onto the
robot axis. The second part (C) holds the tool and the electro-
magnets (D). The second part can be stored in the tool holder,
from which it obtains the energy required for the un-coupling
process. Axial pressure is not an issue, since the two parts bear
on each other. Rotational and pull resistance is provided by the
permanent magnets.

Concerns While the system is very simple and works
without any moving parts, the coupling process must be con-
trolled precisely. To avoid forces and displacement in an un-
controlled direction, the two opposing magnetic fields have to
be specifically matched. Interferences may lead to uncontrolled
movement and damage, especially at close proximity or in the
transition phase from attraction to repulsion.

Figure 4.2: Direct Magnetic Coupling (DM-C)

4.2.2 Indirect Magnetic Coupling (IM-C)

Concept A magnetic field is used to actuate a me-
chanic joint, such as a positive locking. An electromagnet con-
trols a spring-mounted lock. The spring holds the joint without
energy supply. Furthermore, the configuration of the magnet is
more simple than for the direct magnetic coupling due to the
lack of a permanent counterpart.

Design Figure 4.3 shows the design of Indirect Mag-
netic Coupling. A steel wedge (A) on a steel sheet spring (B)
generates a positive locking with a groove in the robot axis (C).
The axis can be released by activating an electromagnet (D).
This magnet attracts the wedge on the spring, thus pulling it
out of the groove. Deactivating the magnet causes the sheet
spring to push the wedge back into the groove, reestablishing
the joint.

Concerns The magnet has to build up a strong field
to attract the wedge in its initial position. This could require a

magnet larger than feasible for this scale. The locking force of
the spring might not be sufficient.

Figure 4.3: Indirect Magnetic Coupling (IM-C)

4.2.3 Vacuum Actuated Coupling (VA-C)

Concept A piston with a wedge or cone on top is re-
tracted against a spring by a partial vacuum. In its non-activated
state, the spring pushes the piston into a groove in the robot
axis, establishing a positive locking. With applied vacuum, the
retracted piston releases the axis.

Design The corpus (D) holds the tool and the coupling
mechanism, see fig. 4.4. The working principle is related to the
first generation design, chapter 2. To avoid the problems known
from this mechanism, the moving parts are reduced to the pis-
ton (A) and the spring (B). The leaking problem is reduced by
a better surface-to-gap ratio of the piston. The robot axis pro-
vides a groove (C) for the positive locking with the piston.

Concerns Despite the optimization, it remains unclear
whether the precision achieved with conventional machining
techniques is sufficient for a noncritical degree of leaking. The
established retraction force by the vacuum might not be suffi-
cient to overcome the spring force.

Figure 4.4: Vacuum Actuated Coupling (VA-C)

4.2.4 Coupling with Hotmelt Adhesives (HM-C)

Concept A hotmelt adhesive is stored in a heatable
compartment in the coupling device. To insert or retract the
axis, the adhesive is liquefied. After a cool down, a stable bond
between the coupling system and the axis is established. The
coupling device does not need a further energy supply.

Design In fig. 4.5 the corpus of the coupling device
(A) contains an electric ring heater (B) around a hotmelt reser-
voir (C). The axis is coated to prevent the formation of adhesive
residues. To ensure a stable connection, the axis is grooved to
create undercuts (D).
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Concerns If adhesives remain on the axis, despite a
non-stick coating, the axis has to be heatable to remove these
remains. Otherwise, the hotmelt on the axis would obstruct the
precise mounting hole. The needed heat might harm the robot
end effector. The coupling process might be too slow.

Figure 4.5: Coupling with Hotmelt Adhesives (HM-C)

4.2.5 SMA Actuated Coupling (SMA-C)

Concept A SMA wire is strained between a piston and
the corpus of the coupling device. A spring alongside the wire
stretches the alloy. In the stretched state, a cone on the piston is
pushed into a groove in the axis and establishes a positive lock-
ing. This is similar to the idea of the concept in section 4.2.3.
To release the axis, the wire is heated. This pulls the piston
back against the spring force and removes the piston out of the
groove. Cooling down the wire enables the spring to stretch
the alloy into its original shape, see also section 3.2. Other ex-
amples already showed the high potential of SMA actuation in
micro devices, see section 3.3.

Design The SMA wire (A) is heated electrically by
applying a current, see fig. 4.6. The corpus is separated into
two parts. The first part (B) contains the bore for the robot axis
with a groove (C) and the guidance for the locking piston (D).
The second part (E) insulates the wire from the corpus to al-
low the electric current to flow through the whole wire without
creating a short-circuit.

Concerns The wire cannot be insulated by conven-
tional means, so it may not touch the spring or the corpus.
Moreover, the travel is limited. The mechanism therefore re-
quires a certain wire length to operate reliably. This might re-
sult in a design which exceeds in size the maximum geometrical
dimensions given by the scenario.

Figure 4.6: Coupling with SMA Actuators (SMA-C)

4.2.6 Summary of the Concept Phase

After the detailed discussion of five possible concepts for the
assigned coupling task this section compares and evaluates
these core concepts. Table 4.1 gives an overview of this
comparison, using the following criteria: 1. moving parts
(m.parts): criterion for the amount of moving parts in the cou-
pling mechanism - small amount of moving parts is positive for
the overall performance of the concept, 2. functional density
(funct.): generally, a high density of function is appreciated,
3. scalability (scal.): an indicator for the miniaturization of
each concept, 4. reliability (relia.): a high reliability (concern-
ing e.g. the coupling force) during the use of the coupled tool
is desired, 5. complexity (compl.): criterion for the complex-
ity of the bulid-up of the mechanism - here a low complexity
is positive for an easy build-up, and 6. tolerance sensitivity
(toler.): indicates, how resistant the mechanism is concerning
e.g. manufacturing tolerances.

The table shows the evaluation of each criteria in the
following way: [+] marks a positive, [◦] shows a neutral and
[-] indicates a negative effect on the overall performance of the
discussed concepts. Based on this table the following section
describes the further testing of these concepts and leads finally
to a prototype.

Table 4.1: Overview and Comparison of five Core Concepts

Concept m. parts funct. scal. relia. compl. toler.
DM-C + + + ◦ + +
IM-C ◦ - - - - ◦
VA-C - ◦ ◦ - ◦ ◦
HM-C + ◦ ◦ - ◦ +
SMA-C - ◦ ◦ + - +

4.3 Experimental Examination of the Core Concepts

After the concept phase, the developed mechanisms were tested
with regard to their functionality. This requires the construction
of an individual test rig for each concept. These rigs are scaled
concerning the dimensions given by the scenario. This ensures
testing in circumstances of the later use. Features relevant to
the coupling mechanism are included. The energy interfaces
are provisional and laid out for easy modification during the
test phase. With these rigs, the functionality of each concept
was tested and evaluated.

The concepts IM-C, section 4.2.2, and HM-C, sec-
tion 4.2.4, failed the first functionality test. The magnetically
actuated positive lock coupling is not operable, since the mag-
netic forces are not sufficient to withdraw the spring. The re-
quired magnets exceed the maximum dimensions. At the same
time, the mechanism is too weak to properly lock the axis. This
solution is not convenient for a size adapted application. Thus,
the concept was dropped. The hotmelt adhesive coupling re-
quires a heated robot axis to melt adhesive residues on the axis.
Apart from this limitation, the concept itself still seems promis-
ing. Since an independent axis heating system is not an option
in the scenario with the “Parvus” robot system, this concept
was dropped as well.

The concept VA-C, section 4.2.3, still suffers from leak-
ing problems during testing. These problems were reduced in
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comparison to the first generation prototype, but still prevent
the system from operating flawlessly. The main load and force
requirements were fulfilled, but the coupling device lacked
overall reliability (see table 4.2). In order to exploit the full
potential of a size adapted fluid actuation, a different approach
for the coupling mechanism would be required.

The tests with the concept DM-C, section 4.2.1, showed
that the system is capable of meeting all requirements, as stated
in section 4.1. It is reliable and sufficiently powerful (see ta-
ble 4.2). However, the precise dimensioning of the magnetic
system is crucial. The electromagnet and the neodymium mag-
net have to match precisely to achieve viable results for prac-
tical use. Micro-technological processes like magnetic or con-
ductive coatings can help to optimize the mechanism. More-
over, a flux simulation would help to determine the most effi-
cient magnet shape and arrangement. These analyses and de-
velopments exceeded the scope of this first examination. In
summary this is a valid and promising solution, but it requires
extensive optimization in future work.

The test of the concept SMA-C, section 4.2.5, showed
the best overall results. It is very reliable and exceeds the load
requirements by far, table 4.2. It can be employed in a wide
range of applications with different load specifications. The
only major drawback is its size. It meets the requirements of
the scenario, but it cannot be scaled down at will. The SMA
wire has a limited travel. To provide a reliable joint, a certain
travel is required, thus dictating a minimum wire length.

Table 4.2: Test Results for the Best Performing Coupling Concepts

Concept Force [N, avg] Torque [mNm, avg] Prototype
VA-C 4.1 0.24 no
DM-C 0.7 1.1 no
SMA-C ≥ 40 1.4 yes

Due to the results of the test phase, the SMA-C concept
seem to be the most promising solution for the considered sce-
nario. This concept shows superior results and an innovative,
yet simple layout. A description of the developed prototype
based on this concept is presented in the next section.

5 The Prototype
The final prototype is the consequent development of the SMA
actuated coupling system, section 4.2.5. Figure 5.1 shows a
sectional view of the realized prototype. Figure 5.2 compares
the fully working prototype with a common match. The cou-
pling system is composed of a main corpus (A), a wire holder
(B), two contact pins (C), a piston (D), a spring coil (E) and the
SMA wire (F).

Figure 5.1: Sectional View of the Prototype, Dimensions in [mm]

The wire holder, electrical interface and insulation have
been combined in one part. This provides a better space utiliza-
tion and reduces the number of joints. The piston runs inside a
bore in the corpus. The mid-point (G) of the wire is connected
to the piston, while each end is screwed onto the backside of
the wire holder. Two SMA wire halves running alongside each
other duplicate the maximal force over a single strained wire
from the holder to the piston. The spring rests on the wire
holder, which is screwed onto the corpus.

Figure 5.2: Prototype of a SMA Actuated Coupling Device

Due to the depth of the groove a travel of 0.15 mm is
needed to release the robot axis. An effective wire length of
12.9 mm provides the needed travel. Improvement of the travel
could be achieve by a pulley related design; but it is difficult to
realize at miniaturized scale. Moreover, this would severely in-
crease the complexity of the design, which should be avoided.
Thus, the structure can be reduced in size without modifying
the functional mechanism.

On the backside of the wire holder, the two contact pins
are inlaid into corresponding grooves. The wire is then strained
over those pins. They prevent the hot wire from touching the
heat-sensitive insulation material and act as a simple electric
interface, see fig. 5.3. The wire between the screw points and
the contact pins remains passive, since no current flows through
that section.

Apart from the SMA wire and the heat resistant parts
that are in direct contact with the wire, the choice of material
is not restricted by further requirements. The shown prototype
is made from aluminium (corpus and piston), polyoxymethylen
(wire holder) and steel (contact pins and screws).

Figure 5.3: Electric Interface of the Prototype
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The corpus of the coupling device is designed for vari-
ous alignment and fixation methods within any tool holder. The
“Cambio” tool changer base has yet to be redesigned according
to the changed coupling device. Only the electric interface of
the coupling device implies certain requirements for the inte-
gration of the coupling device into the base of the “Cambio”
system or any other tool holder.

6 Conclusion and Outlook
The present article shows the need for devices that are capa-
ble of connecting size adapted production units within a DTF.
A design process was carried out to find design principles that
allow a tool coupling during micro assembly. A micro produc-
tion scenario motivated the design process. During the design
phase it was ensured that the possibility of reusing these de-
sign principles is given. Based on these principles five test rigs
were build up. After the discussion of the test results this article
describes a prototype derived from the findings.

In future work, tests on the actual prototype will be car-
ried out. To work perfectly within a DTF the prototype of the
coupling device will be integrated into an existing tool chang-
ing system. Further tests with a size adapted assembly system
will show the potential of this tool changing system in a DTF.
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NOMENCLATURE 

 

K = leafspring constant 

M = total mass of moving part 

C = structural damping constant 

(x) = tool distance 

(u) = amplifier input 

Kd = gain of digital to analog converter 

s = sliding surface 

Ga = amplifier gain 

Fd = cutting force disturbance to actuator 

Keff = effective spring constant 

Meff = effective mass value 

Ceff = effective damping constant 

 

 

1. Introduction  
 

Fast tool servo (FTS) was used widely in micro-machining 

applications as a fairly mature technology with some 

commercial realization. The machining process of FTS, 

described in this paper, is shown in Fig. 1. A copper alloy 

specimen is camped on the spindle. FTS is fixed on the feed 

guide of the machine which provides the feed rate at x-axis 

direction. Meanwhile, cutting tool is driven by the FTS cut 

into and out of the workpiece several times per revolution 

along y-axis direction.  

There are two main applications of the FTS on a diamond 

turning machine. The one is to eliminate the repetitive errors 

of machine [1-2], the other is to produce complex geometries 

into a specimen [3-7]. In 1985, Patterson [5] designed first 

FTS system for diamond turning. Then, many other 

researchers developed various FTSs with different actuators 

and materials. Okazaki [8] reported on the “micro-positioning 

tool post” design for compensating the error motions of 

diamond turning machines and improving workpiece surface 

finish with high resolution. A 10 mm diameter by 6 mm long 

piezoelectric actuator was used and it produced a 9 mm free 

displacement under a maximum applied voltage of 400 V. 

When the piezoelectric actuator is inserted the FTS, the 

displacement of the FTS was reduced to 7 μm because of the 
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ultrasonic-assisted machining. This paper describes the design and evaluation of dual piezoelectric 
actuator-based FTS for sinusoidal microstructure fabrication. In machining processes, the FTS 
should be long travel, high frequency and high precision. In order to meet these requirements, a new 
lever-type flexure mechanism is designed to amplify the output displacement of piezoelectric 
actuator. Dual piezoelectric structures ensure that the flexure mechanism can transform the action of 
actuator effectively. According to compare the dynamic performance between single and dual 
piezoelectric actuator, dual actuator FTS shows better tracking precision and longer travel range 
than single actuator FTS, especially at the high frequency level. Furthermore, machining test results 
of the sinusoidal microstructure have also indicated the effectiveness of the designed FTS system. 
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stiffness of the flexure., Two closed-loop control systems, 

including pole-zero cancellation with a notch filter and a 

proportional integral-derivative (PID) feedback control with a 

state observer, were applied to the tool post to eliminate the 

hysteresis in the piezoelectric actuator. The depth-of-cut 

resolution was reported to be smaller than 25 nm. The 

frequency bandwidth for this system was 200 Hz, which was 

limited by the resonance of the tool post. Crudele and Kurfess 

[9] published the design of integrating a piezo-based FTS 

servo with repetitive control for facing applications. The 

benefit of the repetitive controller was the tracking ability of 

surface waviness. A piezo-actuator with a nominal expansion 

of 60 μm was used, and a great reduction in waviness, up to 

62 % was observed, while traditional polynomial control was 

somewhat detrimental to the waviness. The other application 

of the FTS on a diamond turning machine is to eliminate the 

repetitive errors that came from the resonances in the turning 

machine structure, spindle imbalance, bearing noise et al. For 

instance, Kim and Kim [10] developed a FTS to control depth 

of cut precisely and compensate the waviness of the 

machining surface. The results revealed that the peak-to-valley 

of the surface waviness profile has been decreased to 0.3 μm 

(from 3.3 μm) in one particular case. 

However, for the FTS-based machining process with high 

driving frequency, some flexure mechanism could not follow 

the extension and contraction of the piezoelectric actuator very 

well due to the low stiffness of mechanism, deficient structure, 

material properties, etc. Finally, it leads to the tool 

displacement reduction at the high frequency level (> 800 Hz, 

<5 μm). In order to solve this problem, we designed a lever 

type flexure mechanism to amplify the output displacement of 

piezoelectric actuator. The dynamic performances experiments 

confirmed that the dual piezoelectric actuator FTS (DFTS) 

shows better tracking precision and longer travel range than 

single actuator FTS (SFTS), and can provide more travel 

range to the diamond tool. Furthermore, the machining test 

results point out that the profile of microstructure is a 

sinusoidal wave in the cutting direction with spatial 

wavelength of 100 μm and the peak-to-valley amplitude of 

about 5 μm. Actual fabrication results of the sinusoidal 

microstructure have indicated the effectiveness of the designed 

FTS system. 

 

 

 

Fig. 1 Machining process of FTS 

 

 

 

Fig. 2 Photograph of FTS (a) general view of flexure mechanism, 

(b) pivot of lever, (c) output part of lever 

 

2. Flexure mechanism of fast tool servo system 
 

2.1 Flexure mechanism 

The details of the FTS mechanical flexure specially 

designed for machining micro structured surface in the 

diamond turning machine are shown in Fig. 2 (a). Dual 

piezoelectric actuators are of the stacked type, 70 mm in 

length and 10 mm in outer diameter. A diamond tool is fixed at 

the tool holder, which is connected with the mechanical main 

body through two sets of parallel leafspring, as shown in Fig. 

2 (c). The symmetry structure in the design can inherently 

balance the flexure mechanism and avoid coupled interference 

motion.  

The output motion can be amplified by the lever while the 

piezoelectric actuators oscillate at several kHz following the 

driving signals provided through a high voltage amplifier. For 

a lever with an arbitrary angle α (0≤α≤180˚) between its two 

arms where α is used to identify the configuration of a lever. 

Many classes of lever have a collective characteristic; the 

input effort is higher than the output load. Therefore, the 

distance moved by the resistance (load) is greater than the 

distance moved by the effort.  

The lever whose arbitrary angle α is equal to 0˚ is used for 

this FTS flexure mechanism. In this class lever, effort is 

applied between the output loads on one end and the pivot on 

the opposite end. Hence the directions of the input effort and 

the output load are parallel to each other. The displacement at 

tool tip was magnified at the ratio of arm lengths “a” and “b” 

(1:10), because the mechanical lever is rotated through the 

pivot (shown in Fig. 2 (b)) while the right piezoelectric 

actuator is expanded, the left piezoelectric actuator that was 

applied a reverse signal is contracted, and the force acting 

point can be moved leftward. 

 

 

Fig. 3 Simplified model of flexure mechanism dynamics 
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Fig. 4 Step response of open-loop control 

 

Since the mechanical flexure acts as a spring, it can be 

modeled by a single degree of freedom system. The mass (M) 

is upper carriage which holds the tool, and structural damping 

constant is C. The spring constant, (K), is dominated by the set 

of leafspring. The structural dynamic parameters are identified 

from frequency response tests applied to the structure. 

Therefore, the tool holder and the actuator together are 

modeled as a second order dynamics as shown in Fig. 3. 

Open-loop transfer function between tool position (x) and 

amplifier input (u) in Laplace domain [11] is: 
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Where Kd is the gain of digital to analog converter, Ga is 

the amplifier gain, and Fd is the cutting force disturbance to 

actuator. Expressing Eq. (1) as differential equation and 

rearranging 
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In order to reduce the mass of the moving part, the light 

diamond tool was used and the mass of tool holder was 

controlled at a lowest level, as shown in Fig. 2(c). 

Unnecessary mass was taken off from the output part. 

Fig. 5 Frequency response function of FTS 

2.1.1 Characteristics of the open loop system 

A series of tests are carried out to evaluate the 

performance of the FTS, a test system was built using a 

LabVIEW computer, a high voltage amplifier, a capacitive 

sensor, a high-speed data acquisition board and a function 

generator.  

Capacitance displacement sensor is used for position 

measurement. Typically, the displacement signal ranges from -

250 μm to +250 μm with a resolution of about 2.9 nm. Also, 

the bandwidth of the capacitive displacement sensor is set at 5 

kHz, considering the maximum frequency required for fast 

tracking performance of the FTS. And the high voltage 

amplifier provides the complete voltage range from +3 to 

+1100 V with an average output power amounting to 110 W. It 

is capable of supplying a maximum peak output current of 500 

mA for fast expansion of the piezoelectric actuator that 

behaves like a capacitive load. 

The data acquisition board with their speeds set to 20 kHz 

for one cycle control of execution in the computer was used to 

obtain the signal from the capacitive displacement sensor and 

then transferred it to the LabVIEW computer. To reduce the 

external disturbance such as vibration, the experiments are 

carried out on a passive micro-vibration table. The 

environmental noise after the passive micro-vibration system 

is approximately 3 nm. 

For the micro machining operation, the overshot of the 

flexure mechanism for dynamic positioning is undesirable, 

and will difficult to keep microstructure uniform. Therefore, 

the step responses of the flexure mechanism, actuated by 

single and dual actuator, were examined and compared 

carefully to guarantee the dynamic performance for micro 

machining. Fig. 2 (a) shows the piezoelectric actuators 

distribution of DFTS distinctly. When the SFTS operated, the 

left actuator will be dismantled. Fig. 4 shows the step 

responses of open-loop controlled DFTS and SFTS for a 50 V 

reference input, respectively. It is noted that the DFTS has a 

smaller overshoot and settling time than the SFTS. The DFTS 

takes very short periods of time (only about 0.03 s) to recover 

the final steady state value. 

According to dynamic performance test, the frequency 

response function of the DFTS and SFTS are obtained 

respectively, as shown in Fig. 5. From the experiment data, it 

is noted that their primary natural frequencies are same due to 

the same flexure mechanism. The DFTS can provide larger 

travel range than the SFTS did. The displacement can reach 

15.33 μm with an applied frequency of 900 Hz, which can 

satisfy the requirement of machining test well. 

Fig. 6 Temperature variation of the FTS on operation (unloaded) 
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Fig. 7 Machining tests setup of FTS 

 

 

Fig. 8 UV curing film of micro structures with different spindle 

speed 

 

Thus the FTS is designed for the large area machining; it 

should be able to operate in a long time without interruption. 

The temperature rise of flexure mechanism will lead to alter 

the deformation value of the tool holder. It is unwanted for the 

precision machining. Therefore, the temperature variation of 

the flexure mechanism on operation is measured by a 

thermocouple during 12 hours, as shown in Fig. 6. 

From the graph, it is found that the temperature of the 

flexure mechanism has not great change during operation. The 

maximum difference approximately reaches 1.4 °C. It is 

because the material is influenced by the background 

temperature. The results show that this flexure mechanism can 

provide precision output motion for the machining and small 

thermal expansion during actuation. 

 

3. Machining test 
 

Fig. 7 shows the photograph of the turning machine used 

for the fabrication of the microstructure machining test in this 

investigation. The workpiece is a brass roller with length of 2 

meter and diameter of 200 mm. The machine is composed of 

three main parts: the aerostatic spindle and tailstock to rotate 

the roller, an X-axis linear servo to laterally move the diamond 

tool along the roller for providing the feed rate, and a Y-axis 

linear servo to translate the diamond tool for generating depth 

profile. The function generator produces the desired diamond 

tool motion trajectory that is sent to the amplifier as the 

reference input of the FTS. The quality of machined 

microstructures was evaluated by an optical microscopy and 

an AFM. 

A UV casting technique was performed to replicate the 

profile of the microstructure on a plane. The UV casting 

provided a high degree of accuracy and could be achieved at 

the room temperature and low pressures [12]. A UV resin was 

poured in the liquid state between the workpiece and the 

plastic film. The profile of the microstructure was molded on 

the plastic film when the UV resin curing after the UV light 

irradiating, as shown in Fig. 8. This measured method was 

utilized widely in the large area machining. There are two 

groups of machining area in Fig. 8. The left three area have the 

same machining conditions with the right three area except the 

feed rate of 20 μm and 100 μm respectively. 

 

 

 

Fig. 9 Optical microscopy photographs of micro structure with spindle speed of 10 rpm, FTS driving frequency of 800 Hz (a) 100x 

magnification, (b) 500x magnification 
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Fig. 10 AFM micrograph of microstructure 

 

The microstructures, which machined with FTS frequency 

of 800 Hz feed rate of 20 μm and spindle speed of 10 rpm, 

were measured by optical microscopy, as shown in Fig. 9 and 

Fig. 10. In theory, the maximum groove width should be 10 

μm when the cutting depth is 5 μm. It is because of the nose 

angle of diamond tool is 90°; the width is double of depth. We 

can found from the measured results that the maximum groove 

width is about 13 μm and the maximum depth is about 4.7 μm. 

The actual value is close to the theory value. It is has indicated 

the effectiveness of the designed FTS system.  

 

4. Conclusions  
 

This paper reported the machining evaluation of a dual 

piezoelectric actuator based FTS used to fabricate the 

microstructure. The methodology for design and control of 

lever-type magnified flexure mechanism used to the FTS 

system was described. The dynamic performances of the FTS 

were measured and the machining test results point out that the 

DFTS shows better tracking precision and longer travel range 

than the SFTS, and can provide more travel range to the 

diamond tool. Actual fabrication results of the sinusoidal 

microstructure point out that the profile of microstructure is a 

sinusoidal wave in the turning direction with profile 

wavelength of 100 μm and the peak-to-valley amplitude of 

about 4.7 μm and has indicated effectiveness of the designed 

FTS system.  
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1. Introduction  

 

Miniaturization of industrial machines plays a crucial role 

in the realization of compact manufacturing systems with less 

energy and material consumption. It has been, and it still is, a 

challenging research topic in microfactory [1] to develop 

innovative compact machines as alternatives to conventional 

machines in terms of quality, productivity, and cost. Desktop 

machine tools, which are portable and adjustable machines 

equipped with a tool head for specific machining purposes 

(e.g., milling, coating, laser cutting, and polishing, etc.), are 

examples of such machines [2,3]. Some desktop machine tools 

are commercially available.  

One of the recent research trends in the manufacturing 

industry is to study services offered in life cycles of industrial 

machines [4]. These services include maintenance and upgrade 

services that increase the life time of machines and satisfy the 

various needs and wishes of machine users. Following the 

trend, methods and tools to support service design have been 

proposed [5-7]. These methods and tools can be used for 

service design related with desktop machine tools. 

Manufacturers of desktop machine tools offer various 

machine-related services to users of these tools in the use stage 

(Fig. 1), including maintenance and repair services through 

service engineers, monitoring services to diagnose these 

machines and schedule maintenance and repair services, and 

expert consultation regarding the operational planning of 

machine tools. These services are designed and offered to the 

users with consideration of their specific manufacturing 

environment characterized by the variety and intensity of the 

usage.  

Flexibility is one of the major evaluation criteria of 

manufacturing systems. It is often regarded as the capability to 

quickly deal with variations in manufacturing tasks (e.g., 

micro-fabrication of electrical devices and repair of molding 

components) and their volumes as well as accidental 

malfunctions of system facilities.  Manufacturers can gain the 

capability by the reconfiguration of their systems (i.e., 

production lines) at the operational levels such as allocation of 

manufacturing tasks to machines considering the availability 

(e.g., determined by maintenance schedule). However, such 

system-level reconfiguration is difficult with conventional 

machines regarding portability and adjustability. For instance, 

a breakdown of a conventional machine stops the operations 
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Fig. 1 Industrial Services in Machine Life Cycles 
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of the entire manufacturing system, and it takes hours to 

discharge, repair, and calibrate the machine and restart the 

pending operations. In comparison, portable and adjustable 

desktop machine tools are assumed to perform such 

reconfiguration with less effort by exchanging tool heads or 

replacing broken machines with spare machines.  

In order to verify the superiority of desktop machine tools 

regarding such flexibility in comparison with conventional 

machines, the rigorous analysis of the operational behavior of 

desktop machine tools machine tools in a manufacturing 

system is necessary. However, there are several difficulties in 

analyzing the operational behavior. First, there are few cases in 

industry, in which desktop machine tools and conventional 

machines are comparable based on specific manufacturing 

tasks. Second, reproduction of the behavior of manufacturing 

systems under the identical manufacturing tasks is costly and 

hardly possible in practice. Therefore, the modeling and 

simulation of the behavior of manufacturing systems is 

inevitable for the evaluation of such flexibility. Related work 

[5-7] promoted the use of modeling and simulation techniques 

for design of manufacturing systems and service related with 

them (before manufacturing systems are actually built). 

The objective of this research is to develop a tool to 

support service design for manufacturers and users of desktop 

machine tools with modeling and simulation technique. The 

tool simulates the operational behavior of desktop machine 

tools as well as conventional machines in a manufacturing 

system, which is used to evaluate its flexibility under 

variations in manufacturing tasks and volumes as well as 

accidental malfunction of system facilities.  

In particular, this paper illustrates a usage of the tool to 

support the potential owners of desktop machine tools to 

quantify the impacts of introducing a desktop machine tool to 

a manufacturing system with conventional machines in terms 

of flexibility. With the tool, the potential owners can analyze 

and compare different configurations of system facilities with 

given specific manufacturing tasks and their volumes. Such 

support is crucial for manufacturers of desktop machine tools 

to deliver consultation services to the potential owners 

regarding operational planning before contracts are made 

between them.  

The rest of the paper is organized as follows. Section 2 

describes the model of a manufacturing system employed in 

the tool as well as the simulation mechanism. Section 3 shows 

the usage of the tool. Section 4 summarizes and concludes the 

paper.  

 

2. Manufacturing System Configuration with 

Desktop Machine tools 

 

This section describes a model of a manufacturing system 

with a focus on the characteristics of desktop machine tools 

regarding the aforementioned flexibility (i.e., variations in 

manufacturing volumes and tasks as well as accidental 

malfunctions of system facilities). A manufacturing system is 

modeled with relations among manufacturing processes such 

as cutting and polishing processes, machines in charge of 

processes, which includes both conventional machines and 

desktop machine tools, and tasks as the sequences of processes 

completed with these machines. The model represents the 

static configuration of a manufacturing system and it is 

described in Section 2.1. The assignment of manufacturing 

tasks to machines based on the condition and availability of 

machines is another type of the configuration, and it is 

described in Section 2.2.  

2.1 Static Configuration of a Manufacturing System  

This paper models the relation among processes, machines, 

and tasks of a manufacturing system as the static configuration 

with two bipartite graphs (see Fig. 2). The first bipartite graph 

consists of tasks, processes, and edges connecting tasks with 

processes. Each task is completed by a set of processes. An 

edge between a task and a process means that the process is 

necessary to complete the task. In order to represent the 

sequence of processes to complete a task, edges connecting 

processes with the task are numbered. For instance, in Fig. 2, 

Process I and Process II are performed in series to complete 

Task A. Edges include such information as process time, 

which is used for the simulation of the dynamic behavior of a 

manufacturing system (see Section 3).  

The second bipartite graph consists of processes, machines, 

and relations between them. The graph shows the processing 

capability of machines. For instance, in Fig. 2, Machine 1 can 

only perform Process I, while Machine 3 can perform all 

processes. Edges include such information as cost and energy 

consumption per time as well as process speed relative to that 

of the other machines (e.g., Machine 1 is two times faster than 

Machine 3 to perform Process 1). The topology of the graph 

includes the capability of desktop machine tools to perform 

multiple processes by exchanging tool heads.  

As described above, machines are indirectly connected 

with tasks through processes. The connections are dynamically 

assigned during the operation of manufacturing systems. 

 2.2 System Operational Behavior and Reconfiguration 

The operational behavior of a manufacturing system is 

described with: (1) the operational behavior of individual 

machines triggered by external events during operations, (2) 

the scheduling procedure that generates events triggering the 

operation of individual machines, and (3) the placement of 

manufacturing tasks as input of the scheduling procedure.  

The behavior of a manufacturing system is simulated 

based on these descriptions using discrete event simulation. It 

is simulated by executing a set of events, which generate and 

 

Fig. 2 Static Configuration of Manufacturing System 
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dispose entities and assign (and change) the state of entities. In 

the model, machines and tasks are treated as entities. 

Manufacturing processes and other activities in the use stage 

of machines (such as setup, tool-exchange, discharge, and 

repair of machines) cause transitions of the state of tasks and 

machines. State transitions of tasks and machines triggered by 

events in life cycles are shown in Fig. 3 and Fig. 4 and 

explained in the following subsections.  

2.2.1 State Transition of Tasks  

Tasks are generated by order placement events. The 

number of tasks at an order placement event is defined by the 

volume of the order placement. A task consists of a process 

sequence, which is defined by an ordered list of a triplet 

(process name, machine name, remaining time to complete the 

process). Since machines assigned to processes are not known 

at the beginning, the second parameter of each triplet is empty. 

The third parameter of each triplet is also initially empty, 

because the remaining time to complete the process depends 

on the performance of the assigned machine. 

The initial state of a task is Placed. It becomes Assigned 

when a process in the task is assigned to one of the machines 

in a manufacturing system. At this moment, the second and 

third parameters of the process (i.e., machine name and 

necessary process time) are determined. The state becomes In-

Process at execution of the first process. During the execution, 

the corresponding process time decreases until it reaches 0, 

which indicates the completion of the process. At the 

completion, the triplet of the process is removed from the 

process sequence of the task.  

While the state of a task is In-Process, the reassignment of 

processes to machines occurs at the occasion of breakdown of 

the machines in charge of the task’s processes. The state 

finally becomes Completed, when the process sequence 

becomes an empty list (i.e., all processes of the task are 

executed).  

 2.2.2 State Transition of Machines  

Generation and disposal of machines in a manufacturing 

system do not occur in the simulation, while tasks are 

generated and disposed (i.e., completed) during the operation 

of the system. Machines own a queue of orders (formulated 

below). An order is defined by a triplet (process name, task 

name, remaining time to complete the process). 

The initial state of a machine is Sleep. The queue of orders 

is initially empty. The machine does not change the state, 

when a process is assigned to the machine. However, the state 

becomes Prep, when one of the assigned processes in the 

queue becomes executable (i.e., all prior processes of 

corresponding tasks have been already executed), and one of 

the executable process is selected. (It is assumed that machines 

cannot perform multiple processes at the same time.)  

The state of the machine becomes Busy, when the machine 

start execution of the selected process. While the machine is 

performing the process, the remaining time to complete the 

process decreases incrementally. When the process time 

becomes zero, the corresponding triplet is removed from the 

queue, and another triplet is selected. In this way, the machine 

performs executable processes continuously in series.  

When the machine starts performing different processes or 

the same process of different tasks, the state of the machine 

becomes Prep. In the model, the time interval necessary for 

the state transition from Prep to Busy depends on the type of 

the machine. In case of a desktop machine tool, the interval is 

shorter than that of conventional machines. When there are no 

executable processes, the state of the machine becomes Sleep. 

The state transition model includes probabilistic transitions 

representing breakdown and recovery of the machine. 

Variables determining the probability of occurrences of these 

events are defined with respect to each process.  

 2.2.3 Scheduling Procedure 

The scheduling procedure controls relations between tasks 

and machines. The procedure is triggered at the generation of 

tasks (i.e. order placements) and the breakdown of machines. 

At the generation of a task, for each process in the task, a 

machine with the minimal queue length is selected. At the 

breakdown of a machine, first, the queue of the machine 

becomes empty. Then, the elements of the process sequence of 

all tasks, which include the name of the broken machine in the 

second parameter (process name, broken machine name, 

remaining time to complete the process), are collected. The 

machine name of the collected elements becomes the name of 

a machine, which can execute the specified process and owns 

a queue with minimal length. If no other machines can execute 

the processes specified by the process name of each collected 

elements, the name of the machine name is not updated (i.e., 

the process is executed after the repair of the broken machine).  

 

3. The Simulation Tool and Its Usage 

 

3.1 Background of the tool 

The model of a manufacturing system described in Section 

2 has been implemented on the tool, which is an extension of 

the tool previously developed by the authors [5]. The tool is 

programed in Python and employs SimPy [8] as the discrete 

event simulation engine. Fig. 5 shows a screenshot of the tool. 

 

Fig. 3 State Transition of Tasks 

 

Fig. 4 State Transition of Machines 

Placed Assigned

In Process Completed

Sleep

Prep

Busy

Broken



4  / JUN 18-20, 2012, TAMPERE, FINLAND IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES 
 

The tool currently supports the evaluations of a 

manufacturing system with multiple criteria such as life cycle 

costs and productivity. Life cycle costs are calculated by a sum 

of machine prices, operational costs, and fee of industrial 

services such as repair and maintenance services. The 

productivity is measured by the average process time of all 

tasks (i.e., when the state of tasks is In-Process). The paper 

focuses on the evaluation of a manufacturing system in term of 

the productivity, because it is appropriate to evaluate 

flexibility during operations of the manufacturing system 

instead of its long-term performance such as life cycle costs.  

The generic usage of the tool is the design of services 

offered in life cycles of industrial machines (see Fig. 1). In 

particular, the model presented in Section 2 is necessary to 

characterize the properties of desktop machine tools in terms 

of flexibility. This section demonstrates a usage of the tool, in 

which potential users of desktop machine tools, who own a 

manufacturing system with conventional machines (the 

reference manufacturing system), considers installation of 

desktop machine tools to the system. As shown below, the tool 

can quantify the effect of a desktop machine tool (to be 

installed) on the flexibility of the manufacturing system 

considering specific variations in manufacturing tasks and 

demands.  

This section first simulates the behavior of the reference 

manufacturing system. Then the performance of the reference 

manufacturing system is compared with that of alternative 

systems including a desktop machine tool.  

3.2 Simulation of the Reference Manufacturing System 

The reference manufacturing system consisted of four 

machines for single process (cutting, coating, polishing, and 

electrical discharge machining (EDM)) in Fig. 6. The system 

performs three types of tasks. The proportion of the tasks is 

given, while the quantity is specified at each simulation. The 

proportion and process sequence of each tasks, and the 

duration of processes in the process sequence are summarized 

in Fig. 6. For instance, 60% of all manufacturing tasks of the 

reference system is TaskA, in which cutting (requiring 

simulation 3 steps), polishing (1 step), and coating process (2 

steps) should be performed in the given order. 

 3.2.1 Simulation Setting 

In the initial simulation, 5 tasks were placed at every 25 

steps during 1,000 steps. The type of tasks is determined by 

selecting one of TaskA, TaskB, and TaskC following the 

probability distribution defined by the proportion. In order to 

maintain the simplicity of the simulation, the probability of the 

occurrence of breakdown and recovery is same for all 

machines (the value is 0.005 [/step] and 0.1 [/step], 

respectively). An example of simulations of models with more 

detailed behavior (e.g., machine deterioration, multiple failure 

modes) is presented in the previous report [9]. 

3.2.2 Simulation Results 

Fig. 7 shows the state of machines and the state of tasks in 

a simulation with respect to the progress of simulation (70 

steps). Fig. 7(a) shows the number of Busy and Broken 

machines. Fig. 7(b) shows the number of Assigned, In-Process 

and Completed tasks and the generation of tasks at 0, 25, and 

50 steps. After the generation, processes in the tasks were 

assigned to specific machines and they were processed when 

machines are available (tasks were In-Process). The number of 

Completed tasks gradually increased with the progress of 

simulation. A breakdown was occurred to the cutting machine 

at 30 steps. The other machines stopped operations because 

they could not perform any tasks. After the broken machine 

was repaired, other machines started operations again. Such 

behavior of machines influenced the state of tasks. During the 

breakdown the number of Assigned tasks did not decrease, 

because these tasks are on of Task A or Task B, which have to 

wait for the recovery of the broken cutting machine.  

The simulated behavior of the reference system regarding 

the state of machines and the state of tasks is shown in Fig. 8. 

Fig. 8 shows (a) the number of Broken machines, (b) Assigned 

 

Fig. 5 Screenshot of the Simulation Tool 

 

Fig. 6 The Reference Manufacturing System Model 

 

Fig. 7 Interpretation of simulation results 
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tasks, (c) tasks with state In-Process, and the average of the 

process time of Completed tasks with respect to simulation 

steps. As shown in Fig. 8(a), there were concentrated 

occurrences of breakdown of machines around 800 steps. 

They temporally increased the number of tasks waiting for 

process executions (i.e., tasks with state Assigned in Fig. 8(b)) 

and the number of tasks In-Process with some delay (Fig. 

8(c)). As a result, the average time to complete tasks increased 

(in Fig. 8(d)). It seems that the reference system model is 

flexible against such concentrated machine breakdowns with 

the given demand of tasks. The flexibility was analyzed in 

detail below.  

 Flexibility of the reference model was analyzed with 

variations in the probabilities of the event occurrences causing 

the breakdown of machines (0.000, 0.005, 0.010 [/step]) and 

the quantity of placement of tasks (5, 6, and 7 [tasks/25steps]). 

The average of the process time of Completed tasks with 

respect to simulation steps with the variations is shown in Fig. 

8 (as same as Fig. 8 (d)).As shown in Fig. 9(a), the average 

process time temporally increases at the occurrences of 

breakdown of machines, while it decreases when all machines 

are functional. The result suggests that the reference 

manufacturing system possess flexibility in dealing with 

occasional breakdown of machines as far as the probability of 

the occurrences is under the critical value. The simulation is 

useful to find the critical probability (in this example, the 

value is between 0.005 and 0.010 [/step]).  

As shown in Fig. 9(b), the simulation result was used to 

identify the capacity of the reference manufacturing system. In 

the example, the critical quantity of placement of tasks, which 

is below the capacity, is between 6 and 7 [tasks/25steps]. 

When breakdown of machines is assumed, the critical quantity 

decreases.  

 3.3 Replacing Machines with a Desktop Machine Tool 

3.3.1 Replacement Strategy at a High Manufacturing Volume 

In order to deal with a higher quantity of the placement of 

tasks, the coating machine was replaced with a desktop 

machine tool. The desktop machine tool can deal with one of 

the other three processes performed by the other three 

machines. The desktop machine tool is used to perform the 

other process, when it is not busy with coating processes. 

 Fig. 10 shows the simulation results of the reference 

system at a high manufacturing volume (7 [tasks/steps]) and 

those of manufacturing systems with a desk factory. Positive 

and negative signs in Fig. 10 indicate installed and removed 

machines. The horizontal broken lines show a reference value 

of the average process time in order to compare the results. As 

shown in Fig. 10(a), the capacity of the reference system was 

not sufficient to meet at the high manufacturing volume. Fig. 

10(b) and 10(c) show that the introduction of a desktop 

machine tool to the manufacturing system is not always 

attractive, as the average process time of the systems still 

increases after the introduction. Fig. 10(d) shows that a 

desktop machine tool that can finally deal with both coating 

process and cutting process is sufficient to deal with the 

quantity of task placement.  

 3.3.2 Replacement Strategy at a Low Manufacturing Volume 

Flexibility of manufacturing systems is also crucial at the 

occasion of decrease of manufacturing volumes (e.g., at the 

occurrence of economic depression). In this case, the number 

of facilities in a system may be decreased in order to decrease 

the capital costs. 

Fig. 11 shows the simulation results of manufacturing 

systems with fewer machines at a lower manufacturing 

volume (5 [tasks/steps]). These systems are designed based on 

the reference manufacturing system. A desktop machine tool 

with multiple processing functions was installed on the 

reference system and two conventional machines performing 

the processes supported by the desktop machine tool (i.e., 

redundant machines) were removed. As Fig. 11 (a) shows, a 

desktop machine tool that could deal with coating and 

polishing processes was used as replacement of both the 

coating machine and the polishing machine without losing 

flexibility. However, as Fig. 11 (b) and (c) show, the systems 

with a desktop machine tool with different combinations of 

machining processes could not possess the capability to deal 

with flexibility at the manufacturing volume.  

 

Fig. 8 Simulation Results 

 

Fig. 9 The Average Task Completion Time under Variations in 

Machine Breakdown Probabilities and Volumes of Tasks 
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 4. Summary and Conclusions  

 

Flexibility is a crucial operational performance of 

manufacturing systems to handle variations in manufacturing 

tasks and volumes as well as accidental malfunctions of 

system facilities. Portable and adjustable desktop machine 

tools with exchangeable tool heads can become a part of 

flexible manufacturing systems in corporation with existing 

system facilities, which are less portable and adjustable.  

 This paper has presented a simulation tool to quantify the 

effect of desktop machine tools introduced to a manufacturing 

system with specific variations in manufacturing tasks and 

volumes. With an illustration of the usage, the paper has 

shown that the tool can be used for potential users of desktop 

machine tools to select appropriate machine types and related 

industrial services that effectively increase flexibility at 

different situations in terms of demands of tasks to be 

performed by the system.  

 The study found that there were wide configurations of a 

desktop machine tool to be introduced to a manufacturing 

system regarding machining capability. Appropriate 

configurations should be selected in order to increase the 

flexibility of the system with consideration of manufacturing 

tasks and volumes as well as the organization of existing 

system facilities. Therefore, modeling and simulation of the 

operational behavior of the entire manufacturing system is 

crucial for the selection of desktop machine tools introduced 

to the system.  
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1. Introduction  
The Desktop Factory® or DTF® philosophy enhances 

space/energy efficiency, flexibility, agility, reconfigurability, and 

economy in manufacturing, by means of downsizing manufacturing 

systems1). The conception is effectively identical to that of a 

microfactory. Though stand-alone miniaturized machines have the 

potential to enhance their specific fields of application2),3), several 

units combined into a line offer superior performance of tasks in 

industrial automated production, because a number of discrete 

processes are typically required in order to complete a given 

production procedure.  

One methodology for building a compact production line involves 

introducing a strictly standardized modular policy to conform all 

units connected via standardized physical and informatics interfaces. 

Some successful developments based on this policy can be seen in 

academic trials and industrial applications4)-8). 

However, this policy has the disadvantage that all the members of 

the system must comply with the strict standard of the design. When 

all the units are well designed and prepared according to this 

standard, the system may be easily constructed. Problems arise, 

however, when an existing processing unit is to be introduced: it is 

often inconvenient and impractical for the given unit to be redesigned 

and rebuilt to fit the standard. Some units may be provided by 

manufacturers without regard for the standard. 

A more convenient and flexible means of system building, to cope 

with the contingent requirements of actual applications, consists in 

introducing minimum rules and methodologies required to connect 

the respective units to each other. In this case, every member of the 

system may differ from the others in character, size, form or even 

performance. A unit with a special function, for example, may be 

“invited" to become a member. Based on this conception, the 

prototype of such a compact production line—a “Friendship Line"—

has been developed and evaluated. 

 

 

2. System description 
Outline of the system 

The developed production line is composed of four units, with four 

different processes, from four different manufacturers. Each unit has 

different function, size and form. In order to accommodate these 

differences, the units are linked by using compact handling robots 

attached to the individual units. The system layout is illustrated in 

Figs. 1 and 2. In typical system configurations, the handling robots 

are located in between the respective units to which they are related 

and which they connect. As a result, in the system set-up, the 

allocation and relative positioning of the units and robots is 

complicated. In this prototype, on the other hand, a methodology has 

been developed to eliminate the precise relative positioning between 

the units and the respective handling devices, and the related physical 

wiring, so that an agile line reconfiguration is enabled (Fig. 3). 

 
Milling unit-1 

The first unit of the line is a column traverse type, heavy-duty 

vertical milling machine (Fig. 4), based on a commercial compact 

machining cell design9). By limiting the workspace and capacity, the 
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mass of the moving members was reduced, and smaller actuators 

were employed. As a result, the volume and weight were greatly 

reduced, from the 1,750 x 2,910 x 2,425 mm (W x D x H) and 5,000 

kg typical of conventional machines, to 500 x 984 x 1,698 mm and 

400 kg—1/10th the conventional footprint and weight. An automatic 

tool changer (ATC) holds up to five tools. In the demonstration, 

rough milling and engraving were performed. 

 

Milling unit-2 
The second unit is also a milling machine equipped with an ATC 

(Fig. 5). It is smaller than the first unit, and performs precise and high 

accuracy machining with better than one micrometer of repeatability, 

due to its rugged structure employing a granite base and cast iron 

monolithic framework. In the demonstration, engraving and surface 

finishing (deburring) on the rear surface were performed. 

 

Plating and cleaning unit 
The third unit is an all-in-one plating and cleaning processing 

device, in a DTF form (Fig. 6). The sequential processes, of 

ultrasonic washing, acid cleaning, rinse, plating, rinse, and drying, 

which are normally done as batch processes, have been so designed 

that a piece-by-piece operation can be performed automatically using 

internal robots. The resulting footprint measures 650 x 1,400 mm. In 

addition, several kinds of plating processes are available simply by 

changing the plating bath. To synchronize the takt time with the other 

units, the plating bath is duplicated. The entire sequence is completed 

 
Fig. 2  Photo of the Friendship Line 

 

Nano-imprinting unit 

Plating-cleaning unit Milling unit -2 

Milling unit -1 
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2.9m 
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Fig. 1  System layout of the Friendship Line 
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Fig. 3  Processing units and handling robots  
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within 210 seconds. The inner area of the enclosure is kept at 

negative pressure to prevent environmental contamination. In the 

demonstration, a sequence of electro-nickel plating was performed. 

 

Nano-imprinting unit 
The fourth unit is a desktop nano-imprinting device (Fig. 7), based 

on a commercial device for industrial manufacturing. Surface nano-

patterning is performed by applying UV polymer, plying the mold, 

and then utilizing UV curing. Introducing UV-LED as the curing light 

source, instead of a metal halide lamp, enabled significant 

miniaturization and energy savings. In the demonstration, a hologram 

was printed on the workpieces. 

 

Material handling and communication 
Compact transfer robots, with a unique X-theta-Z-axis 

configuration, link the four units of the production line (Fig. 8). The 

robots have a smaller footprint and wider working range compared to 

conventional Cartesian robots and SCARA robots. In size, its 

footprint of 0.094 m2 and volume of 0.02 m3 are less than 1/6th and 

1/20th of conventional robots, respectively. The robot arm can 

penetrate into the processing units without disrupting visibility or 

operability. Each processing unit is equipped with a robot on its 

reference surface. 

In calibrating the relative position between each robot and its 

respective processing unit, the robot arm optically identifies the 

position of a target metal ball attached to the side of the processing 

unit (Fig. 9). Using this technique, better than 40 µm repeatability 

was achieved in the X, Y and Z directions.  

The robot arm has a pneumatically operated chucking mechanism 

that holds various types of end effectors according to the given 

workpiece posture. A custom controller is embedded. 

Workpieces are passed to another robot, of another processing unit, 

on a passive transfer pallet. Workpieces may be inverted on the pallet 

if necessary. The positioning on the transfer pallet requires less 

precision compared to that on the processing units, which enables 

easier alignment of the units. 

In order to synchronize the motion of the handling robots and the 

processing units, both the robots and the processing units are 

equipped with wireless communication devices (Fig. 10). The 

wireless system uses weak radio wave in the 2.4 GHz band, based on 

the ARIB STD-T66 standard, with a transfer bit rate of 250 kbps. 

Each wireless unit communicates with adjoining units cyclically, 

without need of any master unit. 

 

 

3. System integration and evaluation 
As noted, the four processing units are equipped with compact 

handling robots and linked into a production line as a prototype. The 

four processing units, handling robots, and communication devices, 

are all supplied by different firms. Moreover, each unit is not 

completely developed, but based on existing equipment or 

technology. Therefore, the system integration itself was a challenging 

project. First, the interfacing standard for mechanical dimension and 

communication was negotiated. The resultant temporal standard was 

described as DTF Standard D0100 to D0300. Then, a target sample 

product was settled and processed through the line.  

In the demonstration production, all the processes, workpiece 

handling, and communication, were performed without difficulty. 

Fig. 12 shows photographs of the workpieces at each step. The 

  
(a) Overview         (b) Plating baths inside 

Fig. 6  Plating and cleaning unit 

  
Fig.7  Nano-imprinting unit 

 
Fig. 4  Milling unit-1 and handling robot 

 
Fig. 5  ATC of milling unit-2 
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workpiece is shaped from a brass blank of 25 mm diameter. The total 

trial processing takt time was 16 minutes and 25 seconds per piece, 

which was not yet optimized. 

The footprint and energy consumption of the entire production line 

have been approved for a maximum of 2 x 3 m and 11 kVA, 

respectively, which represent 1/7th and 1/10th the respective values of 

a similar line composed of conventional units.  

As a result, a methodology for achieving compact and highly 

reconfigurable production lines has been presented. 

 

 
ACKNOWLEDGEMENT 

 

This project was conducted with the support of the 

Ministry of Economy, Trade and Industry, Japan, in FY 2009-

2010. 
 

 

REFERENCES 
 

1) DTF Research Consortium: http://www.dtf.ne.jp/ 

2) Y. Okazaki, N. Mishima and K. Ashida: Microfactory –

Concept, history and Developments, J. manufacturing 

Science and Engineering, Vol. 126, 2007, pp. 837-844 

3) Y. Okazaki: Microfactories –A new methodology for 

sustainable manufacturing-, Int. J. Automation Technology, 

Vol. 4 No. 2, 2010, pp. 82-87 

4) H. Tsuneda and K. Kobayashi: “Desk Top Factory” for the 

next generation manufacturing, Technical Review of Sankyo, 

Vol. 12, No. 1, 2003, pp. 42-46 (in Japanese) 

5) K. Ashida, S. Nakano, J. Park and J. Akedo: On-demand 

MEMS device production system by module-build 

microfactory, Int. J. Automation Technology, Vol. 4 No. 2, 

2010, pp. 110-116 

6) T. Gaugel, et al.: Advanced modular production concept for 

miniaturized products, Proc. Second International Workshop 

on Microfactories, 2000, pp. 35-37 

7) O. Klemd: Desktop Factory – New approaches for lean micro 

assembly-, Proc. 2007 IEEE Int. Sym. On Assembly and 

Manufacturing, 2007, pp. 161-165 

8) S. Hara, H. Maekawa, S. Ikeda and S. Nakano: Concept of 

minimal fab and development of minimal equipments, J. of 

JSPE, Vol. 77 No. 3, 2011, pp. 249-253 (in Japanese) 

9) T. Ogawa, Building of efficient, energy-saving lines 

with an extremely compact machining center and CNC 

lathe, Int. J. Automation Technology, Vol. 4 No. 2, 

2010, pp. 150-154 

 
Fig. 10  Wireless communication unit 

 
 

Unit 

Wireless 

comm 

Wireless 

comm 
Wireless 

comm 

Wireless 

comm 

Unit 

Robot Robot 

 

Fig. 11  Communication topology 

 
 

 

   
(a)   (b)  (c) 

  
(d)   (e) 

Fig. 12  Processed workpieces (25mm x t10mm) 

(a) Blank, (b) Milled and engraved, (c) Ornamental milled, 

(d) Cleaned and plated, (e) Finished with nano-imprinting 

 
Fig.8  Handling robot attached to the individual unit 
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Object-detection and classification is a key task in micro- and nanohandling. The microscopy image is often
the only available sensor to detect information about the positions and orientations of objects. FPGA-based
image processing is superior to state of the art PC-based image processing in terms of achievable update
rate, latency and jitter. The connected component labeling algorithm is presented and analyzed for its
high speed object detection and classification feasibility. It is shown that an FPGA implementation of the
algorithm can be used for high speed tool tracking as well as object classification.

1 Introduction

Image-based object-detection and classification is a key task in
micro- and nanohandling, as the microscopy image is often the
only available sensor in the system. The image information is
used to detect and classify objects and specimen. It is also used
to detect the position of the manipulator, if the used positioning
system has no internal sensor or the internal sensor’s resolu-
tion is not sufficient for the task. Vision-based tracking of the
manipulator for the closed loop positioning is called visual ser-
voing. State of the art is to use PC-based computer vision for
both tasks. There are several algorithms available for for these
tasks such as template matching or active contours ([1]).

PC-based image processing has several drawbacks for
visual servoing, as discussed in [2]. The speed and quality of
closed-loop control is directly connected to the speed and the
quality of the connected sensors. Three main timing quality
characteristics of an optical sensor are update rate, latency and
jitter.

• The sensor’s update rate is a limiting factor for the digi-
tal closed-loop control of a highly dynamic system. For
vision-based sensor systems, the update rate is compar-
atively low, because a full image must be acquired and
transferred. Common USB- or FireWire-cameras have
update rates of 10 to 30 Hz.

• The latency of a sensor describes the age of a sensor
value. With a high latency, the closed-loop control works
with old data. Camera-based sensors have a high latency
because an object position is calculated after a full image
was captured from the camera. The latency of vision-

based object tracking is usually at least one update inter-
val.

• Jitter is time variation in a periodic signal (e.g. update
rate), adding an uncertainty for closed-loop control. Jit-
ter is a main problem in software-based object tracking
on general purpose CPUs because of the unpredictable
scheduling of the operating system.

One solution to overcome those drawbacks is to use
hardware-based visual servoing. A Field-Programmable-Gate-
Array (FPGA)-based solution was presented in [2] and further
developed as shown in [3]. The presented approach uses an
FPGA-based smart camera where the object detection is car-
ried out during the image capture.

Figure 1.1: View from camera underneath mobile microrobots
The algorithm used in the described system is a special

case of the binary large object (BLOB) extraction algorithm.
It performs a single pass connected component labeling ([4]).
The features of the objects are also detected during the sin-
gle pass connected component labeling. The algorithm tracks
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LEDs mounted at the bottom of the tracked microrobots, result-
ing in the image shown in Fig. 1.1.

The algorithm is designed for the presented special case
and optimized for a small amount of regions. However, it shows
gained improvement in terms of speed and accuracy for closed
loop positioning. Other solutions for connected component la-
beling algorithms for FPGAs are presented in [5] and [6].

In this paper, the benefits of FPGA-based image pro-
cessing for automated microhandling are discussed. The BLOB
tracking algorithm is used as an example. It is used not only for
visual servoing, but for specimen detection and classification
as well. Firstly, the connected component labeling algorithm is
described. Secondly, the features of objects that can be used for
classification are discussed. Thirdly, different classification ap-
proaches are presented. Fourthly, experiments of closed-loop
tool tracking and object classification are presented. Finally, a
conclusion is drawn and an outlook stated.

2 Connected-component labeling
The connected component labeling algorithm is used to detect
connected regions in a binary image ([4]). Classical approaches
use a two-pass algorithm for component labeling.

The first-pass iterates through the data of the image and
assigns a label to each foreground pixel. The label is assigned
by taking the labels of the surrounding pixels into account.
Only the pixel left of the current one and the above ones were
processed earlier and have assigned labels. If one of the sur-
rounding pixels has a valid label, the current foreground pixel
gets the same label assigned. Otherwise, a new label is as-
signed. There a two ways of connectivity: four-connectivity
(cross) and eight-connectivity (square). The pixels that are
checked for label assignment are dependent on the connectivity
as shown in figure 2.1.

Figure 2.1: Pixels checked for label assignment: four-connectivity
(left) and eight-connectivity (right).

If two of the surrounding pixels have distinct labels,
these labels need to be merged in the second-pass. The al-
gorithm stores the merge information in an appropriate data-
structure.

The second-pass iterates through the result image of the
first pass and relabels the elements by using the merge infor-
mation. After the second-pass, all connected components have
the same label.

After the components are labeled, features can be ex-
tracted for each object, using the label matrix as well as the
original image.

2.1 FPGA-implementation

The above described two-pass algorithm is not suited for an
efficient FPGA implementation. The label matrix as well as
the image has to be stored in memory. The algorithm iterates
through the image multiple times. Memory resources are lim-
ited on FPGAs. Therefore, stream processing is more suited for
FPGA-based image processing ([6]). This gives an additional

latency improvement as the algorithm does not need to cap-
ture the image before starting its calculation. In stream-mode,
the algorithm works on the pixel-stream from the camera and
can therefore start with the first pixel that arrives. Addition-
ally, stream mode processing scales well in terms of speed and
FPGA-resources if several algorithms are pipelined.

For stream-mode algorithms, a single pass connected
component labeling algorithm can be used. In this type of al-
gorithm, the merging of labels is done on the fly, often in par-
allel processing. Examples for stream-mode algorithms can be
found in [2], [6] and [5]. Additionally, the features have to be
detected during the single-pass connected component labeling.

3 Object features

Different features can be extracted for each BLOB. Examples
of features are bounding box, center point and number of pixels
in the BLOB.

Detecting object features during a single-pass connected
component labeling without storing the image can be a chal-
lenging task. For each feature, there are several operations that
have timing constraints. The feature must be updated with only
the information of the current pixel available. The timing con-
straint for this operation is very strict (e.g. one cycle), as this
happens frequently. If two ore more labels are merged, the fea-
tures of two labels also have to be merged. After the merging,
the feature has to be valid for the region composed of both la-
bels. There are several features where these constraints can not
be achieved, e.g. the average grayscale. It is not possible to
update the average value if the size of the region is not known.

If features cannot be computed in the above described
way, the have to be parted into features that can. The average
grayscale can be described as follows:

v̄ =
∑

n
i=0 vi

n
(3.1)

The sum of all grayscales can be computed as described
in the above passage, as well as the number of pixels. If the
region is fully detected, a post-processing step can be executed
to calculate the actually desired feature. The timing constraint
for the post-processing is not as stringent as the others, because
this step is done only once for each finished BLOB while the
other operations are executed several times.

3.1 Number of pixels

The number of pixels is the easiest feature to calculate. It needs
to be incremented on update and summed on merge:

update : n = n′+1 (3.2)
merge : n = n(a)+n(b)

3.2 Average grayscale

The average grayscale can be computed by the sum of all
grayscales and the number of pixels (see 3.1). The division
is done in the post-processing step. The update and merge op-
erations for the sum of grayscales are as follows:
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update : vsum = v′sum + vi (3.3)
merge : vsum = vsum(a)+ vsum(b)

3.3 Bounding box

The bounding box is the rectangle that encloses the found ob-
ject. The bounding box consists of the four values minX , maxX ,
minY and maxY . Each of this values can easily be updated and
merged:

update : xmin = min(xi,x′min) (3.4)
merge : xmin = min(xmin(a),xmin(b))

The update and merge operations for maxX , minY and
maxY are similar. The bounding box does not need a post-
processing step.

3.4 Center of gravity

The center of gravity can be calculated by its parts analogous
to the above described average grayscale value. The center of
gravity is defined as follows:

xcog =
∑

n
i=0 xi

n
(3.5)

ycog =
∑

n
i=0 yi

n

Both of these sums can be calculated analogously to
Eq. 3.3.

A special case of the center of gravity is the weighted
center of gravity. For this feature, a factor (the weight) is mul-
tiplied with the x and y values.

xwcog =
∑

n
i=0 wi · xi

n
(3.6)

ywcog =
∑

n
i=0 wi · yi

n

For the weight wi, the grayscale value vi is often used.
If the image is thresholded by a value vt it is also common to
use the value vi− vt .

3.5 Contour length

The contour length is the number of pixels that belong to the
contour of an object. A pixel is defined as contour pixel if at
least one of the surrounding pixels is not a foreground pixel.

The contour length update function needs a distinction
of cases, the merge function is analogous to Eq. 3.2.

update : nc =

{
n′c +1 i f pi ∈Contour
n′c else (3.7)

3.6 Bounding Polygon

For a bounding octagon, the bounding rectangle feature is
needed. Additionally, a 45°rotated rectangle is calculated. The
rotated rectangle consists of four edges:

• min(x+ y) (top left edge),

• max(x+ y) (bottom right edge),

• min(x− y) (bottom left edge) and

• max(x− y) (to right edge).

The minimum and maximum values of x+ y and x− y can be
updated and merged analogously to Eq. 3.4.

The rotated rectangle can be intersected with the bound-
ing box in the post-processing step. The bounding octagon is
a very rough approximation of the convex hull. The approxi-
mation can be improved by calculating finer structures, using
more and differently rotated rectangles (e.g. hexadecagon).

3.7 Principal Component Analysis based features

The principal component analysis (PCA) is a method for data
reduction and is well known in image processing. However,
it can also be used to detect the main axis of an object ([7]).
A factor PCe which describes the relationship between the ex-
pansions of the main axis and its orthogonal axis can also be
derived from the PCA ([8, 9]). For object classification, both
of these features are of great interest. The computation of the
PCA is a complex task and can not easily be parted into simple
computations as the above features.

The PCA is computed from the covariance matrix of all
points in one BLOB:

C =

(
cov(x,x) cov(x,y)
cov(y,x) cov(y,y)

)
(3.8)

Whereas the covariance is defined as follows:

cov(x,y) = cov(y,x) =
∑

n
i=0 (xi− x̄) · (yi− ȳ)

n−1
(3.9)

The main goal is to calculate the covariance during the
update and merge process. The PCA calculation from the co-
variance matrix can be done in the post-processing step. In
the Eq. 3.9, the local value of a pixel as well as the average
value are inside the sum. This cannot be calculated like the
other features, as x̄ and ȳ are not known during the update step.
However, the above described constraints for the update and the
merge processes can be achieved.

To be able to calculate the covariance matrix in the de-
sired way, x̄ and ȳ are not allowed inside the sum. Starting
from Eq. 3.9, a sequence of transformation steps will convert
the equation into the desired form. The denominator of Eq. 3.9
is the number of pixels minus one. In the following, only the
numerator will be transformed.

N =
n

∑
i=0

((xi− x̄) · (yi− ȳ))
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=
n

∑
i=0

(xiyi− x̄yi− xiȳ+ x̄ȳ)

=
n

∑
i=0

(xiyi)−
n

∑
i=0

(x̄yi)−
n

∑
i=0

(xiȳ)+
n

∑
i=0

(x̄ȳ)

=
n

∑
i=0

(xiyi)− x̄
n

∑
i=0

(yi)− ȳ
n

∑
i=0

(xi)+nx̄ȳ (3.10)

= a−b− c+d (3.11)

In 3.10, x̄ and ȳ can be substituted with their actual com-
putation:

x̄ =
∑

n
i=0 xi

n

ȳ =
∑

n
i=0 yi

n
(3.12)

Substituting x̄ in the second term of Eq. 3.10 will result
in the following equation:

b =
∑

n
i=0 xi

n

n

∑
i=0

(yi)

b =
∑

n
i=0 xi ∑

n
i=0 yi

n
(3.13)

Substituting ȳ in the third term of Eq. 3.10 produces the
same result. Substituting x̄ and ȳ in the fourth term of Eq. 3.10
results in a similar equation:

c = n
∑

n
i=0 xi

n
∑

n
i=0 yi

n

c =
∑

n
i=0 xi ∑

n
i=0 yi

n
(3.14)

Using the equations 3.13 and 3.14 the final equation
from the transformed covariance computation can be created:

b = c = d

N = a−b

N =
n

∑
i=0

(xiyi)−
1
n

n

∑
i=0

xi

n

∑
i=0

yi

cov(x,y) =
∑

n
i=0 (xiyi)− 1

n ∑
n
i=0 (xi)∑

n
i=0 (yi)

n−1
(3.15)

In Eq. 3.15, there are three sums that can be updated and
merged analogously to Eq. 3.3. The divisions and and subtrac-
tions of the sums are done in the post-processing step.

For all elements of the covariance matrix, five differ-
ent sums have to be computed during the connected compo-
nent labeling. In addition to the three sums shown in Eq. 3.15,
two more sums have to be computed for cov(x,x) and cov(y,y).
However, only the first term in the numerator of Eq. 3.15 intro-
duces a new sum, the other sums can be reused for all covari-
ance equations.

3.8 Feature summary

Connected component labeling extracts objects from an image.
If the position of an object is known, its movement can be
tracked. With all the features described above, it now becomes
feasible to use connected labeling not only for object detection
and tracking, but also for object classification.

4 Object classification

With a broad variation of object features, object classification
based on those features becomes feasible.

One possibility is to classify the objects based on fixed,
user defined bounds for features or their combinations. To de-
tect e.g. a circle, the bounding box should be rectangular. Ad-
ditionally, the PCe energy should indicate that the shape has
no significant main axis. The number of pixels in combination
with the area enclosed by the bounding rectangle gives infor-
mation whether the circle is filled or not. An additional indi-
cator is the contour length. However, these bounds need to be
found experimentally. Another solution is to use a self-training
system.

A neuronal network is well suited to be used as a
hardware-based solution. A small feed-forward neuronal net-
work can be easily implemented for FPGA-use using a parallel
pipelined approach [10]. Figure 4.1 shows a generic layout for
such a neuronal network.

Pce

n

contour
length

....               ..                       ..                       ..

object A

object B

object C

Figure 4.1: Generic layout of a feed-forward neuronal network for
object classification.

Inputs to the neuronal network are the features of the
BLOB extraction. As some features are not single values that
can be used as input to the neuronal network, a deduction of the
actual feature can be used. For a feature, several deductions can
be possible. For the bounding rectangle, the enclosed area as
well as the factor height/width are relevant sub-features for the
classification. Other sub-features relevant for the classification
are e.g. the length of an object in the main direction. To calcu-
late this, a line can be drawn through the center of gravity in the
direction of the main axis. This line than must be intersected
with the bounding polygon, giving a close approximation of the
object’s length.

The outputs of the neuronal network are the different
possible object types. As customary for neuronal networks
used for classification, only one of the output neurons produces
an output.

The training of the neuronal network is performed of-
fline. The FPGA-based network uses the computed weights for
the connections and the activation functions for the neurons.



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012, TAMPERE, FINLAND / 5

5 Experiments
For the experiments, a microrobotic handling cell was used.
The cell consists of two microrobots. The first microrobot has
three degrees of freedom (x, y, φ ). It is equipped with a speci-
men stub and acts as movable table. The second robot has four
degrees of freedom(x, y, z, phi) and is equipped with a state of
the art microgripper.

This cell was already used in earlier experiments re-
garding high speed positioning. In [11], the system was au-
tomated doing fast pick and place of microspheres using the
algorithm presented in [2]; with the bottom tracking approach
discussed in Sec. 1. For the experiments, a high-speed camera
was mounted on top of the microscope (see Fig. 5.1).

Robot

Glass

Control Units
actuation signals

microscope

BLOB extraction

pixel
data

CAN

Figure 5.1: Setup of the handling cell.
The BLOB extraction hardware was tested for in tasks.

Firstly, it was used as a tool tracking device to have higher
placement accuracy than the bottom tracking approach ([3]).
Secondly, it was used to extract and classify objects for pick
and place handling.

5.1 Tool tracking

If connected component labeling is used to track a tool (e.g. a
micro-gripper), the position must be determined from the above
described features. There a two possibilities: track the gripper
itself or track an applied marker.

Figure 5.2: Bounding box and main axis of the gripper in two dif-
ferent positions.

If the gripper is tracked, the position of the gripper’s tip
can only be determined with prior knowledge of the gripper’s
orientation. While the gripper moves, the size of the gripper’s
region, the center of gravity and the contour length vary. There-
fore, these features can not be used to find the tip position. The
same limitation applies to the main axis, as the axis rotates de-
pendent on the gripper’s visibility as shown in Fig. 5.2. How-
ever, if the orientation of the gripper is known, the tip position
can be taken from the bounding box. The position is not reli-
able if the background can be erroneously counted to the grip-
per. Additionally, a closed gripper is a special case that has to

be treated differently, as the two regions may become one. All
these limitations make the direct tracking of the gripper unfea-
sible.

To allow for a feasible tracking, a marker was applied to
the gripper jaws. This was done using focused ion beam tech-
nology. Fig. 5.3 shows the microscopy image as well as an
electron microscopy image of the applied marker.

Figure 5.3: Left: Microscopy image of the gripper with applied
markers. Right: Scanning electron microscope image of a single
marker on the gripper jaw.

Tracking the applied marker overcomes the above de-
scribed limitations. The region size of the marker does not vary
significantly, nor does the center of gravity or the main axis.
The main axis together with the (weighted) center of gravity
can be used to locate the gripper’s pick-up point. Fig. 5.4 illus-
trates how the point is found. The main axes of both markers
are drawn through their center of gravity points. The gripper
pick-up point is at the intersection of both lines. If the gripper
is open, there is an offset in x direction. However, this offset
can be calculated a priori. If the gripper is closed, the position
is correct. As the intersection point and the two center of grav-
ities form an isosceles triangle, the offset for the open gripper
can be calculated independently of the grippers rotation using
trigonometric functions.

Figure 5.4: Tool placement point calculated by intersection of the
main axes.

The visible scene of the microscopy image has a dimen-
sion of approx. 780×580 µm. The mounted camera has a reso-
lution of 1024×768 px. A single pixel corresponds to approx.
0.75 µm. The resolution of the applied tracking is sub-pixel
accurate. For a high accuracy, the weighted centers of gravity
should be used as points for the triangle, as this has a better
resolution and lower nose ([2]). The accuracy of this tracking
is below 0.4 px, corresponding to less than 300 nm.

The update rate of the system is dependent on the used
camera as well as the used connected-component implemen-
tation. However, with all cited implementations update rates
above 200 Hz can be achieved for a one MPixel image. Ad-
ditionally, the FPGA-based tracking approach is superior to
software-based approaches in terms of latency and jitter as an-
alyzed in [2].

5.2 Object detection and classification

Object detection based on static boundaries was tested. For
this, microspheres of different type and material were placed



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012, TAMPERE, FINLAND / 6

under the microscope. The goal was to classify each sphere to
the correct size and material. Four different sphere types where
used:

• 40 µm aluminum spheres

• 40 µm polystyrene spheres

• 53 µm polystyrene spheres

• 50 µm glass spheres

The different materials lead to different light reflections
as shown in figure 5.5.

Figure 5.5: Different reflection of different materials. Left to
right: aluminum, polystyrene and glass.

As the basic shape of all objects are the same, the main
axis and the PCe value have no impact on this special classifi-
cation. The features with the best impact are number of pix-
els, bounding box area and contour length. The glass spheres
additionally differ from the rest of the samples in the average
grayscale.

100 samples of each object were used for classification
testing. With experimentally found borders, over 95 % of the
samples are classified correctly. The wrong classification was
always between the polystyrene samples that only differ in size.
The reasons for the misclassification are illumination and focus
variations.

6 Conclusion and outlook
Image-based object-detection and classification is a key task in
micro- and nanohandling, state of the art is to use PC-based sys-
tems. FPGA-based systems are superior regarding update-rate,
jitter and latency.

A algorithm for hardware-based object detection is pre-
sented. The algorithm can extract several features of an object
during the detection.

With new PCA-based features of regions, high-speed
sub-pixel accurate tracking of a microgripper becomes feasible.
Additionally, it was shown that high-speed object classification
with static bounds is possible.

Future work will focus on experiments for object clas-
sification. Firstly, more different objects with different shapes
and sizes will be used. Secondly, a neuronal network will be
used for the object classification and compared to the static bor-
ders method. Thirdly, experiments will be performed with ob-
jects with high aspect ratio. To handle those objects with a mi-
crogripper, alignment of object and gripper has to be achieved.
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NOMENCLATURE 
f Fraction of solid surface area wet by the 

liquid 
F  Capillary force 

F  Viscous force 

h Liquid droplet film thickness 
l Part length 
m Part mass 
r Surface roughness 
w Part width 
x x-bias, the difference between the initial 

position and the equilibrium position of a 
part during self-alignment 

 
Greek symbols 
  Surface energy 
  Contact angle 

0  Contact angle of a perfectly smooth surface 

21,  Contact angles of surface patterns 1 and 2, 
respectively 

  liquid viscosity 
  pad edge angle 

 

 
 
1. Introduction  

 
Manufacturing of high-precision microproducts 

traditionally often requires high-precision mechatronics and 
measurement systems capable of better precision than the 
desired results, which make the system either bulky or very 
expensive. On the other hand, the trend towards desktop 
manufacturing requires smaller system size and decreased 
costs, which is at odds with the requirements on assembly 
precision and capabilities. Thus, high-precision manufacturing 
becomes a challenge especially when the required throughput 
is high and the system size is small. Therefore, a solution to 
achieve high precision at high throughput with the constraint 
of low cost and low precision mechatronics is desired. 

Capillary self-assembly process is an integration 
technology which achieves that performance, by correcting the 
pick-and-place errors of robotics using surface-tension driven 
self-alignment. Solder self-alignment 1 has long been used in 
surface-mount soldering and flip-chip assembly. Unfortunately, 
solders usually require high temperature processing. 
Furthermore, the metallic composition can have dramatic 
effects on the melting and wetting behavior of the solders, 
making it hard to apply the solders in low temperature 
conditions. 

Our research group has done extensive studies in capillary 
self-assembly using water and oil-like liquids, such as low-
temperature or UV-curable adhesives. This paper summarizes 
the results our findings, proposes design rules for practical 
applications of capillary self-assembly in robotic 
microassembly, and discusses the applicability of capillary 
self-assembly into desktop manufacturing. 
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Capillary self-assembly is an integration technology where the surface tension of a liquid droplet 
aligns parts to receptor sites. This self-alignment can used to correct the pick-and-place errors of 
microrobotic handling platforms. This paper summarizes our studies in capillary self-assembly, and 
proposes design rules based on theoretical and experimental analysis. Finally, the integration of 
capillary self-assembly into desktop manufacturing is discussed.
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2. Capillary self-assembly 

 
When a droplet of liquid is placed between a part and a 

receptor site, the droplet forms a meniscus and aligns the part 
to the substrate. This is called capillary self-assembly 1 
(Fig. 1). The phenomenon is a consequence of the surface 
energy of the droplet: the energy is minimized when the 
surface area of the droplet is minimized, i.e. when the part is 
aligned to the receptor site. 

 

 
Figure 1. Illustration of the capillary self-assembly principle: a) A 

droplet forms a meniscus between a part and a receptor site. b) 

The surface tension of the droplet self-aligns the part to the 

receptor site. c) Perspective view of the phenomenon. d) View 

from the top: droplet self-alignment can correct both position and 

orientation of the part. 
 
2.1 Inhibiting liquid spreading 

The key to capillary self-assembly is to confine the 
wetting of the droplet between the part and the receptor site. 
The wetting properties of the surfaces depend on the surface 
materials, the droplet liquid, addition of surfactants, medium 
(air, water, vacuum etc.), temperature, surface charge etc. Two 
general approaches for inhibiting liquid spreading can be 
identified: high wettability pads on a low wettability 
background, as done in the receptor site of Fig. 1, and sharp 
edges, as done with the part in Fig. 1. The approaches are 
illustrated in Fig. 2. 

 

 
Figure 2. Inhibiting liquid spreading. a) When a droplet is placed 

on a pad with high wettability (contact angle θ1) on a low 

wettability background (contact angle θ2), the droplet assumes 

the shape of the pad. b) When there is too little liquid, the pad is 

not fully wetted. If there is too much liquid, the liquid overflows 

and wets the background. c) Liquid spreading can also be 

inhibited by a sharp edge 

                                                           
1 Capillary self-assembly has also been called droplet self-
alignment, surface tension driven self-assembly or solder self-
alignment (if the liquid is solder) 

 
High wettability is usually taken to mean contact angles 

less than 90º, while low wettability means contact angles more 
than 90º. However, this division is rather arbitrary, and for the 
purposes of capillary self-assembly, the difference between 
wettability of the areas is the important, not only the absolute 
values. 

Many high wettability materials exist e.g. silicon dioxide 2 
exhibits this omniphilic (wetted by all solvents, water contact 
angles around 0 – 30º) behavior. However, finding low 
wettability materials for low surface tension liquids (e.g. oils, 
adhesives) is more of a problem. The key in achieving ultra-
low wettability materials is a combination of re-entrant surface 
curvature with low surface energy material 3. 

Fluorocarbons. Fluorocarbons have the lowest surface 
energies known for materials 4. Teflon-like fluorocarbons have 
long been known for their water and dirt repellent properties. 
Fluorocarbons suitable for droplet self-alignment have been 
deposited e.g. in a plasma process using CHF3 

5 as the source 
gas. Alternatively, fluorocarbon coatings can be chemically 
deposited as self-assembled monolayers 6,7, based on silane or 
thiol chemistry. Fig. 3 shows square-shaped silicon dioxide 
pads on plasma-deposited fluorocarbon background. The 
droplets have clearly taken the shape of the pad. The wetting is 
incomplete only in the corners, which are rounded. 

 

 
Figure 3. Water droplets on silicon oxide pads on CHF3 plasma-

deposited fluorocarbon background.  

 
Porous structures. Porosity and re-entrant surface 

curvature can alter the effective contact angle on a surface 3,8. 
Pockets of gas may become trapped under the liquid reducing 
the contact area with the droplet. Cassie-Baxter 8 equation 
describes the effect of the porosity and surface roughness on 
the apparent contact angle 

 
  1coscos 0  ffr    (1) 

 
where   is the apparent contact angle, 0  is the contact 

angle for a perfectly smooth surface, 1r  is the roughness 
factor (ratio of the surface area to the projected surface area) 
and f  is the fraction of the droplet area that is in contact 

with the surface. 
Many natural and artificial materials have such a 

microstructure 9 e.g. lotus leaves 10 and fabrics. Several 
artificial methods for creating rough surfaces with reduced 
wettability have been proposed 11; however, self-alignment 
needs not only microstructure, but also receptor site patterns 
on it, and not all materials are suitable for further processing 
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without losing their low wettability properties. 
We have shown self-alignment on several different types 

of patterns on low wettability background based on a 
combination of nano-rough texture and fluorocarbon coating 
e.g. silicon dioxide on black silicon “nanograss” background 5 
or gold patterns on fluorocarbon coated nanoporous 
ORMOCER 12. 

 
Sharp edges. Pads with sharp edges can also inhibit liquid 

spreading [11]. The Gibbs condition for liquid confinement is 
 

00 )º180(       (2) 

 

where   is the angle of the pad corner (see Fig. 2c). The 
liquid behavior is quite similar as having two wettability 
regions with a theoretical contact angle difference of 

)º180(  . The advantage of using sharp edges is in its 
simplicity: no chemical methods are needed. The disadvantage 
is that once the liquid spills over the edge, nothing is stopping 
it or dewetting it back to the pattern edge, and the self-
alignment will most likely fail. 

We have used SU-8 photoresist to define protruding 
patterns and shown self-alignment on these patterns 13. The 
contact angle of our SU-8 pads is normally around 50º, but 
about 90º angle at the pad edge can inhibit liquid spreading 
until the contact angle goes past 140º. 

 
2.2 Dynamic modeling 

In the following Section, a simplified dynamic model of 
the capillary self-assembly is developed, which will later on be 
used as a basis for the design rules. 

For square shaped pads (Fig. 4), by assuming a) perfect 
wetting of the chip and the pad; and b) parallelepiped-shaped 
droplet; and c) small displacement, the restoring force F  

(“spring force”) from the surface tension is given by 14,15 
 

 
Figure 4. Approximating droplet shape with a right 

parallelepiped. 

 

hwxhxwxF
hx

/2/2 22  


      (3) 

 
where   is the surface tension, w is the width of the chip, 

x is the displacement of the chip from equilibrium and h is the 
height of the liquid meniscus (see Fig. 4). Furthermore, 
assuming linear velocity profile inside the liquid, the viscous 
force can be written as 1  

 

dt

dx

h

lw
F


       (4) 

 
where   is the liquid viscosity, l is the length of the chip 

and dx/dt is the velocity of the chip. Combining the two with 
Newton’s law, we get the second order dynamics  
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where m is the mass of the chip. The characteristic 

polynomial of the dynamic system has two poles 
2,1s  at 
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None of the assumptions of this model are entirely 

justified in practice, but the model already gives good 
understanding on the behavior of the process. For full 
derivation of the equation and discussion on the validity of the 
assumptions, interested reader should see references 16–19. 

 
3. Design rules for droplet self-alignment 

 
3.1 High surface tension helps liquid confinement 

The surface tension of the liquid plays a role in finding 
suitable materials for making the patterns. Many oil-like 
liquids (e.g. adhesives) have a small surface tension (~ 20 – 40 
mN / m) compared to the surface energy of all known 
materials, which means they will have a small contact angle 
on the solid and therefore wet the solid easily. For small 
surface tension liquids it is difficult to find solids with low 
enough energy to inhibit liquid spreading. This can be partly 
overcome by using a combination of porous material and 
fluorocarbons, but one simple solution for finding low 
wettability materials is to simply choose a high surface tension 
liquid as the self-alignment liquid in the first place. 

This is partly the reason why many early self-alignment 
experiments in air were done using high surface tension 
liquids such as water 20. When adhesives have been used, the 
liquid confinement is usually achieved using sharp edges 
instead 17,21. 

 
3.2 Liquid volume is critical 

The fluidic film height is set by the fluid volume. The 
restoring force (eq. 3) near the equilibrium scales as F ~ 1/h. 
This suggests that smaller droplets should be beneficial, due to 
increased forces acting on the chip. However, too small a 
droplet will hinder the self-alignment due to tilting of the chip 
and dry friction hindering the self-alignment. 

If the liquid used does not evaporate (e.g. many adhesives 
in room temperature or solders during reflow), the liquid 
height is fixed and it is expected either too large or too small 
liquid amount to fail. We have confirmed this parabolic 
dependence of the success rate on the liquid volume using 
adhesives on oleophilic/oleophobic patterns 12. Using parts of 
the size 200 µm × 200 µm, we found that the assembly was 
most successful with the droplet size around 0.5 nL – 1.5 nL. 
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Significantly smaller or larger amounts failed. 

The situation is different with droplets that evaporate e.g. 
water in room temperature. Due to the evaporation, the droplet 
gets progressively smaller during self-alignment, which 
increases the force. There is a possibility that the increased 
force corrects initial alignment errors. While excessive 
amounts of liquid will still deteriorate the self-alignment, 
larger droplets are less critical for success rate. We have 
measured the yield of water droplet self-alignment as a 
function of droplet volume experimentally; the optimum water 
droplet volume for 300 µm × 300 µm was 1.8 nL and 98% 
yield was achieved when droplet volume was between 0.97 
and 3.07 nL, if other parameters are kept optimal. For 100 µm 
× 100 µm the optimum volume was 0.7 nL 13. 

For practical applications of capillary self-assembly with 
part sizes close to these, these values offer a reasonable 
starting point. However, as of yet, we have not fully confirmed 
how the optimum droplet volume scales as a function of pad 
size. 

 
3.3 Release height is the most critical positioning dimension,  

With too high releasing position, the wetting is not 
complete (see Fig. 5a). When the chip is released, the wetting 
will continue (Fig. 5b), but the progression depends largely on 
the initial state of the meniscus. There is a risk that the chip 
tilts before the wetting is complete and dry contact is created, 
preventing the self-alignment. Similarly, if there is meniscus at 
all and the chip is released, the chip can still fall due to gravity 
and/or speed upon release into contact with the liquid, but the 
wetting may not be even or fast enough to prevent dry contact 
failure. 

If the chip is lowered too low, the liquid will bulge from 
the sides (see Fig. 5c). If sharp edges are used for inhibiting 
liquid spreading, there is a critical contact angle after which 
there will be catastrophic overflow of the liquid, preventing 
self-alignment altogether (Fig. 5d). In the case of patterns with 
wettability contrast, the receding contact angle of the 
background can still be too large for the liquid to 
spontaneously recede back to the pattern, and the alignment 
fails again. 

For 300 µm × 300 µm parts we have measured the 
optimum release height as 47 µm and 98% yield was achieved 
when the release height was between 25 and 69 μm 13.  

 

 
Figure 5. Effect of releasing height on self-alignment. a) Too high 

releasing position. The wetting is incomplete and there is a risk of 

failure when the chip is released. b-c) Good releasing positions. d) 

Too low release position. The chip was pushed too low and the 

liquid overflows the patterns. In the case of geometric pinning 

effect, there is no force to pull the liquid back, and the self-

alignment most likely fails. 

 
3.4 Low viscosity, high surface tension and smaller chip size 
speed up the process 

In eq. 5, when the system is very damped (damping 
coefficient 18/ mwhwl  ), the dynamics will be slow 

and the self-alignment will take a long time. The dynamics are 

dominated by the pole 2s , which is closer to zero and it can 

be approximated by 
 

 



l
hmwwlwl

hm
s

2
8

2

1 222
2   (7) 

 
and the associated time constant )2/(/1 2  ls  .  

Larger viscosity gives slower dynamics. Larger surface 
tension gives faster dynamics. This is a direct consequence of 
the fact that liquid viscosity increases the damping force and 
surface tension increases the capillary force. 

With high enough surface tension or low enough viscosity, 
the system will have two significant poles, and ultimately it 
will be under damped and exhibit oscillatory behavior. 

Eq. 4 underestimates the viscous force and therefore the 
oscillatory behavior is not often observed in practice, even 
with low viscous and high surface tension liquids such as 
water. However, oscillatory behavior has been reported in very 
high surface tension liquids, such as solders 1. 

Eq. 7 gives good rule of thumb for the scaling of the self-
alignment time. The self-alignment time is expected to scale as 

 /~ l , a result which can be also be derived using simple 

dimensional analysis. With water ( mmN /72 ), we have 

measured self-alignment times of about 90 ms 13 for 
300 µm × 300 µm parts in room temperature ( smPa 1 ). 

For low viscosity adhesives ( mN /7.53 , 

smPa  400 ), we measured self-alignment time of 500 ms 
12 for 200 µm × 200 µm parts in room temperature. When 
designing droplet self-alignment, these values can be used as a 
starting point and scaled accordingly to give an estimate of the 
expected self-alignment time. 

 
3.5 High wettability contrast is beneficial 

When using wettability contrast for confining the wetting, 
it is beneficial to have as high wettability possible for the pads 
and as low wettability as possible for the background so that 
the liquid takes exactly shape of the patterns, but does not 
overflow. Fig. 6a illustrates this situation. 

In Fig. 6a, continuing with the parallelepiped 
approximation, the maximum contact angle at the pad edge is 

2   and at that moment, the displacement x is given by 

 
)º90tan(/ 2  hx    (8) 

 
This does not mean that the self-alignment will always fail 

when x is larger than the limit of eq. 8, but beyond this point, 
there is a risk of overflowing the pattern and the dewetting 
characteristics of the background material need to be 
considered also. 

When using sharp edges (Fig. 6b), the situation is slightly 
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different. Inserting the upper limit of eq. 2 into eq. 8 gives 
 

)º90tan(/ 0 hx    (9) 

 
and when x is larger than given by eq. 9, the left edge 

overflows and the self-alignment likely fail. In reality, the 
meniscus is curved and the receptor site and chips are not fully 
wetted, so that eq. 8 and 9 give only rough estimates for the 
magnitude of positioning errors that can be corrected using the 
receptor sites and patterns.  

 

 
Figure 6. Maximum displacement before liquid overflow when 

trying to pull the chip over the pad edge when using a) surface 

patterns; and b) sharp edges. 

 
4. Integrating droplet self-alignment into a 
desktop factory 

 
In order to apply droplet self-alignment in a desktop 

factory, several steps need to be considered, including: a) how 
to integrated capillary self-assembly with robotic pick-and-
place systems; b) how to fabricate the alignment pads? c) how 
to dispense liquid? and d) how to achieve final bonding. In the 
following subsections, we discuss potential solutions to these 
problems. 

 
4.1 Integration with robotic pick-and-place systems 

Capillary self-assembly can be used to correct the pick-
and-place errors of robotic systems. We have previously 
discussed this concept of hybrid microhandling 22. In hybrid 
microhandling, first a microrobotic handling platform picks a 
component, and brings it close to the assembly site. Liquid is 
dispensed on the assembly site, and the part is brought into 
contact with the liquid. Finally, the capillary self-assembly 
aligns the part to the assembly site. 

The accuracy of the robotic systems can be very low, 
because the capillary self-assembly defines the final accuracy. 
For lateral accuracy, an estimate of the required precision can 
be calculated using eqs. 8 and 9. We have experimentally 
verified that the yield was over 98% even when the lateral 
positioning errors were less than 80 µm for 300 µm × 300 µm 
parts. 

The most critical positioning dimension is the release 
height (see Section 3.3), so that most accurate positioning 
systems should be in this direction. 
 
4.2 Alignment pad fabrication 

Two major approaches for alignment pad fabrication were 
identified: a) creating high wettability areas on low wettability 
background using a combination of surface topography and 
surface chemistry; and b) using a pad with sharp edges for 
inhibiting liquid spreading. 

Considering a desktop factory where all fabrication and 
assembly steps are carried out, the integration of chemical 
reactors for surface energy modification seems unlikely. 
Therefore, the surface energy can only be affected by the 
choice of the base material, and, in the case of working on 
single material, the choice of material affects the surface 
energies of both the pad and the background. Surface 
topography can be controlled using abrasive methods, but 
surface topography alone may not be enough for reliable 
droplet confinement.  

Using sharp edges for inhibiting liquid spreading has 
several attractive properties considering desktop factories: it 
can be implemented using one material and it can naturally 
confine even oil-like adhesives. In practice, the sharp edges 
can be created using material removal methods e.g. using laser 
micromachining 23. 
 
4.3 Liquid dispensing 

Liquid dispensing methods can be divided into three major 
categories: a) non-contact methods; b) contact methods; and c) 
parallel, stochastic dispensing methods (Fig. 7). In non-contact 
methods, a droplet is shot from a nozzle to the assembly site. 
In contact methods, the droplet is formed into a nozzle of a 
needle and dispensed by bringing it into in contact with the 
pad. In parallel methods, liquid is delivered randomly to the 
substrate e.g. by condensation from vapor phase or by water 
mist droplets impacting on the surface. We have successfully 
applied all three dispensing methods in droplet self-alignment 
12,13,24. 
              a)                      b) 

 
 

c) 

 
Figure 7. Liquid dispensing using a) non-contact dispenser, where 

the droplet is shot from the nozzle of the dispenser; b) contact 

dispenser, where the dispenser touches the assembly site using a 

needle; and c) parallel spraying using water mist. 

 
Considering integration into a desktop factory, the most 

suitable dispensing method depends on the chosen liquid. In 
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the particular case of water, parallel dispensing from water 
mist has the benefit of being able to work without direct 
contact with the assembly operation, so that the dispensing 
system can be kept far away from the actual assembly 
operation. 

 
4.4 Bonding 

Final bonding can be achieved using a) post-bonding 
methods after the self-alignment e.g. part-matching, soldering 
or welding; or b) using bonding liquid e.g. an adhesive as the 
self-alignment liquid. 

If post-bonding is used, then the self-alignment process is 
only used for the pre-alignment of the parts to the receptor 
sites. The main improvement is that no high accuracy robots 
or vision systems is required. Post-bonding using part-
matching seems viable in the context of desktop factories, as 
the same manufacturing method used for geometric pad 
fabrication can be used for making the part-matching joints 
(e.g. pegs and holes). 

Curable adhesives have the added benefit that no further 
bonding is required. However, adhesives have usually low 
surface tension and high viscosity, which complicates the self-
alignment process, so that this choice is not independent from 
the rest of the process design. High viscosity of the adhesives 
requires contact dispensing, as discussed previously, and low 
surface tension complicates the wetting pad confinement. 

Considering a desktop factory and adhesives, the curing 
method has to be considered also. UV-curing and temperature 
curing are popular alternatives. Some adhesives can be cured 
in room temperature, but this process is typically slower than 
UV- or heat-induced curing. For a desktop factory, all the 
methods seem viable: the integration of UV-light or heating 
element should not pose a too large of a problem. Fig. 8a 
shows UV-curing being applied in situ in a microassembly 
station after a capillary self-assembly operation. Fig. 8b  
shows results of a heat-cured adhesive after self-alignment, 
inspected under scanning electron microscope (SEM). 

 
a) 

 
b) 

 
Figure 8. a) UV-curing being applied in situ, after adhesive 

droplet self-alignment of 200 µm x 200 µm SU-8 parts; b) Results 

of the self-alignment, inspected in SEM. The top chip is aligned to 

the bottom pattern even after curing of the adhesive. 

There are adhesives with various viscosities and surface 
tensions with all different types of curing methods (albeit, in 
general, the surface tension of the adhesives tends to be low 
and the viscosity high). Therefore, the choice of the curing 
method is less restrictive in terms of the process design. 

 
5. Conclusions 

 
We have proposed general design rules for droplet self-

alignment processes. High surface tension helps liquid 
confinement on patterns. High surface tension, low viscosity 
and small size speed up the process, and the self-alignment 
time is expected to scale as  /~ l . The critical parameters 

that should be in acceptable ranges are liquid volume and 
release height. Finally, the liquid should be confined inside 
the patterns using topographical and chemical surface 
modification methods or by using sharp edges. 

Based on previous experience and theoretical analysis of 
the process, we discussed the applicability of capillary self-
assembly into desktop manufacturing. 
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NOMENCLATURE 

 

AIH = Air Injection Hole 

ASH = Air Suction Hole 

AIP = Air Injection Pressure (P) 

ASP = Air Suction Pressure (V) 

Fluctuation = Glass deflection 

 

 

 
1. Introduction  
 

LCD is an abbreviation for 'Liquid Crystal Display' and it 

is widely used. LCD production is comprised of various 

complicated processes such as PECVD (Plasma Enhanced 

Vapor Deposition) → Sputtering → Photo-lithography → Dry 

etch. [1] After these processes, the LCD product is examined 

in the final inspection. 

A defect in LCD panel has an enormous impact on the 

performance. The inspection process on the LCD is one of the 

very important processes, and recently companies are more 

emphasis on the inspection stage in order to find and resolve 

defect for its quality. 

LCD is examined by eyes (macro), microscopic (micro) 

and combines (macro-micro). Micro examination equipment is 

precise inspection, however, it takes a long time for 

examinations and macro-micro equipment is usually 

expensive. For this reason, macro examination equipment is 

used commonly [2]. 

 

 

 

 

 

 

 

 

Fig. 1 Process of macro LCD inspection system [3] 

 

Generally, the roller is applied to macro inspection system 

for reducing the inspection time through continuous inspection. 

This roller method can reduce inspection time but can also 

cause scratches on the glass or excessive glass fluctuation 

glass, and such scratches induce defects and excessive LCD 

fluctuation can cause the glass to go out of the view range of 
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LCD production is comprised of various complicated processes. A defect in LCD panel has an 
enormous impact on the performance of LCD so the inspection of the product is one of the very 
important processes. LCD inspection system can be classified into macro, micro, macro-micro 
composition types. Micro examination equipment is capable of precise inspection, however, takes a 
long time as it conducts examinations locally and macro-micro equipment is usually expensive. For 
this reason, macro examination equipment combined roller for in-process is used commonly. This 
roller method can reduce inspection time but can also cause scratches on the glass or excessive 
fluctuation of the glass, and such scratches can lead to LCD product defect and excessive fluctuation 
of glass can cause going out of the view range of the CCD camera. This study suggests the use of air 
pad in replacement of the roller to eliminate scratches or excessive fluctuation, the problems of roller 
inspection device while minimizing the inspection time. 
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the CCD camera under 30 ㎛.  

This study suggests the use of air pad in replacement of 

the roller to eliminate scratches or excessive fluctuation, the 

problems of roller inspection device while minimizing the 

inspection time. 

In the air pad inspection system, the bed comprised with 

inlet part, inspection area, and outlet parts is attached to the 

LCD glass through vacuum suction with air injection for 

equilibrium of air pressure while it is conveyed in the system. 

The inspection is conducted through the CCD camera which 

mounted to the inspection device. However, the pressure 

generated while supplying air into the air pad caused the 

fluctuation of the LCD glass that lead to problems such as 

going out of the view range of the camera (under 30 ㎛) 

during the inspection process. [4][5] The air pad is a device of  

applied the air pressure. It is generated by the air emitted 

through microscopic holes to act as the sliding bearing for the 

conveyed object [6]. Its performance is depended on the air 

gap between pad and glass, air suction and injection pressure, 

shape and size and the arrangement of the air emitting holes. 

For this reason, this study intends to optimize the air pad 

design to minimize the fluctuation of glass while conveying 

for satisfaction on the view range of the CCD camera. 

 

 

2. Analysis of air pad used FEM 
 

2.1 Distribution of AIH and ASH  

 

More than the required holes will make long time and 

great cost. This study intended to make appropriate number of 

holes with the direction of progress under the influence of 

pressure distribution. First of all, ASH was ignored and only 

the effect of the AIH was taken into consideration in the FEM 

analysis. 

 

 

Fig. 2 Distance of each AIH 

 

Fig. 2, A is the longitudinal direction of the air pad and B 

is the crosswise direction. The black line is the section of 

detection for the glass deflects. Analysis process is that A or B 

is fixed and increased for adjusting to reduce the number of 

holes, AIP condition is 94kPa with AIH size is ø0.3mm. 

 

Table 1 Principal mechanical properties of LCD glass and  

Thickness of LCD glass [mm] 0.7 

Density of LCD glass [kg/m
3
] 2600 

Poisson's ratio 0.29 

Young's modulus of LCD glass [GPa] 72 
 

 

 

 

 

 

 

 

 

 

(a) Self-load 

 

 

 

 

 

 

 

 

 

 

(b) 40×43mm (A×B) with air injection 

 

 

 

 

 

 

 

 

 

 

(c) 80×43mm (A×B) with air injection 

 
 
 

 

 

 

 

 

 

 

(d) 120×43mm (A×B) with air injection 

 

 

 

 

 

 

 

 

 

 

(e) 40×86mm (A×B) with air injection 

 



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012,TAMPERE, FINLAND  /  3 
 

 

 

 

 

 

 

 

 

 

 

 

 

(f) 40×129mm (A×B) with air injection 

Fig. 3 Glass deflection by air injection with self-load 

 

The analysis of glass deflection by self-load with air 

injection is shown in Fig. 3, the difference between the 

deflection on both ends of the glass and the center is over 

100um. When adjusting the gap in the direction B (as there are 

more AIH in direction B), the overall flatness of the glass 

increases. But it goes out of the view range within the CCD 

camera under 30 ㎛ as mentioned. 

It was impossible to eliminate the deflection of the LCD 

glass by self-load only with the application of the AIH. It was 

assumed that the glass has to be supported with consistent 

force through the balance between AIP and ASP in order to 

eliminate deflection in the center of the glass or the lifting on 

both ends. 

The ASH is applied to control the pressure balance and 

analyzed the deflection of the glass. The application of AIH, 

AIP conditions are 94kPa and ASP condition is 84kPa with 

AIH size is ø0.3mm, ASH size is ø0.5mm. 

 

 

Fig. 4 Pressure distribution on the pad surface with AIP, ASP 

 

When four AIH (14×14mm) and one ASH are applied, the 

deflection in the local pad was calculated to be a few nm as in 

Fig. 4. It is considered that there is no deflection near the air 

supply hole. 

 
2.2 Equilibrium between AIP and ASP 

 

If the ASP is applied, the glass can be stable state when the 

ASP distribution equals with AIP. In other words, the pressure 

has to be relatively equalized in order for reducing the 

fluctuation of the glass. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Equilibrium of AIP with ASP [7] 

 

The parallel between AIP and ASP at 50 ㎛ from the pad 

is shown in Fig. 5. The areas of x axis are similar to each other. 

Section 1 is the ASP and section 2 is the AIP. It can be applied 

to design the pad and the application pressure. 

For analyzing equilibrium between AIP and ASP, each 

holes distance is 15×15mm and arranged likes checkerboard. 

For control the low pressure in a high pressure area, orifice or 

chamber must be applied to pressure dropping [8]. 

Pressure dropping effect by orifice is shown in Fig. 6. 

With ø4mm AIH and ø1mm orifice, approximately 1/3 or 

more pressure dropping can be achieved. In other words, low 

pressure can be controlled. 

Analyzing conditions of orifice transformation are the AIH 

and ASH is ø4mm and the orifice hole is ø0.3mm. AIH and 

ASH are placed in the checkerboard arrangement. The AIP is 

50kPa and ASP is 40kPa are applied. The pressure was formed 

around 50 um distance from the pad and it was constrained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Orifice effect and transformation profile 

 

As shown in Fig. 6, the pressure profile appears 

symmetrically because the AIH and ASH are the same size. 

Also, air injection and suction are almost parallel. 

 
3. Design of air pad on system 

 

The air pad is divided into three types: self-compensation, 
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surface-compensation and porous-compensation type. Self-

compensating type is easy to produce, but the repetitive error 

and exhausting vibration are problem. The surface-

compensation type has the advantage of a great diversity and 

minimizing the gap to the bearing. The porous-compensation 

type has the multiple layer structure for preventing air hammer 

and can use various materials but it is relatively difficult to 

process and produce [9]. 

Self-compensation type air pad is applied in this system. It 

is designed such as dimensionless load capacity, dimensionless 

strength, and dimensionless flow. Particular it determined by 

MTI Chart and equations as in Fig. 7. 

 

 

 

 

 

 

 

 

 

Fig. 7 Equations for air bearing design [10] 

 

Self-compensation type air pad is designed that holes are 

arranged the checkerboard for the force equilibrium [11], the 

AIH and ASH are manufactured by FEM analysis basically. 

Also, it is applied to orifice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Designed and manufactured inspection system with air pad 

 

Fig. 8 is the manufactured air pad device and inspection 

system. The conveyer unit of the LCD glass is mounted to the 

air guide to control pitching, tilting, and rolling. A stepping 

motor was mounted under the air guide to enable precise 

conveyance (1/1000mm). Also, a control program was 

developed to control position and obtain data. For air injection 

and suction, separate tanks are installed to maintain the air 

injection and suction volume delivered from outside constantly. 

 
4. Air pad evaluation on inspection system 

 

Inspection device is divided into 3 paths which along 

carried glass direction, as shown in Fig. 9; carry in part, 

inspection area, carry out part, and 3 laser displacement 

sensors are placed in the inspection area to measure the 

fluctuation when conveyed the glass. The fluctuation condition 

by feed rate and air supply, it does not have enormous impact 

on the decrease or trend of the glass fluctuation [12]. 

 

 

 

 

 

 

 

 

 

 

(a) Air pad of all areas on inspection system 

 

 

 

 

 

 

 

 

 

 

(b) Air pad of inspection area 

Fig. 9 Design of air pad on inspection stem 

 

For measure the fluctuation of glass, sensor is moved to ①, 

②, and ③ as shown in Fig. 9(b) while the glass is conveyed. 

Fluctuation is appeared differently at measurement points, as 

shown in Fig. 10. The glass is unstable at the beginning area of 

①, fluctuation is less than 20 ㎛ at ②, and unstable again at 

③. This indicates that the fluctuation of the glass decreased by 

the load supporting capacity increased. The AIP at the carry in 

and carry out part are 101kPa, and inspection area pressure is 

50kPa. The AIH and ASH are arranged in the same interval (L

×L mm) in the inspection pad. 

 

 

a. Sensor position ① 

 

 

 

 

 

 

 

(a) Sensor position ① 
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(b) Sensor position ② 

 

 

 

 

 

 

 

 

 

 

 

(c) Sensor position ③ 

Fig. 10 Fluctuation at inspection area depends on sensor positions 

 

The AIP for the carry in and carry out part is fixed to 

101kPa, the ASP of the inspection area is 50kPa, and the 

arrangement of holes in the all pad are changed to 2L×2L mm. 

Fig. 11 shows relatively unstable state compared with L×L 

mm arrangement and it is difficult to control the fluctuation 

under 30 ㎛. 

 

 

 

 

 

 

 

 

 

 

 

(a) Inspection part pad P = 25kPa 

 

 

 

 

 

 

 

 

 

 

 

(b) Inspection part pad P = 30kPa 

 

 

 

 

 

 

 

 

 

 

 

(c) Inspection part pad P = 35kPa 

 

 

 

 

 

 

 

 

 

 

 

(d) Inspection part pad P = 40kPa 

Fig. 11 Fluctuation at inspection area depends on gap of each hole 

 

As shown in Fig. 11(b), the fluctuation of the glass is 

measured at approximately 20 ㎛ or less. This means that 

there is a section of stable section while maintaining glass 

fluctuation under 20 ㎛. For this reason, this study intended to 

find stable section and also check the section for the glass to 

be stabilized. 

For measuring fluctuation of glass depended on different 

points at the inspection area, it is divided by L/12, inspection 

area length is 300mm through beginning of the inspection area 

to the end of the inspection area as shown in Fig. 12. CCD 

camera is moved to separated position and check the 

fluctuation of glass. 

 

 

Fig. 12 Measurements of fluctuation by direction 

 

Conditions are 101kPa of carry in and carry out parts and 

38kPa of AIP and 50kPa of ASP for the inspection unit. As 

shown in Fig. 13(a~b), the increase of the ASP became 

relatively greater compared with the AIP after the glass enters 

the inspection area which lead to unstable area at the 

beginning. As shown in Fig. 13(c~d), approximately 20 ㎛ 

fluctuation of glass is occurred from 150mm to 250mm after 

To 

From 
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the glass entered the inspection area. This is satisfied with the 

ability range of the CCD camera under 30 ㎛. As shown in Fig. 

12(e~f), indicate that the glass becomes increase fluctuation 

again in the inspection area which passed 250mm. 

For this, CCD camera must be installed after the 

stabilizing distance and approximately 1L/2(in this system 

150mm) which are applied AIH and ASH in the inspection 

area for stable inspection of the glass. 

 

 

 

 

 

 

 

 

 

 

 

(a) Glass position = -25mm (-1L/12) 

 

 

 

 

 

 

 

 

 

 

 

(b) Glass position = 125mm (5L/12) 

 

 

 

 

 

 

 

 

 

 

 

(c) Glass position = 150mm (6L/12) 

 

 

 

 

 

 

 

 

 

 

 

(d) Glass position = 225mm (9L/12) 

 

 

 

 

 

 

 

 

 

 

 

 

(e) Glass position = 275mm (11L/12) 

 

 

 

 

 

 

 

 

 

 

 

(f) Glass position = 300mm (12L/12) 

Fig. 13 Fluctuation at inspection area depends on glass position 

 

 

5. Conclusions 
 

This study designed pad type air bearing and applied for 

LCD glass inspection system, and it is evaluated the 

performance. The glass is moved to inspection area in the 

section of 0~125mm and then after 150mm the glass is kept 

the stable by the AIP and ASP. But the glass is lost pressure 

equilibrium because of the influence of the AIP when it is out 

of 275mm. Finally, this paper comes to following conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Comparison with fluctuation applied for suction and non-

suction at the air pad 

 

① The air pad for the LCD glass inspection system is 

divided into carry in, inspection area, and carry out part, and 

the each part have different impact on the conveyance the 
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glass. 

② The fluctuation of glass is approximately 100 ㎛ or 

greater when the air is just applied to the inspection area. This 

exceeds the view range of the CCD camera that the ASH 

becomes an essential element. 

 

③ The gap between holes and their arrangement become 

important factors for applying AIH and ASH at the inspection 

area, and narrower gap between holes and checkerboard 

arrangement appeared to be the most adequate. L×L mm of 

hole gap and checkerboard arrangement could achieve 

approximately 20 ㎛ or less fluctuation, and this satisfied with 

the range of the CCD camera for inspection. 

 

④ The inspection area is divided into L/12 to measure the 

fluctuation of the glass in each position. Glass stabilized 

gradually while it entered the inspection area and passed 

0L/12mm~5L/12mm, finally continued to stabilize up to 

6L/12mm~10L/12mm. Therefore, at least 1L/2mm of 

stabilization section is required after the glass enters 

inspection pad. 
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1. Introduction  
 
The situation of manufacturing in industrial enterprises in 
Europe has undergone severe changes over the last two 
decades. This change was mainly triggered in the beginning by 
saving costs in immediate production processes, later it was 
understood that outsourcing to low cost countries especially in 
Asia is not considering the overall economic picture as it 
might be a strategic mistake for a company to give core 
knowledge “out of hand”. The picture changed to consider two 
very interesting questions:  

 

 the local production process as a process for the 

local market 

 how to organize manufacturing economically viable 

for smaller batch sizes and fast changing product 

variants in so called high cost labour countries.  

 
Here we take a short cut bypassing the complex discussion of 
the interdependencies of the different factors influencing this 

area of operations of an (e.g. globally operating) enterprise by 
recurring to the fact that manufacturing cannot any longer 
really rely on cheap labour or cheap ressources at some other 
place in the world. The gaps of labour costs at different 
location in the world are closing notably. On top of this people 
living in 2012 have experienced unforeseen and drastic effects 
of natural hazards like the burst of Islantic vulcanoes as well 
as the yet not fully understood effects of the financial world 
economy.  This forces to ask for some marked measures of 
change in running production in companies. 
 
Why would such basically not technical argument be included 
in the here presented discussion on desktop factories? It is 
because the ongoing research under this topic and the results 
so far available show the potential to provide very effective 
answers to underlying economic problems by:  

 

 reducing the footprint of the factory which means to 

reduce initial investment and running costs   

 reducing the size and the weight of equipment (even 

if it was not supported by suitable modularity) 
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Abstract: Basic thinking in automation is purely technical oriented: how to make a certain procedure in assembly 

more quickly, cost efficient, avoiding if at all possible human interference. For dedicated systems, that is systems that 

produce large volumes of a very low variety of devices, this theory has worked well and profitable in the past. As 

technology is advancing and as customers’ wishes get more sophisticated there is a drive towards the request of 

producing low or lower volumes of small devices with a high variety of product features. This is of course not new 

and widely discussed. The organizational answer to this bouquet of requirements often is outsourcing to so called 

low cost labour countries. Technology can give a differentiated response to this situation. Research in the past few 

years has shown that decentralized systems can be designed in a way that on the one hand human – machine 

cooperation allows for producing smaller volumes in a very flexible way and on the other hand the modularity of 

such decentralized systems enable the production (e.g. the assembly) of a large variety of products in a very 

economical way. This paper will present the latest results of our agentified desktop factory which allows modules for 

different applications to be put into operation via a real plug and produce approach and  due to its control 

architecture will lead in the near future to a completely new way of engineering such systems. 
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minimizes times of changes in the line or relocation 

of parts of the equipment (“put it on another 

desktop”) 

 
Research and development of desktop factories or mini 
factories has be carried out for a number of years. The 
technical promising possibilities that can be provided by this 
work to manufacturing enterprises shall be explained in detail 
when we address the technical requirements in the next section. 

 

 

 

2. Problem to be tackled 
 

Research on reconfigurable manufacturing systems has been 
introduced to explore technological solutions to make an 
otherwise rather static and product fixed production facility 
more flexible. Change to variants or change to new products 
should be faster and not so intensive on investment [1].  
Flexibility is one of the keywords of this discussion [2]. The 
concepts of flexibility and reconfigurability were introduced 
as technical answers to an urgent economic problem: factory 
automation that is compatible even for rising product variety.  
 
The work on flexibility in the 90ties showed the need [3] [4]to 
progress to adaptive systems, system that have the intrinsic 
capacity to adapt to change whenever new equipment or 
software is added. Fig.1 illustrates that this change in focus 
needed to reconsider the interdependency of hardware and 
software in mechatronic devices. Adaptabiliy increased the 
demand on control and software.  

 

Fig. 1 Changing from Flexibility to Adaptability 

 

Studying such systems it becomes clear that the software 
architecture and software content of adaptive hardware is 
completely different from the former generation of 
reconfigurable or flexible systems. As the desktop factory 
requires not only smaller devices but also fast reconfigurable 
and relocatable set ups we consider adaptability a key 
requirement for such installation. 

 

 

 

3. Evolvable systems 
 

Speed, size, software architecture and control power enable 
new technological solutions when it comes to the question of 
downsizing manufacturing equipment, integrating of 
additional functionality and the question of reducing ramp-up 
or change over times. Inspired by the mathematical theory of 

Mandelbrot sets the concept of evolvable assembly systems 
[5] [6] has been developed.  Based on software agent 
architecture as it is used in Internet technology a software 
architecture for mechatronic agents has been put forth that 
links the mechanisms of agent technology down to actual 
automation hardware with IOs and mechanical motion and 
processes on shop floor level. Fig. 2 shows a set of 
mechatronic components as they could be realized with 
components from Festo. The appended “A” at each 
component indicates that the control of the component is 
carried out by an (decentralized) agent. The industrial 
component and it’s functionality implemented in the agent 
code is now merged. A new basic building block of 
automation systems has been formed – the mechatronic agent. 

 

 

Fig. 2 Illustration of mechatronic devices that are equipped with 

agent architecture 

 

Thus a production process can be dealt with on the basis of 
completely new procedures. Plugging in a new module is 
comparable to plugging in a USB stick into a computer. The 
mechanical procedure of putting the stick into the plug triggers 
the negotiation of the new device into the system 
automatically without any further manual interference by the 
operator.  

 

 

 
4. Point of departure 
 

The concept of evolvable systems is especially interesting for 
the desktop factory application. Desktop Factories have been a 
research topic for some time [7] and they also have reached 
some industrial application [8]. Why is it such a interesting 
industrial topic? 
 
For the automation of a process at subsystem level or for a 
complete line a system integrator’s effort is devided into 
roughly two equal blocks of costs: project management, 
hardware and control plus installation, ramp-up, debugging. 
The second block installation, ramp-up and debugging is the 
one in which a modular system approach, new ways of coding, 
self-diagnostics, automatic code generation are very effective 
levers for reducing system integration costs. This is of course 
not limited to the desktop factory application but it is very 
interesting for such a field as the changing of modules “on a 
desk” for the next type of product within “no time” is the goal. 
Theoretical work [9][10] shows that these consideration are in 
line of system development. 
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5. New applications 
 

Before entering the details of the technical work presented 
here we would like to discuss another important aspect such 
systems can provide. Traditionally we think of automation as a 
means to apply machine precision to a process that without 
such support implies lower process speed, unstable cycle times 
and being susceptible to many forms of human faults. This 
automation works as long the process under consideration is 
designed for high volume or may be extreme process 
conditions if the volume is lower. In all other cases costs for 
automation are considered to be too high which in turn results 
in seeking means to produce at lower costs someplace else.  
 
The technology discussed here has the potential to reverse this 
trend to some degree as the automated line is not any longer a 
static installation the change of which requires huge effort. At 
the same time the underlying system architecture opens new 
ways for condition and process monitoring and supports the 
human personnel in a very effective way [11]. Thus new ways 
of running shop floor processes can emerge. The equipment is 
not only designed to support the human work force, but it can 
be used to challenge his capacities and qualities because a 
decentralized system can be more fault tolerant than its 
historic counterpart and switching between the automatic, the 
semi-automatic or the manual mode is achieved almost 
effortlessly.  

 

 

 

6. The developed system(s) 
 

In a road mapping exercise for the European Commission a 
consortium of research institutes, universities and  industry 
described the problems that are connected with producing (or 
to be precise in assembling) miniaturized products for smaller 
and medium volumes as manual assembly is not possible due 
to size restrictions [12]. This study made it clear that modular, 
self-adaptive equipment is needed in order to assembly a 
variance of products cost effectively.  

 

 

Fig. 3 The original MiniProd system 

 

 

 

 

In a first attempt to provide equipment that can be used by 
many different stake holders, that can easily be supplemented  
with extra modules for e.g. a new technological step in the 
process, a national research project (MiniProd; ref.: BMBF 
02PD2370) a consortium including Festo AG. & Co. KG. 
designed a desktop factory process on the basis of carriers 
driven by planar motors that can move independently to 
process modules (devices for different assembly tasks; clipped 
to edges of the table). 
 
At the edge of the table one can see different modules like a 
stacker, a dispensing unit or a a mechanical unit for pressing a 
mechanical hub onto a device [13]. The table is equipped with 
a set of standardised interfaces where the modules can be 
“clicked” to it’s working position. These interfaces supply the 
modules with power, air pressure and network communication. 
Additionaly, a precise fixation of the units is solved by these 
interfaces. This first prototype was to produce a laser diode 
and – after change over – dispense biological liquids unto 
different substrates on a carrier. 
 
The carriers can be moved freely in the plane of the table 
therefore it is not difficult to change the series of process steps, 
or use the time while one operation is carried out a specific 
module to exchange a module at another place. In this sense 
the MiniProd has to be conceived more as a tool used by 
intelligent humans to quickly perform a given task than a 
machinery of automation.  
 

 

Fig. 4 A desktop set up for a biological lab applications 

 
Clearly for the prototype concept and practice still diverge. 
But it is also clear that it approaches the concept for desktop 
manufacturing in a very nice way. In the meantime this work 
has continued. In the next generation of devices a smaller unit 
was built which aims clearly at the biological application only. 

 

The process has a high potential for Med Lab applications. 
The following figure shows a device that is built according to 
industrial standards. The easy to change module is 
documented. A new module “clicked” into a specific module 
position is recognized and the process organized in such a way 
that an optimum of performance is achieved. 

 

The fascination connected to work on desktop factories has 
clearly the origin of being able to move equipment quickly to 
new sites and / or to rearrange equipment in very small time 
intervals. 
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As described in the section on evolvability our development 
led to a changed system architecture compared to the first 
installation of the MiniProd. Such an agent based system not 
only meets the requirements of being able to exchange quickly 
modules or rearrange processes but it enters a new dimension 
of the desktop application.  

 

Fig. 5 Laboratory automation system (LabFab) 

 

A product that is to be produced is entered into the system as a 
product agent negotiating all necessary process steps with the 
mechatronic equipment of the system as it proceeds through 
processing. This equipment includes the transportation system 
represented by transport agents and all kind of mechatronic 
process modules represented by resource agents. 

 

Fig. 6 A module of the LabFab system 

 

Adding a new module – because e.g. a new technology is 
needed – is working according to the “click trick”. The new 
module is connected to its position and the process is informed 
at the same time of the arrival of the new device and its skills. 
The product agent directing a new product through the process 
can access this new resource very quickly. One can see that 
this leads to new ways of process planning and programming. 

 

 

 
7. Conclusion and outlook 
 

So far, the concept has been tested in industrial applications. It 
was shown, that a dedicated software architecture combined 

with industrial mechatronic equipment leads to a new form of 
mechatronic equipment and a new control architecture for 
desktop factories. 
 
The next step of development has to be an even higher degree 
of technology ready level. Industrial engineers need tool, that 
enable them to develop such kinds of systems. To achieve this, 
a new way of engineering has to be developed and established 
in industry. The product becomes a reference point. More 
software tools will be needed to bring laboratory set up 
implementation to industrial safety. This work is ongoing and 
it will include software that allows to compose the process 
without actual line coding. We see this as a bright chance for 
desktop applications. 
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NOMENCLATURE 

 

Ma = Moment at position A 

Ra = Reaction force at A 

Mb = Moment at position B 

Rb = Reaction force at B 

Mc = Moment at position C 

Rc = Reaction force at C 

I1 = Momentum of inertia of section 1) 

I2 = Momentum of inertia of section 2) 

L = Total length 

a = Length of section 1) 

b = Length of section 2) 

a = Length of section 1) 

E = Young’s modulus 

 

 

 
1. Introduction  
 

Recently small precision parts such as medical implants 

and mobile devices have been developed increasingly. In 

addition, high-precision miniature machine tool market to 

meet the demand for the parts of high-tech industry is growing. 

As a machine tools being smaller, many small key components 

have been actively developing.[1-5] 

 To date, tapered collet-chuck is used mostly at small-

spindle system of machine tools in the tool holder. However, 

the accumulated errors caused by the additional device, have a 

bad effect on the tool clamping accuracy and drop the holding 

forces. 

We developed new conceptual tool clamping devices made 

by the Shape Memory Alloy (SMA) ring in order to 

compensate for these shortcomings. This device uses the 

restoring forces between the Shape Memory Alloy ring and 

tool holder. The restoring forces are affected by the 

deformation of SMA ring and the tool holder. At this point, it 

is important to predict the deformation of the tool holder. So, 

by formulating the equation of the deformation between SMA 

ring and tool holder, tool clamping force, such as grip strength, 

can be predicted. 

 In this paper, we define the shape of the SMA tool 

clamping device and represent a schematic diagram. Using a 

mathematical relationship, the deformation between the SMA 

ring and the tool holder are predicted and is compared with the 

result of the commercial FEA tool. 

 

 
2. Schematic of the Tool Clamping Devices 
 
2.1 Configuration of tool holder  

SMA tool clamping device is composed of tool holder part 

and SMA ring. SMA ring stage is fixed at tight fit at the tool 
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Recently small precision parts such as medical implants and mobile devices have been developed 
increasingly. In addition, high-precision miniature machine tool market to meet the demand for the 
parts of high-tech industry is growing. As a machine tools being smaller, many small key components 
have been actively developing. 
 To date, tapered collet-chuck is used device mostly at small-spindle system of machine tools in the 
tool holder. The usage of the scaling down tool holder system for commercial spindle such as collet-
chuck is limited by their inherently complicated structural and operational mechanisms. To 
overcome these shortcomings, SMA tool clamping devices are suggested, which have simple 
structural mechanisms and enough holding forces. In this paper, the analytical deformation analysis 
of the tool holder is executed to estimate the characteristics of SMA tool clamping systems. 
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holder outside. Tool holder is made up the spindle part to 

implement of the rotational motion of the tool holder, and the 

slots which increase the deformation of the holder. The 

diameter and the size of the hole at the tool holder are 

determined by considering the fit tolerance of the tool sank. At 

the low-temperature(martensitic phase), the hole is larger than 

the size of the tool, but at the high temperature(austenitic 

phase), is smaller than that to hold tools by contraction. This 

method uses the characteristics that the stiffness of Shape 

Memory Alloy ring changes in the condition of the 

temperature. Once, a tool holder and SMA rings are assembled 

at low temperatures, integral components are not easily 

separated. So the tolerance between tool holder and SMA ring 

is important. Thus, four slots are made on the side of tool 

holder unit by 90 degrees, and the slots help the elastic 

deformation of the radial direction when clamping and 

unclamping work. These slots effect greatly on the contraction 

of the radial deflection of the four beams. 

The shape memory effect is the characteristics that Shape 

Memory Alloy deformed in the low temperature martensite 

phase, where it restored the original shape at high 

temperatures austenite phase. When the restoration of the 

SMA shape is restricted by contacting with the external 

structures, the restoring stress occurs. This restoration stress is 

used to develop the various clamping mechanisms. 

At clamping device tool for machining, unlike the 

common clamping device, unclamping operation is important, 

as well as clamping work. Different kinds of tools are used at 

rough machining and finish machining, and especially it needs 

to hold drilling tool in multi-process machining. The clamping 

and unclamping processes are important to change these tools 

properly. So bidirectional shape memory effect can also be 

used at tool holder. However, the commonly used Shape 

Memory Alloy has a single-directional shape memory effect, 

because bi-directional one requires a special training course, 

and it is not fit for commercial one. In this paper, the 

appropriate mechanism is suggested to realize clamping and 

unclamping with the typical single-directional SMA ring.  

The main concept is interference fit between the structural 

holder and SMA ring. In low temperature, the Young’s 

Modulus of SMA ring is so low that the internal diameter is 

larger, and tool can be unclamped. However, maintained at 

room temperature, tool holder is shrunk due to the stress 

caused by SMA ring at austenite condition. Young’s Modulus 

increased, then internal diameter of tool holder diminished and 

can clamp the tool. That is to say, it is a key technology to 

determine the holder diameter larger than tool diameter at low 

temperatures, and smaller than that to clamp the tool at room 

 

Fig. 1 Block diagram of multi-modal chatter model of a high speed machining center 

jawSMA ring

tool hole

Expanding             

( low temperature ) 

Shrinking                

( normal temperature )

heating

cooling

 

Fig. 2 The schematic diagram of clamping and unclamping of tool holder 
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temperature.  

 

 
3. Analysis  
 
3.1 Schematic diagram of analysis  

In order to obtain the deformation of the tool holder 

portion, the other ends with the moment of inertia of the 

system was defined as a form of built-in beam. In addition 

forces, qc, by SMA rings act in the middle part of the beam. 

By using force equilibrium equation, moment equilibrium 

equation, and displacement and angle relations, the governing 

equations can be calculated. And also simulation result can be 

compared with the result of the commercial FEA tool. 

Equation is as follows. 

 

- Force equilibrium equation 

 

0 bqRR cba             (1) 

 

- A momentum equilibrium equation at the point A. 
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3.2 Displacement curve equations by the interval 

 

The whole bar is divided by three sections and the curve 

equation is available in the specified interval. The 

displacement curve equation by the interval is as follows. 
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3.3 Constraint equation 

 

Boundary equation is expressed as follows. 

Force equilibrium equation: 

 

0 bqRR cba                 (6) 

 

Momentum equilibrium equation: 

 

0
2











b
abqLRMM cbba

          (7) 

 

 At point A, the slope angle is zero,  

 

00 C                     (7) 

 

 
Fig. 3 Schematic diagram of simulation 

 

 

Fig. 4 The schematic diagram by the sections 
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 Displacement at point A is zero, 

 

01 C                         (8) 

 

The slope angles are same between left and right sections 

at point C 
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The displacements are same between left and right 

sections at point C 
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The slope angles are same between left and right sections 

at point D, 

 

42 CC                        (11) 

 

 The displacements are same between left and right 

sections at point D, 

 

53 CC                        

(12) 

 

 Angle is zero at the point B, 

 

04 CLM b                (13) 

 

 

 Displacement is zero at point B, 
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              (14) 

 

Ten equations can be obtained and also, the number of 

variable is ten, 
543210 ,,,,,,,,, CCCCCCMMRR baba
. 

The corresponding values can be obtained for each variable. 

Numerical analysis is executed by using MATLAB and 

implementation results are summarized as follows. The results 

of a calculation of the governing equations are as follows: 

analysis shows that the maximum displacement is 34.5 ㎛ at 

0.34mm from the original position. In particular, the position 

of the maximum displacement is not the center of the beam 

but the right side by 0.04mm at the center point. 

 
3.4 Simulation by commercial FEA tool  

The shrinkage deformation according to the direction of 

  

Fig. 6 The FEA result by ANSYS 

I1 (mm4) 5.008 I2 (mm4) 0.406 

Dia. of SMA ring 

(mm) 
5.0 

Dia. of Tool 

holder (mm) 
5.2 

qc (Mpa-mm) 3,615 L (mm) 6 

a (mm) 2 b (mm) 2 

Ma (Nmm) 12,067 Mb (Nmm) 2,587 

Ra (N) 5,195 Rb (N) 2,035 

Table. 1 Input parameters simulation result 

 
Fig. 5 The estimated result by Matlab 
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the diameter of tool holder was studied by using commercial 

finite element program (ANSYS). Organization of the initial 

condition is equivalent to the Matlab simulation conditions 

and SMA ring is assumed austenite phase. The calculated 

results were compared with the ANSYS simulation ones by 

comparing the displacement at the maximum displacement 

point. 

ANSYS simulation results showed 35.2 ㎛ as maximum 

displacement value. Estimated simulation result is different 

from the ANSYS result by 2 percent. 

 

 
4. Conclusion  
 

The deformation analysis of SMA tool clamping device is 

performed. To obtain the deformation of the tool holder the 

governing equations are solved and the simulation was 

performed. The estimated result was compared with the result 

of commercial FEA tool, and the difference between them is 2 

percent. 
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The authors have been developed a handling system for micro parts. Recently general cutting 
machine tools have realized 0.1mm micro parts with sub-micrometer accuracy. However there have 
been no enough assembly tools for such micro parts.  
We newly designed a micro parts handling system, and developed a prototype. It has two 
microscopes, two arms and a table. We can observe top view and side view of the workspace. Each 
arm has 8 degrees of freedom. All rotation centers are adjusted at the tip end of the arm by R-guide 
in order to rotate micro parts without moving the position. The table has 4 degrees of freedom. The 
system has totally 20 degrees of freedom, which allowed us any assembly task. Micro grippers are 
installed on the tip ends of the arms, however they can be changed to other tools according as the 
assembly task. We suppose that the system is located machining, and used for assembly of micro 
parts of 0.1mm size. It means the system is desired to be inexpensive, compact and lightweight, 
strong against dusty environment. For this reason, the system has minimal resolution, minimal 
accuracy, no feedback control, a lot of mechanical drive mechanisms. 
In order to evaluate the prototype system, we executed several demonstration tasks. At first we 
inserted 0.05mm shaft into 0.06mm hole. We achieved the task in 1 minute with the system, while we 
could not complete it without the system. Nextly, we arranged 0.3mm precise dices on the substrate 
with curved surface such as rice grains. The operator did it for the first time, however the task was 
completed in 10 minutes. Then he repeated the same task, it was completed 5minutes in second trial, 
3 minutes in third trial downward. This result indicates that it is easy to learn system operation. 
Through these evaluation, it has been confirmed that the our system is useful for assembly of micro 
parts.. 

 
 

1. Introduction  
 

Information equipment, optical devices, and medical 
equipment have been increasingly miniaturized and highly 
integrated.  This trend is a result of the advances in 
lithography and nanoimprinting technologies.  These 
technologies can be used for fabricating two-and-a-half-
dimensional shapes on the surface of objects, but not for 
fabricating three-dimensional objects with small overall 
dimensions. 

Recently, the performance of machine tools and cutting 
tools has improved, which has enabled the microcutting of 
parts with submillimeter overall dimensions and a dimensional 
accuracy of approximately 1 μm.  However, methods of 

repeatedly and stably performing the processes conventionally 
carried out manually, such as handling, assembly, jointing, and 
adjustment, before and after fabrication have not been 
established.  The setting and attachment/detachment of work, 
which are part of the submillimeter-order microcutting process, 
require much time and effort and are very difficult to perform 
because the work are so small that they cannot be identified by 
visual observation. 

 Although handling systems that can support cutting tasks 
are required to solve the above problem, the functions of most 
of the existing handling systems have been designed to transfe
r and sort small granular objects.  Moreover, such systems ha
ve not been widely used as a tool to support microcutting beca
use (1) they cannot freely perform tasks as they have few degr
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ees of freedom, (2) their portability is low because of their larg
e structure, and (3) the cost is high owing to an excessively hig
h positioning accuracy.[1,2] 

In this study, we develop a practical handling system to 
support the fabrication of micro-parts by cutting. 
 
2. Development of system  
 
2.1 Design of system  

In this study, we targeted micro-parts with dimensions
 of 0.1 mm order that can be fabricated using current sta
te-of-the-art machining technology. 

We first focused on the processes of transferring and 
assembling micro-parts to develop the system.  From the 
viewpoint of engineering, the function required for these 
processes is for multiple m i c r o - p a r t s to settle into 
predetermined positions through their relative motion.  These 
processes include the insertion, fitting, and sliding insertion of 
two micro-parts as well as the switching of planes to be 
processed during six-side fabrication, tightening of screws and 
bolts, and connection of wires to connectors. 

open/close

Micro-parts 
on the table

First, magnified observation is required for handling 
micro-parts.  At this time, micro-parts should be observed 
from multiple directions rather than a single direction, because 
three-dimensional spatial information is required for three-
dimensional handling.  In addition, the workspace should be 
lit from multiple directions, which will help when checking 
the surface roughness and the contact state of the objects, 
owing to the shade and contrast with the background. 

Next, at least six degrees of freedom, i.e., three 
translational degrees of freedom and three rotational degrees 
of freedom, are necessary for a manipulator to freely control 
the position and angle of micro-parts.  In this study, we added 
two more degrees of freedom; one is a translational degree of 
freedom in the arm direction and the other is a degree of 
freedom to open or close a gripper at the end of the arm, as 
shown in Fig. 1.  These degrees of freedom were determined 
by considering the operation of inserting a micro-part while 
rotating it, similar to the tightening of screws.   

Moreover, two arms with the above eight degrees of 
freedom are incorporated into the system considering 
operations such as passing micro-parts, pinching and inserting 
them, and positioning and jointing two micro-parts at once.  
The table to hold micro-parts is also given a total of four 
degrees of freedom, i.e., three translational degrees of freedom 
and a rotational degree of freedom. 

 Micro-parts handling systems cannot necessarily be 
downsized although they handle fine targets. Therefore, 
microscopes used for observation and working mechanisms 
such as arms must be arranged to surround target micro-parts[3], 
as shown in Fig. 2.  Also, the micro-parts, the focal point of 
the microscope, the end of the arms, and all the rotational 
centers of the arms in the manipulator must be directed to one 
point.  Otherwise, the operator may lose micro-parts during 
operation, or the end of the arm may go out of the field of view, 
making the operation difficult to continue. 

 Commercially available handling systems have few degre
es of freedom but excessively high performance for each degre
e of freedom, exceeding that required to handle machined part
s; for example, they are equipped with coarse-motion and fine-
motion mechanisms at a resolution of 10 nm.  In addition, so
me handling systems are equipped with a high-
resolution optical or electron microscope for observation.  In 
this study, the positioning accuracy and observation resolution 
of the system are suppressed to the minimum necessary levels 
(2-10 μm) because the system targets 0.1-mm-order machined
 parts. Thus, we minimize the cost of the entire system 

IWMF2012  

Three translational DOF 
and three rotational DOF

Arm direction

Three translational DOF 
and a rotational DOF

Gripper on the tip end 
of the arm

Fig. 1 Required degrees of freedom for the handling system. 
The arm is given four translational degrees of freedom and 

three rotational degrees of freedom and one open/close degree 
of freedom. The table is also given three translational degrees 

of freedom and a rotational degree of freedom. 

Microscope

Microscope

Right arm

Left arm

Fig. 2 Configuration of the handling system which consist 
of two arms and two microscope and a table. All the co
mponents are arranged to surround target micro-parts.

Table

X axis

Z axis

Y axis

A axis

B axis

C axisW
 ax

is
G axis
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with the aim of realizing its practical application. 
 

2.2 Development of prototype system 
Fig. 3 shows the outline of the prototype system developed.  

Two charge-coupled device (CCD) cameras with a 
DFK61AUC02 lens (The Imaging Source Co., Ltd.) were 
placed above and in front of the work space to obtain three-
dimensional visual information.  The observation area is 5 × 
5 mm2 and the observation resolution is approximately 5 μm.  
Zooming is digitally performed.  Images are displayed on the 
monitor next to the system. 

There is another method of conveying the stereoscopic 
effect to the operator using images taken from two different 
angles (right and left), similar to human eyes, which is referred 
to as the stereoscopic view.  However, quantitative depth 
information (positional relationship in the viewing direction) 
obtained by the stereoscopic view is not accurate although it is 
easy to instinctively understand the shape and positional 
relationship of micro-parts from a single image.  This is 
similar to the fact that it is difficult to visually measure the 
distance between micro-parts that are lined up along the 
viewing direction.  In contrast, the multiview method adopted 
in this study can accurately convey three-dimensional 
information to the operator because the object can be viewed 
from the side to obtain depth information.  However, 
individual images do not provide the stereoscopic effect owing 
to a lack of information for one dimension, and the operator 
must understand the three-dimensional information 
cognitively rather than intuitively.  Thus, each method has 
both advantages and disadvantages, and we adopt the 
multiview method to ensure the accuracy of operation. 

CCD

A mechanism with which a slider moves on an arc guide 
was adopted to match all the rotational centers of the arm to its 
tip end.  A structure with dovetail grooves on both sides of 
the guiding plane of the rotation axis was used to save space 
and realize highly accurate and rigid operation.  We 
fabricated the arc guide and slider by cutting, instead of using 
commercial products, to facilitate their transport to the site of 
system development and reduce the cost (Fig. 4).  The three 
translational degrees of freedom were realized by screw-type 
feeding mechanisms and manually controlled with a handle.  
Although vibration and structural deformation may occur 
when these mechanisms are manually driven, they were given 
a rigidity sufficient to neglect such problems.  The arms and 
the table have a total of 20 degrees of freedom, among which, 
10 are controlled by manual operation and the remaining 10 
are driven by stepping motors connected to reducers.  Table 1 
summarizes the movable range and the minimum motion of 
the arms. 

The end of two arms is exchangeable in accordance with 
the task.  A grip tool was attached to the end of the arm in 
this study.  The end of this tool was machined to 0.15 mm, 
and spring steel was used as the material to suppress the 
deformation when the tool comes in contact with a micro-part.  
A certain level of grasping force of the grip can be attained by 
the use of the built-in spring. 

The system was designed to have a compact overall 

 Working range Minimum motion 
Translation X 40mm 5µm 
Translation Y 40mm 5µm 
Translation Z 14mm 5µm 
Translation W 10mm 5µm 
Rotation A 100o 0.025o 
Rotation B 70o 0.025o 
Rotation C 360o 1.8o 
Open/close G 3.3mm 50µm 

Fig. 4 the arc guide and slider by cutting fabricated by cutting.

Table 1 The specification of the arm motion. 

Fig. 3 the outline of the prototype system developed. 

Arc guide

Lighting

Table 

Manual handle
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(a) Insertion of thin wire into fine hole structure within the dimensions of 500 × 500 × 500 mm3 and 
a weight of 13 kg so that it can be placed next to machine tools.  
Fig. 5 shows a photograph of the entire system. 

A thin wire was inserted into a fine hole using the 
prototype system.  The wire was 50 μm in diameter and 
made of SUS304 stainless steel.  The fine hole was a drilled 
hole with a diameter of 60 μm and had a rough inner surface.  
Therefore, the wire cannot be inserted if its end comes into 
contact with the inner surface of the hole.  For reference, the 
wire was manually inserted into the hole, which required six 
hours.  However, it took only two minutes when the system 
was used because the wire was inserted accurately in parallel 
to the hole.  Fig. 8 shows a photograph taken during the task. 

 
3. Evaluation Experiments  
 
3.1 System operation  

The basic operation of the prototype system was checked.  
All the translational degrees of freedom were controlled by the 
mechanical driving method using feed screws, and there were 
no errors in their movement with respect to the rotation of the 
handle.  The rotation axes operated as designed, as shown in 
Fig. 6.  Fig. 7 shows the sequential photographs of the 
rotational movement of the arm at this time.  The angle of the 
arm was changed around the part as the rotational center. 

 
 
 

 
3.2 Comprehensive experiment 

The performance of the system was comprehensively 
evaluated through the following three tasks.  All the tasks 
require accurate angle control of micro-parts using the two 
arms and must be observed from multiple directions. 

Lighting 

Gripper

Workspace

CCD

Monitor

Top vi

Fron

Manual handle
Remote handle

Remote handle

ew

t view

1mm

Fig. 7 The sequential photographs of the rotational movement 
of the arm.

Fig. 5 Photograph of the entire system. 
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Fig. 8 The demonstration of a 50 micrometers wire insertion 
into a 60 micrometers hole.

Fig. 6 The relation between the handle rotation and the arm 
rotation.



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012,TAMPERE, FINLAND  /  5 
 
 

0.3mm dices

Rice grain

1mm

1mm

Fig. 9 The machined micro-part with two needle tips.  

1mm

Inserted part

Fig. 11 The demonstration of stacking 300 µm dice in three 
tiers.
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Fig. 10 The inserted micro-part into the hole. 

Fig. 12 The operation time taken to complete the task. 
(b) Simultaneous insertion of two axes 

Next, a machined micro-part with two needle tips shown 
in Fig. 9 were inserted into the corresponding holes 
simultaneously.  The diameters of the axes and the holes 
were 200 and 230 μm, respectively.  This task was 
impossible by manual handling but was completed in one 
minute when the system was used.  Figure 10 shows a 
photograph taken during the task. 

 
The results of these tasks confirmed that the efficiency of 

handling the micro-parts can be markedly increased using the 
developed system. 
 
4. Conclusions  

 In this study, we developed a practical handling system 
with the aim of supporting the fabrication of 0.1-mm-order 
machined parts.  The work space was observed from multiple 
directions to obtain accurate three-dimensional information.  
Moreover, a total of 20 translational and rotational degrees of 
freedom were given to two arms and a table to allow the 
system to freely perform tasks.  The observation resolution 
and operation accuracy were suppressed to the minimum 
necessary levels to develop the system at a low cost. 

(c) Stacking 300 µm dice in three tiers 
Finally, multiple micro-parts randomly placed on the table 

were grasped, moved, and accurately arranged at 
predetermined positions one by one. More specifically, 300 
µm dice were stacked in three tiers on a rice grain. This task 
was impossible by manual handling but was completed within 
ten minutes when the system was used (Fig. 11). 

In addition, the stacking task was repeated five times and 
the time taken to complete the task was measured (Fig. 12).  
It took ten minutes the first time, seven minutes the second 
time, and three minutes for the third and subsequent times.  
This revealed that operators can acquire skill in manipulating 
the system after approximately three trials.  

We handled actual micro-parts using the developed system 
and confirmed that the system can perform tasks that are 
difficult by manual handling and can markedly shorten the 
working time.  It was also demonstrated that operators can 



6  / JUN 18-20, 2012, TAMPERE, FINLAND IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES 
 
acquire skill in manipulating the system after several trials. 
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NOMENCLATURE 

DOC = diameteral overcut 

TR = taper rate 

Dtop = diameter at the top 

Dbottom = diameter at the bottom 

Dtool = diameter of the tool electrode 

h = thickness of the plate 

T = machining time 

TWR = tool wear rate 

MRtool = material removed from the electrode 
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The miniaturization of parts and components plays an important role in today’s economy, enabling 
the design and the production of new and highly sophisticated components in various industrial 
fields, such as medical, bio-chemistry, automotive and telecommunications. Micro holes are widely 
used in micro-electromechanical systems (MEMS) serving as channels or nozzle to connect two 
micro-features. There are many micromachining technologies available to obtain micro holes such 
as photo-etching, micro-ultrasonic machining, laser, micro electrical chemical machining, micro 
electrical discharge machining. However, each process may have different limitations in cost, 
machining efficiency, properties of the workpiece and aspect ratio of micro hole. 
Micro Electrical Discharge Machining (micro-EDM) and micro laser ablation are both thermal 
processes used to realize micro holes. As regard micro-EDM technology, material is removed by a 
series of rapid electric spark discharges between the cutting tool (electrode) and the workpiece. It is 
able to machine complex micro parts of only conductive materials that traditional processes are 
unable to create. In fact, being a contact-less process, there are very small machining forces between 
the electrode and the workpiece. This makes it easy to produce micro parts without distortion due to 
physical forces. EDM is an ideal process for obtaining burr-free micro-size machined parts with high 
aspect ratio using different materials. Laser is a flexible tool for the material processing. Materials 
removal can be achieved by laser ablation through physical process. Due to their short wavelength 
(up to UV regime), short pulse-length (nanosecond regime) and excellent beam quality (TEM00 
mode), the innovative laser technology is a competitive solution for applications such as micro 
drilling, cutting, milling and texturing. Depending on the chosen wavelength and configuration, laser 
sources are capable of directly machining a wide range of micron scale features in a large range of 
materials, including metals, semiconductors, ceramics, hard materials, polymers and glasses.  
Aim of this work is to carry out a comparison between micro EDM and micro laser technologies in 
order to balance the pros and cons of both technologies on the execution of micro holes on different 
industrial materials. Stainless steel, titanium and brass plates, having a thickness equal to 1mm and 
0.5mm, were taken into account. The diameter of micro holes was varied from 0.3mm to 0.1mm. 
Since in both technologies there are many process parameters affecting the results in term of process 
time, electrode wear rate (only for the EDM technology) and the machining accuracy, several tests 
were carried out in order to optimize all these aspects. Geometrical and dimensional analyses were 
performed using both optical and scanning electron microscopes to evaluate both the over cut and 
the taper rate.  
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MRworkpiece = material removed from the workpiece 

∅el = diameter of the electrode 

∅nom = nominal diameter  

I = peak current 

V = voltage 

F = frequency 

E = energy 

SCcyl = special carbide cylindrical 

SCtub = special carbide tubular 

Bcyl = brass cylindrical 

 

 
1. Introduction  
 

Micro technologies can be considered the most promising 

issue in different fields of application, such as biotechnology, 

microelectronics, optics, telecommunications, sensor 

technologies and micromechanics. Therefore, due to the 

advantages of micro technological solutions (such as small 

dimensions, low weight and simultaneous functions 

integration), the product miniaturization is worldwide 

considered as the new key technology for the future years [1-

4]. However, the fast growing of product miniaturization, 

requires a very precise and reliable manufacturing technology. 

This because micro machining is not an easy machining 

process, for example because of the difficulty in finding an 

accurate positioning, the poor stiffness of the tool or the 

difficult burr removal. Anyway, in the field of micro 

technologies, micro drilling can still be considered as one of 

the most popular micro machining process. The main 

technologies used for micro drilling are micro-EDM 

(Electrical Discharge Machining), laser ablation, ion beam 

etching and other conventional micro machining [5]. The 

selection of an appropriate micromachining technique mainly 

depends on size and shape of the feature, the aspect ratio 

achievable (in the case of a micro hole) and the material 

properties. Technologies like micro-EDM and laser ablation 

are both suitable for a non-contact material removal process 

and thus they allow a material removal without any process 

forces [7]. Micro-EDM for example is able to drill burr-free 

micro holes with high precision, regardless of the hardness of 

the workpiece. Current production techniques based on micro-

EDM drilling, are continuously facing new challenges, 

because as the holes get smaller, frequent breakage of 

electrodes occurs and moreover tooling cost gets higher [6-9]. 

Focusing on micro-EDM and laser ablation, it is possible to 

enumerate specific advantages and disadvantages of each 

technology, which mainly depend on the specific 

characteristics of each process. About the advantages, micro 

EDM ensures high aspect ratios and relatively high removal 

rates with large electrode diameters; on the other hand laser 

ablation gives no tool wear, the possibility to machine all 

materials (not only the conductive ones) and the smallest 

structures achievable. Concerning the disadvantages of micro-

EDM, the tool (electrode) wear, the possibility to machine 

only conductive materials and the smallest tool diameter 

achievable (about 10 μm), are the most important. On the 

other hand, the disadvantages of laser ablation are mainly the 

low removal rates for high surface qualities, the low aspect 

ratios achievable and the time consuming in machining 

perpendicular walls [7]. By combining laser ablation and 

micro-EDM specific advantages of the respective technology 

can be exploited while drawbacks can partially be eliminated 

[7]. The present work carries out a comparison between micro 

EDM and micro laser ablation in order to balance the pros and 

cons of both technologies on the execution of micro holes. A 

short description of both technologies is reported below.  

 

1.1 Micro EDM  

Micro-EDM is one of the most promising micromachining 

techniques in precision manufacturing field. In micro-EDM 

process the material is removed by a series of rapid electric 

spark discharges between the cutting tool (electrode) and the 

workpiece. During the machining the workpiece is submerged 

in a dielectric fluid and a voltage is applied between the tool 

electrode and the workpiece. The pulsed discharges remove 

the material through melting and evaporation processes and 

the melted and vaporized materials are transformed into tiny 

particles known as debris. These particles are removed from 

the machining zone by means of the dielectric fluid jet. Finally, 

the movement of the tool determines the shape of the cavity 

created in the workpiece. The micro-EDM technology can be 

used for the processing of any type of electrically conductive 

material regardless of the workpiece hardness because it is a 

contactless technique, so it is possible to eliminate physical 

cutting forces, mechanical stresses and vibration problems 

[10]. For these reasons, EDM is very effective in machining 

high strength and very hard materials, generally considered 

“difficult to be cut” with conventional technologies [11-12]. 

Hard materials show excellent mechanical properties which 

can be useful in many important applications; a contact less 

and “forceless” machining process is worthwhile or even 

essential in micro machining, to avoid any type of distortions 

due to physical forces. The promising applications of micro-

EDM are not only limited to the machining of high hardness 

alloys for micro molds or cutting tools, but also to the 

production of “difficult to make structures” (having complex 

three dimensional shape) or to machine micro holes with high 

aspect ratio [13-15]. In micro-EDM many factors can affect 

the performance of process; these factors can be related to the 

process parameters (such as voltage, peak current, pulse 

duration, spark gap, etc.) or to the system (such as type of 

dielectric fluid, tool properties, chemical and physical material 

properties). Unfortunately the effect of micro-EDM process 

parameters on the final output is partially unknown. 

Furthermore, it is important to remark that optimal EDM 

process parameters depend on the material of the workpiece 

[2] since they are influenced by the thermal and electrical 

properties of the material itself. Finally, in order to become 

efficient for industrial purpose, Micro-EDM needs to combine 

high material removal rate, low values of tool wear, and 

excellent surface quality [15].  
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1.2 Micro Laser  

Laser microdrilling is the process of removing material 

from a solid surface by irradiating it with a laser beam focused 

in very small spot able to melt and vaporize the material. Laser 

ablation strongly depends on laser characteristics and on the 

target properties. The laser pulse duration and irradiance are 

the most important factors for defining ablation conditions. 

Reducing pulse duration has the effect of reducing thermal 

penetration depth and increasing irradiance. The removal 

process is so dominated by vaporization rather than melting 

and accuracy increases. Another important parameter in laser 

ablation process is the laser wavelength. Shorter wavelengths 

offer a best laser-material coupling, particularly with 

dielectrics, but also with metals (reflectivity of most metals 

decreases at shorter wavelengths). In addition to the 

mentioned factors some other important parameters are the 

beam profile and the repetition rate. 

Due to its flexibility and versatility, innovative laser 

technology  has gained recognition by industry as 

competitive solution for micromachining techniques. Novel 

laser sources are capable of directly machining with high 

accuracy and speed a wide range of micron scale features in a 

large range of industrial materials, including metals, 

semiconductors, ceramics, hard materials, composites, 

polymers and glasses. 

 

2. Experimental campaign 
 

2.1 Experimental plan 

The micro holes carried out to compare the performance of 

micro EDM and micro laser technologies were executed on 

different materials, having two different thickness. The 

diameters of micro holes were equal to 0.3mm and 0.1mm. 

Table 1 shows all the tested conditions. 

 

Table 1 Experimental tested conditions  

Material Thickness Diameter 

AISI 304 

Stainless Steel 
1mm, 0.5mm 0.1mm, 0.3mm 

Titanium  

ASTM Grade 2 
1mm, 0.5mm 0.1mm, 0.3mm 

CuZn35 Brass 1mm, 0.5mm 0.1mm, 0.3mm 

 

The characterization of the micro holes was made 

considering both qualitative aspects and the process 

performance.  

 

2.2 Geometrical characterization 

Diametral overcut (DOC) and taper rate (T) were taken 

into account as geometrical parameters. Considering that the 

diameter of the drilled hole is larger at the top, it decreases 

along the depth and it is minimum at the bottom, the diameter 

was measured at both the top (Dtop) and the bottom (Dbottom) of 

each hole through an optical measuring microscope at the 

magnification of 100X. Diametral Overcut was calculated by 

subtracting the diameter of the tool electrode (Dtool) from the 

top diameter of the machined micro-hole as given in Equation 

1: 

 tooltop DDDOC    (1) 

The taper rate (TR) of the machined micro-holes was 

calculated as follows:  

h

DD
TR

bottomtop

2


               (2) 

where h is the thickness of the plate. 

Qualitative aspects of the top and bottom size of micro 

holes, in terms of burr, sharpness of outline and circularity, 

were also taken into account. 

 

2.3 Process performance 

The evaluation of the process performance was carried out 

considering the machining time (T) of micro hole. Moreover, 

considering that in EDM process the electrode wears out, tool 

wear rate (TWR) was measured. Tool wear rate was calculated 

as ratio between the material removed from the electrode and 

the material removed from the workpiece as given in Equation 

(3): 

 

workpiece

tool

MR

MR
TWR        (3) 

2.4 EDM tests 

The experimental campaign was carried out using a micro-

EDM machine Sarix SX-200. Some details of the EDM 

system are reported in Figure 1.  

 

 
Fig. 1 Sarix SX200, details of the micro-EDM system 

 

In electrical-discharge machining, many factors can affect 

the performance of the process. These factors can be related to 

the process parameters (i.e. voltage, peak current, spark gap, 

etc.) or to the system (i.e. type of electrode, type of dielectric 

fluid). In this paper, different conditions were tested in order to 

optimize at first the machining time (affecting the electrode 

wear) and then to minimize the electrode wear (increasing 

therefore the machining time). Peak current, voltage and type 

of electrode (material and shape) were varied for each tested 

experimental condition (workpiece, thickness and hole 

diameter) in order to optimize machining time and electrode 

wear. It is important to remark that machining accuracy was 

taken into account for all the experiments. Table 2 summarizes 

the technologies used for every experimental condition. For 

the holes having a diameter equal to 0.1mm, the electrode has 

always a diameter equal to 0.3mm and the wire unit of the 

EDM system is used to reduce its diameter. 
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2.5 Laser tests 

The Nd:YAG laser used for tests was a Diode-Pumped 

Solid State laser (DPSS laser), with a wavelength of 532 nm 

(SHG) and a typical pulselength of 70 ns at 5 kHz. The laser 

exhibited a Gaussian spatial intensity profile (M
2
 < 1.3) and 

were focused on the target surface using a galvanometer 

scanner (Raylase MiniScan, 14 mm aperture), equipped with a 

flat-field lens (f = 100 mm). Finally, laser could be practically 

operated between 1-50 kHz. 

 

3. Analyses of the results 
 

3.1 EDM 

The results obtained in the EDM experimental campaign 

are reported in Table 3. It is important to remark that several 

repetitions for every experimental conditions were made and 

the shown values are mean value. The measured parameters 

were the diametral overcut (DOC), the taper rate (TR), the 

machining time (T) and the tool wear rate (TWR); the column 

“Quality top/bottom,” reports a general evaluation of the 

micro hole quality in terms of burr, sharpness of outline and 

circularity. The following main observations can be made: 

- as regards the electrode material for the 0.3mm holes, 

for both stainless steel and titanium, there is a 

remarkable difference in terms of T and TWR: using 

a special carbide electrode the machining time is 

higher than brass electrode while the wear is lower. 

The DOC value is comparable and the taper rate is 

always lower using the brass electrode. This 

observation is not true for the combination stainless 

steel, 0.5mm thickness and brass electrode where 

there is an anomalous result in term of tool wear rate; 

- the type of electrode (cylindrical or tubular) when 

0.3mm holes are executed on brass, has negligible 

effects on the measured parameters; 

- comparing the workpiece materials, the material 

removal rate for the brass is higher than the other 

materials and the electrode wear is lower. 

Nevertheless, brass machining is not suitable for 

using brass electrode; 

- the micro holes having a diameter equal to 0.1mm on 

brass shown no difficulties. This observation is also 

true for stainless steel and titanium having 0.5mm 

thickness. Some difficulties were observed for the 

last mentioned materials of 1mm thickness. In fact, in 

these cases, the removal of bubbles and debris in 

working area is difficult, resulting in frequent 

formation of abnormal discharge, causing high 

machining time, high value of wear of the electrode 

and poor data repeatability. To overcome this limit, 

the planetary movement of the electrode is used;  

- for every experimental conditions the qualitative 

aspect of the top and bottom of micro holes, in terms 

of burr, sharpness of outline and circularity, is 

excellent; in EDM micro holes process there is no 

burr formation. 

 

 

 

Table 2 EDM process parameters 

 

 

Material 

 
 
h 

[mm] 

 
 

∅el 
[mm] 

 
 

Electrode 

 
 

E 

 
 

I 

 
 

V 
[V] 

 
 

Polari
ty 

 
 

F 
[kHz] 

 
 

Width 
[µs] 

 
 

Gain 

 
 

Gap 

 
 

Regula 
tion 

Stainless 
Steel 

1 0.3 SCcyl 201 50 105 - 125 3.5 30 60 01-01 

1 0.3 Bcyl 365 50 120 - 150 4 80 15 03-01 

0.5 0.3 SCcyl 201 50 105 - 125 3.5 30 60 01-01 

0.5 0.3 Bcyl 365 50 120 - 150 4 80 15 03-01 

1 0.08 SCcyl 103 70 140 - 140 3 10 60 03-00 

0.5 0.1 SCcyl 103 70 140 - 140 3 10 60 03-00 

Titanium 

1 0.3 SCtub 201 50 105 - 125 3.5 30 60 01-01 

1 0.3 Bcyl 365 50 120 - 150 4 80 15 03-01 

0.5 0.3 SCtub 201 50 105 - 125 3.5 30 60 01-01 

0.5 0.3 Bcyl 365 50 120 - 150 4 80 15 03-01 

1 0.08 SCcyl 103 70 140 - 140 3 10 60 03-00 

0.5 0.1 SCcyl 103 70 140 - 140 3 10 60 03-00 

 
Brass 

 

1 0.3 SCcyl 365 50 120 - 100 6 10 40 03-01 

1 0.3 SCtub 365 50 120 - 100 6 10 40 03-01 

0.5 0.3 SCcyl 365 50 120 - 100 6 10 40 03-01 

0.5 0.3 SCtub 365 50 120 - 100 6 10 40 03-01 

1 0.1 SCcyl 103 70 140 - 140 3 10 60 03-00 

0.5 0.1 SCcyl 103 70 140 - 140 3 10 60 03-00 
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Table 3 EDM results 

Some photographs obtained using optical microscope are 

reported in Figure 2 and 3. 

 

   
(a)                    (b) 

Fig. 2 Stainless steel, 0.5mm thickness, brass electrode, 0.1mm 

diameter, at top (a) and bottom (b) 

 

   

   
(a)                       (b) 

Fig. 3 Stainless steel, 0.5mm thickness, brass electrode, 0.3mm 

diameter, at top (a) and bottom (b) 

 

Figures 4-6 shows some photographs obtained using a 

scanning electron microscope (SEM). 

 

 

 

 

 

 

 

 

   
(a)                   (b) 

Fig. 4 Stainless steel, 0.5mm thickness, brass electrode, at top, 

0.1mm (a) and 0.3mm (b) diameter 

 

 

   
(a)                   (b) 

Fig. 5 Titanium, 0.5mm thickness, brass electrode, at top, 

0.1mm (a) and 0.3mm (b) diameter 

 

 

 

 

 

 

 
 

Material 

 
 

h 
[mm] 

 
 

∅el 
[mm] 

 
 

Electrode 

 
 

DOC 

[mm] 

 
 

TR 

 [-] 

 
 

T 

  [s] 

 
 

TWR 

  [-] 

 
 

Quality top/bottom 

Stainless 
Steel 

1 0.3 SCcyl 0.05 0.04 163.54 0.747 Good 

1 0.3 Bcyl 0.06 0.013 18.37 1.588 Good 

0.5 0.3 SCcyl 0.05 0.07 77.23 0.797 Good 

0.5 0.3 Bcyl 0.06 0.011 9.02 0.538 Good 

1 0.08 SCcyl 0.05 0.002 333 0.361 Good 

0.5 0.1 SCcyl 0.02 0.008 62 0.369 Good 

Titanium 

1 0.3 SCtub 0.04 0.026 197.08 0.513 Good 

1 0.3 Bcyl 0.06 0.005 16.75 0.813 Good 

0.5 0.3 SCtub 0.03 0.021 181.4 0.212 Good 

0.5 0.3 Bcyl 0.06 0.004 9.55 0.979 Good 

1 0.08 SCcyl 0.02 0.002 268.5 0.51 Good 

0.5 0.1 SCcyl 0.02 0.002 125.5 0.582 Good 

 
Brass 

 

1 0.3 SCcyl 0.07 0.010 70.48 0.049 Good 

1 0.3 SCtub 0.07 0.008 70.96 0.048 Good 

0.5 0.3 SCcyl 0.06 0.017 43.50 0.063 Good 

0.5 0.3 SCtub 0.06 0.011 43.80 0.06 Good 

1 0.1 SCcyl 0.05 0.012 106.5 0.086 Good 

0.5 0.1 SCcyl 0.08 0.021 27 0.038 Good 

 

50 µm 300 µm 

300 µm 50 µm 

126 µm 117 µm 

365 µm 351µm 
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   (a)                   (b) 

Fig. 6 Brass, 0.5mm thickness, cylindrical metal carbide 

electrode, at top, 0.1mm (a) and 0.3mm (b) diameter 

 

3.2 Laser 

Table 4 reports the results obtained in the experimental 

campaign using laser system. 

 

Table 4 Laser results 

 
 

Laser microdrilling of AISI 304 is characterized by a large 

production of molten material due to low thermal diffusivity 

of this metal. During the ablation process, the heat is confined 

and facilitates melt formation. As regard titanium, the drilling 

process was dominated by a strong reaction with atmospheric 

O2. The exothermic heat significantly enhances the total 

energy available and leads to a higher dimension of top 

diameter. Finally, brass shows a behavior quite different from 

the previous metals. At first, brass is a high reflectivity 

material. Moreover, the drilling process of brass is 

characterized by a strong plasma plume which shields the laser 

beam. This phenomenon explains slow process time respect to 

other metals, above all in percussion drilling where laser beam 

must penetrate a dense plasma plume of one-dimensional 

vapor expansion. As post processing cleaning procedure to 

remove debris and burr, micro fine abrasive paper was used, 

followed by an acetone ultrasonic bath. 

Some photographs of micro holes obtained in different 

conditions are here reported (Figures 7-11).  

 

 
          (a)                         (b) 

Fig. 7 Stainless steel, 1mm thickness, 0.3mm diameter, at top 

(a) and bottom (b) 

   

   
           (a)                        (b) 

Fig. 8 Titanium, 1mm thickness, 0.1mm diameter, at top (a) 

and bottom (b) 

 

  
(a)                     (b) 

Fig. 9 Brass, 1mm thickness, 0.1mm diameter,  

at top (a) and bottom (b) 

 

  
(a)                    (b) 

Fig. 10 Stainless steel (a) and titanium (b) before cleaning 

 

 

   
            (a)                     (b)     

Fig. 11 Stainless steel (a) and brass (b) having  

a diameter less than 0.1mm 

 

4. Conclusions 
A comparison between micro EDM and micro laser process 

was carried out in order to balance the pros and cons of both 

technologies on drilling of micro holes. The experimental 

campaign took into account the region where the two 

technologies can have a matching point. In particular, metals 

of industrial interests (stainless steel, titanium, brass), having 

different thickness (0.5 and 1mm), were processed to obtain 

holes with medium aspect ratio. The conclusions that can be 

drawn are here summarized: 

- micro holes obtained using EDM system show an 

excellent quality in terms of burr, sharpness of 

outline and circularity. The taper rate of holes is 

limited;  

- micro holes obtained using laser system show a 

lower quality than EDM. In fact, laser process is 

135 µm 
75µm 

370 µm 
160 µm 

35 µm 
43 µm 

50 µm 300 µm 

160 µm 125 µm 
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characterized by top burr formation (the exit hole is 

generally clean) due to the deposition of molten 

material (in particular for some materials) and 

therefore a following cleaning of hole is necessary in 

some applications; 

- in general, when in EDM process the brass electrode 

is used for holes having a “big” diameter (0.3mm), 

the machining times are lower than laser. Decreasing 

the diameter (0.1mm), the performance of laser 

process improves (machining time of holes having a 

diameter smaller than 50 µm is very short).   
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In this paper we consider microfactories for manipulation and assembly. These microfactories are com-
posed of several cells containing microrobotic systems capable of a high level of repeatability. The assem-
bly plan of the production is a pipeline of tasks that are performed by the cells. Our aim is to manage the
production flow in the case where the cells can be reconfigured to perform different task types. Each cell
is in charge of several consecutive tasks. A setup time is necessary to switch from the processing of one
task type to another, and multiple intermediate results may be stored temporarily in storage areas to avoid
switching the task type after the processing of each product. In this context we assess the optimized use of
these storage areas, called buffers, and its impact on the production throughput.

1 Introduction

Microfactories are small production systems designed to man-
ufacture microproducts [11]. In our work, we focus on the mi-
crofactories for manipulation and assembly. The manipulation
or assembly tasks are performed by systems which have to be
adapted to the microworld context. The considered systems
are microrobotic systems whose architecture and control sys-
tem permit to obtain high performance as high level of repeata-
bility, resolution or even speed [7]. To perform complex manip-
ulation and assembly tasks, the microrobots are grouped inside
cells. Microrobotic cells often have a great number of degree
of freedom (more than 10 for example). A microfactory could
be a unique cell (most of the time in case of semi-automatic
microfactories) but has to consist in several associated cells to
allow a good management of a workflow. This flow has to be
optimized to obtain the best global performance characterized
by the throughput, the reliability, and the setup time.

Among the different properties that can be those of mi-
crofactories, we consider that we are able to reconfigure the
cells. Different task types can be performed by the same cell.
Moreover, the number of available cells is generally small com-
pared to the number of tasks. Consequently, we assume that
each cell in charge of several consecutive tasks as defined in
an assembly plan. Switching from a task type to another re-
quires to reconfigure the system, i.e. to change the associ-
ated tools, which induces an unavailability time called setup
time [1]. Hence the whole production time for one piece in-
cludes the process time of each task as well as the setup times

needed for cell reconfiguration. To organize the production
flow, the storage areas described by their size and position are
of great importance to define the cell organization of a micro-
factory. We name “buffers” the storage areas which can be con-
tainers or wafers.

Our work is motivated by the high cost – and the low
availability – of reconfigurable cells in microfactories. The tar-
geted production process is defined as a pipeline composed of
several tasks, or steps. So before being completed a product
has to undergo each of the tasks of the pipeline, as illustrated
on Figure 3.1. Our goal is to maximize the overall through-
put of the production. We consider that, due to their cost, the
number of available stations is much lower than the number of
tasks to be performed in the pipeline, hence the need to assign
multiple tasks to a single production cell. As the number of
machines is limited and the reconfiguration times are signifi-
cant, using buffers is needed to greatly improve the throughput.
If for instance setup times are at least the same as processing
times, we are able to almost half the average period. On stan-
dard factories and assembly lines however, the use of buffers
would not be as easy because the costs of keeping intermediate
results usually exceed the benefits of using buffers.

The problem can be split in two sub-problems: first, find
the correct allocation of tasks to production cells then find the
optimal schedule of tasks within a cell (inner schedule). For the
first problem we use an assignment called Interval Mapping,
which means that a subset of consecutive tasks is assigned to
the same cell [9]. We then concentrate on the second problem.

The scheduling issue is here to find a schedule (i.e. de-
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fine an order to perform the tasks) inside a cell in the case where
cells require a setup time to change from one task to another
and where we consider the production of a batch of the same
product. As stated before, we assume that intermediate pro-
ductions can be temporarily stored in a dedicated space called
buffer. Using buffers allow to perform several times the same
task on different products and thus avoid to reconfigure the cell
each time a new product arrives. In this context, as the goal
of our work is to maximize the production throughput, this im-
plies to minimize the cell unavailability and thus making the
maximum use of the buffers is the key to reduce setup times
and maximize the overall throughput. So the issues related to
the global problem depend on the properties of the microfac-
tory, in particular their buffer sizes, and on the properties of the
tasks, their execution times and their setup times.

Considering that buffers may be of different sizes and
differently used also involves scheduling and configuration is-
sues. We must carefully choose the sizes of the buffers, which
must be of reasonable size to avoid spending a long time fill-
ing them up or to meet a deadline condition. They also have
to be consistent with each other to avoid unnecessary space al-
location, and ensure the correct execution of any scheduling
algorithm applied on the cells. Using buffers does not guaran-
tee the overall optimization of the schedule: the schedule may
be optimal for on a given machine, but outputting pieces by
batches may delay the work of the next machine, hence reduce
the overall throughput.

In the paper we tackle the problem of mapping tasks
on cells taking setup times into account. The presented con-
tribution is theoretical results on the complexity of mapping
algorithms. For homogeneous production cells – cells with
the same performance and storage capability – we propose a
greedy scheduling algorithm that computes an optimal sched-
ule. Then, for the case where the storage capacity differs from
one cell to another, we show that the problem becomes consid-
erably more difficult, indeed the mapping problem is strongly
NP-Hard. On homogeneous platforms, when setup times are
sequence-dependent [1] – they depend on the current task as
well as on the previous one – the problem is also NP-Hard, but
can be modeled as a Traveling Salesman Problem (TSP) [8].

The organization of the paper is as follows: first, we
present the framework model in Section 3. In Section 4 we
present our solution for single machine scheduling and inter-
val mapping. In Section 5 we show the resulting execution of
our solution on an example application. Then we conclude our
work in Section 6.

2 Related work
Most of the research works involving reconfigurations focus on
the ability of machines to process batches of pieces from a spe-
cific family, then to be reconfigured – or recalibrated – to pro-
cess batches from another family. In other words, a single ma-
chine or a series of machines follow an assembly plan to create
a product, then have to be reconfigured to follow another as-
sembly plan that is totally unrelated, or at least require a recal-
ibration. In this context, the problem of reducing the impact of
setup times has been covered several times, mainly in semicon-
ductor manufacturing. For instance, Zhang and Goldberg [12]
focus on wafer-handling robots and propose a solution of elim-
inate costly manual re-calibration during component replace-

ments. Li et al. [5, 6] study the problem of batch processing of
incompatible lot families by reducing the total weighted tardi-
ness. Jing and Li [4] provide a linear programming solution to
minimize the total completion time in semiconductor factories.

Becker and Scholl [2] covered the problem of mapping
tasks on machines in form of assembly line balancing problems
(ALBP). In these kinds of problems typically one or more types
of models have to be produced, and thus a precedence graph is
mapped onto a linear assembly line. The setup part of the prob-
lems, however, focuses on the decision which type of piece has
to be produced at a time, and when to reconfigure for another
type of piece. The specific Interval Mapping problem has also
been studied [3], and solutions are offered to map sequences of
tasks on a lesser number of machines. These works however do
not involve any reconfiguration in the process.

3 Framework model

Our study includes a theoretical contribution on task mapping
algorithms. So before explaining how these algorithms are de-
signed we first formally set the context of the work that will
define its range. The production model relays on tasks that are
performed by cells. We consider that a batch of the same prod-
uct has to be realized, i.e., the same set of tasks is performed on
each product in the same order. So when a product enters the
production line it has to be processed by the whole set of tasks
before being completed.

As the tasks are performed one after the other, always in
the same order, their set can be modeled as a pipeline (Fig-
ure 3.1). A pipeline is made of a set T of n tasks: T =
{T1, . . . ,Tn}. The output of task Ti is the input of the next task
Ti+1. Each task Ti requires an operating time wi to be performed
on the current product. As the aim of this production line is to
output a huge amount of products out of the pipeline we con-
centrate on the steady state behavior of the line.

To perform tasks we use a multi-cell microfactory. We
assume that these cells are interconnected by a transport sys-
tem that can convey the products from one cell to every other
cell. So we just take processing times into account and we do
not take any transporting issue into consideration as the trans-
port time can be neglected compared to the processing times.
So the target platform is modeled as a set M of p machines:
M = {M1, . . . ,Mp} interconnected as a clique. A processing
speed vu is associated to each cell Mu.

To execute a given application pipeline on a given plat-
form, tasks are mapped onto machines considering consecutive
tasks, then a inner schedule has to be planned. Each machine
is indeed able to perform sequentially its allocated tasks. How-
ever, to switch from the processing of one task Ti to another
task Pj (i 6= j), the machine Mu has to be reconfigured. This
induces a setup time of sti, j,u time units. On the other hand it
is possible to perform several times the same task on multiple
input pieces without setup. This allows eventually to save setup
times. However, the number of task repetitions is limited; each
task Ti mapped onto Mu has an input buffer Bi, where the output
parts from the previous task are stocked. Given this context,
different versions of the model may be considered depending
on the framework’s heterogeneity in terms of setup times and
buffers.
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Figure 3.1: Example of tasks mapping on a microfactory: tasks 1 to 3 are mapped on the first cell, while tasks 4 and 5 are
performed on the second cell

Setup times Considering the setup times, if the appli-
cation is fully homogeneous, the setup times may be the same
on every machine, and for every task. This will be referred
to as st. On the other hand, on most applications, setup times
will depend on the task we want to setup to. These times may
be sequence-independent (sti), or sequence-dependent (sti,j).
Sequence-dependent setup times mean that the setup time de-
pends on both the task the machine is already configured for
and the next task to be performed. Sequence-independent setup
times usually occur where changeovers have minor influence,
such as gripper calibration, or when both tasks are from the
same type. Sequence-dependent setup times occur when there
is a diversity amongst the tasks, such as going from handling
and assembling parts to gluing them together.

The schedule problem with sequence-dependent setup
times is NP-Hard and can be modeled as a Traveling Salesman
Problem (TSP). It is not studied in the scope of this paper.

Buffers The problem of allocating available space
into buffers may result in four variants:
• B All space is allocated evenly, so that every single task’s
buffer has the same capacity.
• Bu Likewise, if the available space is linked to a machine,
buffers may be allocated to have the same capacity within a
machine, but not the same amongst machines.
• Bi (fixed sizes) If the available space is not related to any ma-
chine, buffer sizes may have been fixed before any mapping is
done. This is the most constrained variant we have to deal with.
• (allocable sizes) The most general problem, where the whole
space is available within a machine, and we may freely choose
the capacity of each buffer.

In the rest of this paper, we use the notation Bi to denote
the name of the input buffer of task Ti, while bi is the capacity
of buffer Bi. When we are under the context of homogeneous
buffer capacities (B and Bu), it is implied that for all tasks bi
has the same value b (respectively bu).

In this context, our objective function is to maximize

the throughput of the production line: T = 1
P where P is the

average period of time between two outputted products.

4 Scheduling with setup times and buffers

Our contributions cover several problems. First, since there are
less cells available than there are tasks to perform, cells will
have to perform several tasks. To find a solution that maxi-
mizes the throughput of the assembly line, we have to perform
load balancing when assigning tasks on machines, so that we
minimize the impact of the bottleneck cell.

Each machine then has a set of consecutive tasks to per-
form, which must be scheduled to avoid any unnecessary setup
time involved. The latter is done by using buffers to stock inter-
mediate productions at each step before treating them, allowing
batch processing of the pieces.

Thus, our study will focus on three main operations:

• For a given machine with a given set of tasks to perform,
finding an optimal schedule on a machine to maximize
its throughput.

• Mapping tasks on machines as interval mapping – each
machine has a set of consecutive tasks to perform. As-
suming that on each machine a schedule is found that
maximizes the throughput, the mapping has to be done
in a way that allows to maximize the throughput of the
machine with the lowest throughput - the bottleneck cell.

• Allocating the available space as input buffers for each
task.

The combination of these three operations will allow to
determine if our solution is optimal. The solution is optimal if:

• The schedule within a machine, as well as buffers al-
location, perform the lowest period possible (or highest
throughput).
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• The bottleneck station on the pipeline – the one with the
highest period – has no idle time while in steady state.

Thus the whole pipeline has the same period as this bot-
tleneck machine.

As a result, assuming we found an optimal solution, we
know that the slowest machine will have a throughput as high
as possible, and is never slowed down within the process. Since
the overall execution of the pipeline is limited by the bottleneck
station, we will be able to assess that the throughput of the ap-
plication is maximum. However, even if the slowest machine
has idle times, the solution may still be optimal if there is no
way to meet this “no idle time” criteria.

We split this contribution section in two parts: the single
machine scheduling section is dedicated to the schedule within
a single given machine, and the multi machine scheduling sec-
tion treats the mapping of tasks on the machines. We will not
cover the buffer allocation part in the scope of this article, as
most of the time the space can be evenly distributed amongst
buffers, and other specific situations (such as a remainder of
space that could be used to raise the size of some buffers only)
are to be studied on a case-by-case basis. Thus, in the follow-
ing sections we assume that the capacities of buffers are already
fixed. That is, in regard to our framework model, only buffer
models B, Bu and Bi are considered, while allocable sizes are
not.

4.1 Single Machine Scheduling

The approach for inner schedules is not directly linked to model
variants. At machine level, the problem with buffers Bu is
the same as B, as they are both homogeneous buffer capacities
within a machine; for all task Ti, the value of bi is b. The prob-
lem with heterogeneous buffer capacities (Bi) is a little more
complex. Likewise, the heterogeneity of setup times (st or sti)
has absolutely no influence: some setups may take longer than
others, but our algorithms will minimize the amount of setups
the machine has to perform for each task, regardless of the time
each will take.

Homogeneous buffer capacities We developed a
greedy scheduling algorithm – GREEDY-B – that minimizes
the period for homogeneous buffer capacities. The schedule is
as follow: for buffers of size b, perform the first task all avail-
able pieces, that is b pieces. This will empty the first buffer
and fill the next. Then we setup to the next task, where its in-
put buffer is now full. The algorithm will continue to treat as
many pieces as it can on each task before performing a setup to
the next task. Since all buffers are the same, the progression is
linear and after the last task the machine will setup back to the
first task.

Heterogeneous buffer capacities Handling different
buffer capacities is harder. This cannot be done the same way
we did it with homogeneous buffers, except if set the limit of
pieces processed on each task to the lowest buffer. The would
however not be optimal, as better solution exist, that make bet-
ter use of all buffers.

It is not possible to express a specific period for any
random buffer sizes. However, it is possible to have a

control over the behavior of the algorithm if all adjacent
buffers are multiples to each others. More formally: ∀i ∈
[1, ..,n],min(bi,bi+1)|max(bi,bi+1). In this configuration, we
know that any buffer will be either x times larger or smaller
than its predecessor, or its successor.

Based on that knowledge, we improved our GREEDY-B
algorithm into GREEDY-BI. The idea is that once the cell is re-
configured for a specific task, the maximum amount of pieces
that can be processed before a new setup is needed is limited
by either the input buffer (the amount of pieces available) or
the next buffer (the space available to store them). The min-
imum of both will be a hard limit; to stay active the cell will
have to reconfigure to perform another task.

Keep in mind that by processing as many pieces as pos-
sible on a single task Ti, we minimize the impact of the setup
time sti on that task, as the ratio of sti and the time needed to
process all pieces on Ti is the lowest possible. Thus, when se-
lecting the next task the cell will reconfigure to, we restrain
this choice to maximize the use of buffers on the task. On
GREEDY-BI, a reconfiguration for task Ti is done on task when
on of the following conditions holds true:

• bi ≥ bi+1, bi+1 is empty, and we can process enough
pieces to totally fill bi+1.

• bi ≤ bi+1, bi is full, and we can process enough pieces to
totally empty bi.

The conditions of the algorithm allow to fill perfectly the
buffers when they are multiple to each others. If this is not the
case, the behavior of the algorithm is undefined and depends
on the actual implementation. We are then unable to work out
an expression for the period, and cannot consider GREEDY-BI
optimal for all configurations other than buffers to each others.

We however developed heuristics that aim to truncate
the size of some buffers in order to have them multiple to each
other. The resulting pipeline is a pipeline on which the exe-
cution of GREEDY-BI is well defined and optimal. However
since we truncated some buffer, we may have lost setup time
reduction potential.

4.2 Multi Machine Scheduling

Subhlok and Vondran [9, 10] addressed the problem of Interval
Mapping on fully homogeneous platforms without setup times.
They developed a dynamic programming algorithm to find an
optimal mapping solution in polynomial time. This algorithm
was later slightly adapted by Benoit and Robert [3] to find the
optimal period.

The aim of the algorithm is to find a mapping that will
eventually maximize the throughput of the application, of min-
imize its period, when running a schedule on each machine.
Remind also that the period is determined by the period of the
bottleneck machine. Through binary search, the algorithm will
try to find a mapping that minimizes the period of the slowest
machine; that is to say, it will try to minimize the value of the
maximum period amongst the period of all machines. Every
time the algorithm has a mapping to test on a machine, it will
calculate its period and determine if it is better than the previ-
ous one.

We proceeded to adapt this algorithm to take setup times
into account. The solution is the same algorithm as before, but
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the period calculation on a machine has been. This period is
calculated according to the execution of the scheduling algo-
rithm we would use.

Assuming an optimal inner schedule is found for each
machine, this mapping solution has been proved optimal for
any setup times (st, sti), and for B and Bu. However, experi-
mentations has shown that idle times may appear on the slow-
est machine when fully heterogeneous buffers capacities (Bi)
are used. This is due to the behavior of the schedule: before
any new batch of n pieces is outputted, the machine must go
through the process of all its tasks for n pieces. When buffers
are heterogeneous, the size of those batches do not reflect the
period of the machine – a faster machine may take too much
time to output by small batches, while the slowest machine is
waiting for its first big buffer to be filled before proceeding.

5 Results
In order to test the behavior of all our algorithms and heuristics,
we have simulated them using the distributed system simulation
tool SimGrid. With the simulator, we are able to test on plat-
forms that reflect several real case scenarios, and compare the
results with other (worse) solutions we come up with. We can
also assess the execution behavior and the performance of the
algorithms on different configurations.

In the following we give an example of execution for a
system consisting of eight tasks and four cells, as shown on Fig-
ure 4.1. A total of 100 pieces are processed in the simulation.
The configuration of the application is as follows:

• Tasks are mapped according to Figure 4.1, namely they
are distributed evenly: two tasks per machine.

• Homogeneous setup times, fixed at st = 2 time units.

• Homogeneous buffers within machines (Bu). As show on
the figure, the buffer capacities are b1 = b2 = 4 on M1,
b3 = b4 = 5 on M2, b5 = b6 = 3 on M3, and b7 = b8 = 5
on M4.

• All tasks take the same time to process a piece: 2 time
units.

On this configuration, the slowest machine is M3: as all
machines have to perform the same amount of tasks and the
process times are homogeneous, having buffer capacities lower
than the other machines implies that the total time spent on re-
configuration is higher.

Figures 5.1 and 5.2 show two extracts from the Gantt
chart obtained executing this configuration. The times are given
in time units (compatible with any unit and coefficient that may
suit a problem). The first sample – on Figure 5.1 – goes from
t = 219 to t = 309, and the second sample – on Figure 5.2 –
goes from t = 441 to t = 531. Each of the four lines corre-
sponds to the activity of a machine (going from M1 to M4).
Each black rectangle represents a setup while colored rectan-
gles are the processing of a piece. The colors on the chart
identify a single piece to track its location (colors are looped
every 40 pieces to keep them distinguishable), and the values
inside rectangles are the name of the task being processed. For
instance, as illustrated on Figure 5.1, on M1 (line 1) a yellow
piece being processed on T1 (a yellow rectangle marked as T1)

will later be found, after a setup, as a yellow rectangle marked
as T2 on the same line. It will then be found on the second line
still as a yellow rectangle, marked as T3 then T4, and so on.

The output of the execution shows that, once the system
has reached a steady state, the slowest machine M3 has no idle
time. On the Gantt chart the line corresponding to M3 always
shows a full activity, while other lines have time slots with no
activity.

Both samples from the chart show that M4 regularly has
idle times. The machine is periodically in a state of starva-
tion, as M3 cannot deliver new pieces fast enough (for instance,
on Figure 5.1 it is waiting for purple then red pieces to arrive
from M3). On Figure 5.2, we can observe that both M1 and M2
have inactivity. As the machines are located before M3 on the
pipeline, this is a case of saturation: M3 cannot process pieces
from its buffers fast enough, therefore M2 has to wait for some
space available on M3 before proceeding. Then, by propaga-
tion, as M2 is slowed down by M3, M1 is also slowed down by
waiting for M2 to empty its buffers.

As we can see, the throughput of the application is lim-
ited and thus determined by the throughput of M3, the slowest
machine. Assuming the mapping on which this execution is
tested is optimal, M3 has the highest throughput possible and
we maximize the throughput of the application.

6 Conclusion
In this paper we have presented theoretical results on the prob-
lem of mapping tasks on the cells of a microfactory. These tasks
are organized as a pipeline in the production process and in the
case where several tasks can be mapped on the same cell our
work relays on interval mapping which assumes that two con-
secutive tasks are mapped on the same cell. In this context we
tackle the optimization of the production throughput depending
on setup times, i.e. the time needed to switch from a task to an-
other. We define a global model for the problem and propose
some polynomial time heuristic to solve the problem.

As shown in Section 4 several problems are identified
depending on the buffers and setup times properties. Most of
them seems to be NP-Hard. So in our future works will con-
centrate on giving proofs for their complexities and defining
efficient heuristics.
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1. Introduction  
 

A robot is generally only one of the components of a 

robotic work-cell. This can contain other robots and other 

devices performing different operations, depending on the 

application the work-cell is supposed to execute. Some 

examples are: rotating tables, conveyor belts, orientation 

platforms, tool stores. Nowadays, also vision systems are 

progressively integrated in the robotic work-cells, exploiting 

many functions, such as object identification and recognition, 

measurements, quality control, supervision. 

Each component introduces errors and presents 

inaccuracies, but, in any case, all the devices constituting the 

work-cell have to cooperate in a suitable way. This is 

especially relevant when high-precision operations have to be 

executed automatically, as in the case of manipulation and 

assembly of small products constituted by components with 

sub-millimetric dimensions. Therefore, the whole work-cell 

needs to be calibrated. The stand-alone devices have to be 

calibrated and their relative location has to be univocally 

determined [1]. 

 

 

1.1 Calibration issues  

When a robot and a vision system have to cooperate 

within the same working area, a robot calibration, a camera 

calibration and a robot-camera georeferencing (also called 

registration) are required. In Fig. 1 the main reference systems 

involved during a general calibration process are reported: the 

subscripts g, r, c and i represent the ground, the robot base, the 

camera and the image respectively. The 3D space coordinates 

are indicated by x, y, z expressed in millimeters while u and v 

are the image coordinates in pixels.  

Considering the simple case in which the manipulator 

must grasp and release objects on a planar area under the 

supervision of a camera, a 2D camera calibration can be 

considered suitable. 

The calibration of the camera has to be performed to 

compute image pixel to real-world unit transformation and to 

compensate for perspective, distortion and spatial referencing 

errors [2]. Perspective errors occur when the camera axis is 

not perpendicular to the component under inspection. To 

reduce this error one can try to position the camera the most 

perpendicular possible to the plane, but in any case, this error 

has to be compensated to achieve higher quality images. 

Moreover, distortion errors are introduced by lens 
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imperfections. Typically, camera lens introduces radial 

distortion, that is the image information is misplaced relatively 

to the optical center of the lens [3]. 

 

 
1.2 The standard calibration strategy 

The camera calibration is usually performed by taking a 

picture of an object of known shape and size and comparing 

the position of some image features measured in image pixels 

with the known actual position expressed in millimeters or 

other suitable units. This procedure is generally based on a 

model of the camera, the perspective transformation, and the 

distortion model. When a 2D calibration is required, the 

calibration object is usually a grid traced on a flat non-

deformable surface, invariant with respect to temperature, 

humidity and other external agents. For example, standard 

grids may be obtained by printing a set of circles in predefined 

positions on a glass or ceramic substrate. The quality of the 

grid, and the final calibration accuracy, depend on the number 

and on the precision of the position of the circles as well as on 

the precision of their shape. The mentioned characteristics 

should be optimized also depending on the dimension of the 

field of view of the camera. 

In order to perform a 2D camera calibration, the pattern 

has to be placed to be seen in focus. As no information is 

given about the displacement along the optical axis, the focal 

plane is assumed to be parallel to the robot x-y plane. The 

camera frame has the origin located at the barycenter of a 

chosen dot of the grid; the x-axis is usually identified as the 

line passing through the origin and the barycenter of a chosen 

dot belonging to the row including the origin dot, while the y-

axis is perpendicular to the first one. The georeferencing 

between the robot base frame and the camera frame is 

performed by means of a calibration tool mounted on the robot 

end-effector (usually a pin) which is moved to a minimum of 

two specific points whose absolute coordinates are known in 

the robot working space (3D georeferencing requires at least 

three non-aligned points). The position of the pin is measured 

by the camera using its reference system and the 

corresponding transformation between the two systems is 

easily computed. 

The perspective transformation is performed by the pin-

hole camera model [4] which results in the system of 

equations: 

where u and v are the image coordinates in pixels of one 

feature whose position in the real world is represented by x 

and y, and a, b, c, d, e, f, g, h are suitable constants to be 

determined by calibration. 

The distortion is represented by a model in which the 

distance D of each point from the center of the distortion (x0D, 

y0D) is affected by an error proportional to a quadratic form 

D = k1 + k2 D
2
 where k1 and k2 are constants to be 

experimentally determined. 

The above described calibration procedures, commonly 

used at the macroscale, result in a very onerous process at the 

microscale, where the tolerances are very strict. First of all, 

due to the high resolution required by the vision system, the 

dot spacing tolerance has to be very accurate (in the 

micrometric range), increasing the fabrication costs of the 

calibration grid. In addition, the calibration pin has to be 

accurately manufactured and manually positioned, which is an 

onerous and time-consuming operation. Moreover, due to its 

small dimensions, its manufacturing could be challenging and 

the final pin very fragile. For these reasons, non-conventional 

calibration strategies were conceived and implemented for our 

work-cell prototype, which is described in the following 

section. 

 

 

2. The work-cell for microassembly 
 

A suitable experimental setup (Fig. 2) able to move the 

parts to be manipulated and measure their position in the 

working area was designed. 

The work-cell is equipped with a Mitsubishi Electric [5] 

RP-1AH robot (1). It presents a 5-joint closed link structure 

and 4 degrees of freedom with Schönflies motion [6]: 2 

revolute joints for the positioning in the x-y working area, a 

third revolute joint for the rotation and a prismatic joint for the 

z vertical end-effector motion. The operating limits are 

150x105 [mm
2
] with a vertical stroke of 30 [mm]. The 

repeatability is ±5 [μm] in the x-y plane, ±10 [μm] for the 

vertical motion, and ±0.02° for the end-effector rotation.  

A smart and standard mechanical interface (2) was realized 

in order to facilitate the tool change. It was directly connected 

to the bottom part of the hollow screw constituting the third 

and fourth axis of the robot.  

The vacuum generation system is a critical part of the 

setup, mainly during the releasing phase. It consisted of an air 

compressor, a FRL (Filter Regulator Lubricator) group, and a 

piCOMPACT10 vacuum ejector (3). This ejector integrates a 

vacuum sensor and two normally closed solenoid valves, one 

for the supply and one for the release. This generation system 

was chosen to assist the release with a positive pressure. By 

modifying the throttling, the entity of the blow in the release 

phase can be set and optimized for the specific component and 

application. 

Fig. 1 Representation of the main reference frames involved in the 

calibration processes. 
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The measurements of the position of the parts in the focal 

plane were performed using a suitable vision system, 

consisting of a first camera (4) with field of view (FoV) 

16.3x13.5 [mm
2
] and spatial resolution 6.6 [μm] and a second 

camera (5) with FoV 32.70x24.59 [mm
2
] and spatial resolution 

24 [μm]. The parts to be manipulated lied on a transparent 

glass substrate (6) so that the first camera, fixed on a rigid 

structure below the robot working area, detects from the 

bottom their position and orientation. The second camera 

allows instead a top view of the assembly area. The glass 

substrate, as well as the assembly area, was mounted on an 

adjustable orientation platform (7) in order to assure its 

planarity and avoid the influence of the substrate inclination. 

Moreover, thanks to the compliance this system provides, it is 

intrinsically more safe against accidental impacts of the 

gripper on the substrate. An opportune lighting system is 

essential for the detection, robust recognition and reliable 

measurement, thus a diffuse illumination of the scene was 

adopted, making the disturbance of the environment light 

negligible. In order to obtain better images, the end-effector 

was also equipped with a contrast panel (8) on the top of the 

gripping tool (9). The gripping tools are standard vacuum 

microgrippers (commercially available needles for dispensing). 

Many sizes are available, ranging from a cannula with internal 

diameter of 1.60 [mm] down to 0.10 [mm]. A SEM (Scanning 

Electron Microscope) bottom image of the needle with an 

internal diameter of 0.260 [mm] is displayed in Fig. 2. 

 

 
3. The non-conventional calibration strategies 
 

In the specific case, the manipulator must grasp and 

release objects in two separate planar zones (hereafter called 

area1 and area2) under the supervision of two cameras, one for 

each zone, as shown in Fig. 2. Thus, as said above, the robot 

has to be calibrated, as well as both the cameras, then a 

georeferencing is needed. The aim of the robot calibration is 

the improvement of its accuracy [7] and was performed 

measuring its actual motion [8, 9] to estimate its geometrical 

parameters [10, 11]. In this work, it is assumed that the robot 

was already calibrated and exhibited a suitable accuracy; thus 

this step is not discussed. In any case, the calibration of the 

vision system was necessary and a 2D calibration was 

considered appropriate. Two different calibration strategies are 

proposed: the former represents an adjustment of the standard 

method, thus called hybrid strategy, while the latter is a fully 

non-traditional method, named virtual grid strategy. 

 

 
3.1 Hybrid calibration strategy 

The camera calibration is performed by means of an actual 

grid of dots printed on a substrate. The grid is placed on the 

camera focal plane and the camera takes a picture of the grid. 

The developed vision algorithms provide for the calculus of 

the set of barycenters of the dots in pixels that, together with 

the corresponding set in millimeters, is processed by the 

camera calibration algorithm. Then, the georeferencing  

between the robot base frame and the camera frame is needed. 

As said above, in the work-cell two separate 2D vision 

systems are integrated and must be calibrated: one camera 

looking from below up to the robot end-effector, and another 

one having a top view of the assembly area. 

Performing a georeferencing in the standard way is a big 

challenge at the microscale, due to the high-demanding 

positioning of the pin mounted on the end-effector on the 

points of the grid. Thus, depending on the configuration of the 

camera to be calibrated, two alternative automatic approaches 

have been adopted. 

Concerning area1, the referencing is obtained by moving a 

sphere gripped by the robot end-effector in the field of view of 

the camera in n known positions (n ≥ 2). Similarly, in area2 

the georeferencing of the second camera frame with respect to 

the robot frame is obtained by commanding the robot to place 

n spheres in the FoV of the camera in known positions. In both 

cases, the positions of the spheres are measured by the related 

camera using its reference system and the corresponding 

transformation between the two systems is computed. 

 

 

3.2 Virtual grid calibration strategy 

The novel calibration strategy allows to simultaneously 

calibrate the camera and georeference the camera with respect 

to the robot without using external tools (as the calibration 

pattern or the calibration pin). 

For the first camera, the calibration procedure was based 

on the use of a “virtual grid” with the same characteristics of 

the standard calibration pattern, created by moving a sphere 

gripped by the robot end-effector in several known positions 

inside the field of view of the camera. A similar procedure was 

presented in [12]. The robot, already calibrated, grasped a 

sphere and moved it to a series of known positions in the x-y 

plane. At each position, the camera took an image and 

measured the sphere position in pixel units. The collection of 

the two sets of the sphere position in millimeters and in pixels 

Fig. 2 The prototype of the work-cell. 
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was processed with the same algorithms used for an ordinary 

grid. 

Also for the second camera looking at area2, a similar 

procedure was adopted. The manipulator grasped one sphere 

at each time and placed it to a known position in the field of 

view of the second, non-calibrated, camera, thus building a 

sort of virtual calibration grid. Also in this case, the set of 

position in millimeters and pixels (measured by the camera) 

was processed by the calibration algorithm. 

Thereby, the camera calibration and its georeferencing 

with respect to the robot were performed simultaneously and 

automatically and it was not necessary to use a calibration 

object. In this way the accuracy of the calibration was 

influenced by the spatial resolution of the vision system and 

the robot encoder resolution affecting the robot feedback 

position reading, and not by the fabrication quality of the 

calibration object.  

 

Some considerations have to be done. First of all, the 

downwards end-effector movement to pick the sphere was 

fully automated. Indeed, no manually taught vertical 

information was provided to the robot controller. An interrupt 

sent by the vacuum switch to the robot controller when a part 

has been picked is exploited in order to aim at the maximum 

system flexibility. Moreover, in order to avoid the influence of 

the release performance of the mounted gripper, the sphere 

was released on an adhesive substrate. In this way the sphere 

was glued to the substrate, increasing the accuracy of the 

whole grid and avoiding undesired part rolling. Finally, a sort 

of passive compliance control was assured by the presence of 

the adjustable orientation platform supporting the working 

area2. In this way, even if the height of the part release, that is 

the distance from the substrate, was accidentally lower than 

the sphere diameter, thus pressing excessively on the substrate, 

neither the system could be damaged nor the calibration 

process fail. Note that glass spheres with a diameter of 1 [mm] 

and a diameter tolerance of ±0.2 [mm] were adopted. This 

type of object has been chosen to benefit from the gripping 

auto-centering capability of the vacuum needle. A pre-

selection of the spheres has been done by means of the vision 

system to assure their roundness (to exclude those with the 

poorest roundness). 

To evaluate the performance of these calibration strategies, 

depending on the camera, the robot was asked to move the 

end-effector gripping a sphere in some x-y positions in the first 

camera FoV or to place them in the assembly area supervised 

by the second camera. Points different from those used for the 

georeferencing in the hybrid strategy or for the construction of 

the virtual grid were chosen. The positions of the sphere were 

measured by the vision system. This time the calibration 

information previously computed was used to convert the 

positions of the sphere from pixels to millimeters. The 

calculus of the deviation between the reference and calculated 

end-effector positions was then possible. For the sake of 

completeness, this calculus has been computed also for the 

points used for the georeferencing in the hybrid process and 

for the virtual grid construction in the second process. The 

chosen performance index was the position error e defined as: 

where xa , ya are the reference coordinates of the center of the 

sphere, that is the end-effector coordinates expressed in the 

robot base reference system, and xd , yd are the coordinates 

measured by the calibrated camera. 

 

 
4. Implemented calibration strategies 
 
4.1 Calibration of the area1 

In the sequel, the implementation of the two different 

approaches to the calibration of the first camera and its 

georeferencing with respect to the robot base frame are 

presented. 

 
4.1.1 Hybrid strategy 

As prefaced in §3, the camera calibration is performed by 

means of an actual grid. In this case, a grid of 8x7 black dots 

printed on a white substrate with a diameter of 1 [mm], a dot 

spacing of 2 [mm] and a dot spacing tolerance of 5 [μm] has 

been adopted. The grid was fixed on the glass substrate and 

placed to be seen in focus. The camera took a picture of the 

grid and the developed vision algorithm provided for the 

identification of the dots and the calculus of their barycenters. 

The origin of the coordinate system of the calibration grid 

was set to coincide with the barycenter of the top left dot, the 

x-axis was aligned with the topmost row of dots and the y-axis 

was perpendicular and directed downwards in the image. In 

this way the two sets of barycenter positions expressed in 

millimeters and pixels could be processed by the calibration 

algorithm. Then, the algorithm performed the transformation 

and compensated for perspective and non-linear errors. In the 

present work, all the vision algorithms have been developed in 

LabView
TM

, whose vision libraries make a “calibration block” 

available to the user, with the possibility to choose the type of 

error compensation. In this case, aiming at the highest vision 

system performance, a calibration taking into account both 

perspective and distortion errors was chosen. 

To perform the georeferencing, the robot grasped a sphere 

and moved it to n (n ≥ 2) known positions in the x-y plane. For 

all these positions, the z height has been kept constant and 

chosen in order to make the sphere to be seen in focus: in this 

way, the offset between the georeferencing and calibration 

planes falls into the camera depth of field, which has the order 

of magnitude of 1 [mm] for the first camera. At each position, 

the robot stopped, the feedback position was sent from the 

robot controller to the master personal computer and the 

camera took an image. The developed vision algorithm 

provided for the identification of the sphere in the field of view. 

Then, the algorithm performed the calculus of its barycenter in 

pixels and, since the camera was already calibrated, in 

millimeters too. Thus, the corresponding transformation 

between the camera and the robot systems can be computed 

estimating the parameters (ϑ, x0, y0) of the planar 

rototranslation matrix between the two reference systems, 

   22
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represented by the following relation: 

Linearizing it in the neighborhood of ϑ = ϑe, where ϑe is a first 

estimation of the angle ϑ, one obtains: 

Then, applying the Least Square Method to the collected data, 

it is possible to derive the estimated values of the vector 

parameters L = [Δϑ , x0, y0]
T
 from equation: 

where A
+
 is the pseudoinverse matrix of the coefficient matrix 

A (2n x 3) and B is the (2n x 1) vector of the known terms. 

Therefore, we get ϑ = ϑe+ Δϑ. 

Since the linearization introduces errors, the estimation of 

Δϑ, x0, y0 can be reiterated to improve the calibration. 

Note that, in order to avoid the effects of the geometrical 

errors at the end-effector, its orientation has been kept constant 

to an angle α = αcal during this phase. The geometric errors at 

the end-effector will be considered in §5. 

The results obtained with this approach are reported in 

Table 1, which shows the absolute values of the mean and 

maximum errors and the standard deviation. 

 
Table 1 Results of the hybrid calibration applied to the area1 

(number of georeferencing points n=4 and grid of verification 

points of 56 positions). 

Error in georeferencing points 
[μm] 

Error in non-georeferencing 
points [μm] 

Mean 
error 

Max 
error 

Standard 
deviation 

Mean 
error 

Max 
error 

Standard 
deviation 

15.2 43.2 10.5 14.2 50.4 11.9 

 
 
4.1.2 Virtual grid strategy 

As described above, the procedure was based on the use of 

a virtual grid. Practically, as a first step, the robot grasped a 

sphere with a known diameter. Then, it was commanded to 

move in order to position the sphere to be seen in focus by the 

camera. After that, the cycle of movements and images 

captures started, until the grid was complete. Again, a grid of 

8x7 sphere positions has been used and the end-effector 

orientation has been kept constant. 

As for the hybrid strategy, the positions of the barycenters 

of the sphere are identified and, again, the origin of the 

coordinate system of the calibration grid was set to coincide 

with the barycenter of the top left dot. However, in this case, 

such point corresponds to a specific position achieved by the 

robot, thus the georeferencing between the robot and camera 

reference frames is simultaneously provided. 

The statistical information of mean and maximum errors 

and standard deviation calculated for a single complete grid is 

reported in Table 2. Both the results in the case of the points 

used for the calibration and in that of different points are 

reported. 

 
Table 2 Results of the virtual grid calibration applied to the area1  

(in all, two grids of 56 positions each have been considered). 

Error in calibration points 
[μm] 

Error in non-calibration points 
[μm] 

Mean 
error 

Max 
error 

Standard 
deviation 

Mean 
error 

Max 
error 

Standard 
deviation 

3.9 8.8 1.7 6.3 19.0 3.1 

 

 
4.2 Calibration of the area2 

Hereby, the hybrid and “virtual grid” strategies are 

addressed for the calibration and referencing of the camera 

providing a top view of the assembly area. 

 
4.2.1 Hybrid strategy 

The same physical standard grid used for the first camera 

was adopted. The camera takes a picture of the 16x12 black 

dots grid which is processed by the vision algorithm. 

The georeferencing of the camera frame with respect to 

the robot frame is then obtained by commanding the robot to 

place n (n ≥ 2) spheres in the FoV of the camera in non-

aligned positions.  

To accomplish this task, the first already calibrated camera 

was exploited. It allows to calculate the x-y coordinates in the 

robot reference system of some spheres lying in the substrate 

in area1 and to send them to the robot controller.  

The robot then picks by vacuum and places the spheres in 

the specified positions of the FoV of the second camera. The 

spheres barycenters are then calculated in the camera reference 

frame and the transformation with respect to the robot frame 

can be computed. 

The procedure for the evaluation of the calibration error 

for the second camera was identical to the previous one. The 

calibration quality was checked by placing some spheres to 

some points different from those used for the georeferencing 

and the measuring error was evaluated. 

Table 3 reports the obtained results. 

 

Table 3 Results of the hybrid calibration applied to the area2 

(number of georeferencing n=4 and grid of verification points of 

12 positions). 

Error in georeferencing 
points [μm] 

Error in non-georeferencing 
points [μm] 

Mean 
error 

Max 
error 

Standard 
deviation 

Mean 
error 

Max 
error 

Standard 
deviation 

67.5 128.3 36.0 62.7 103.1 31.5 

 

 

4.2.2 Virtual grid strategy 

Operatively, the process for the grid of spheres 

construction was similar to the approach used for the first 

camera georeferencing. A grid of 4x3 dots was considered 

suitable, since it provided a more than sufficient amount of 

data and an execution time relatively low, which is an 
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important aspect if a re-calibration of the system is needed 

frequently. The robot picks and places, one by one, the spheres 

in the FoV of the camera to be calibrated. For each sphere 

deposition, the camera takes a picture of the under-

construction grid. This last placed sphere is detected and its 

pixel barycenter is calculated. The data are then used to 

calibrate the second camera using the same mathematical 

approach used for the first camera. The position errors 

obtained with this approach are reported in Table 4. 

 
Table 4 Results of the virtual grid calibration applied to the area2 

(in all, two grids of 12 positions each have been considered). 

Error in calibration points 

[μm] 

Error in non-calibration 

points [μm] 

Mean 
error 

Max 
error 

Standard 
deviation 

Mean 
error 

Max 
error 

Standard 
deviation 

6.8 20.8 4.8 19.5 46.2 12.3 

 

 
5. The end-effector calibration 
 

When commanding the robot to move over a part to pick it 

with an angle different from that used during the camera-robot 

calibration, a position error was observed. 

It was verified that the error was due to a geometrical error 

of the gripper (Fig. 3). Thus, a simple and agile kinematic 

calibration of the robot end-effector has also been conceived to 

obtain higher accuracy. This calibration exploited the setup 

available in area1 able to provide a bottom view of the 

microgripper. Indeed, the already calibrated and georeferenced 

camera 1 has been considered a suitable measurement system 

of the robot end-effector position. The following describes the 

method and shows the achieved improvements. 

 

5.1 The error model 

The microgripper can be affected by misalignment and 

orientation errors with respect to vertical rotational axis of the 

manipulator which can lead to imprecise grasping and 

releasing of the microparts. A simple schematization of the 

comparison between the ideal and the actual situation is 

reported in Fig. 3. In the ideal case, a commanded rotation α 

about the fourth robot axis results in a pure rotation of the 

microgripper, thus no displacement in the x-y plane occurs. In 

case (b), since the center of the gripper is not located on the 

rotation axis, the gripper rotation produces a displacement of 

the grasped part. 

An analysis of the system suggested the adoption of a rigid 

model to describe the gripper deformation. If we consider to 

command a set of angular displacement keeping constant the 

position x, y and z of the end-effector, the sphere barycenters 

detected by the vision system should lay on a circumference 

about the vertical axis. The reference model can thus be 

derived and its representation is reported in Fig. 4. It can be 

considered as the bottom view of the robot end-effector by the 

camera looking at area1. 

Let’s denote with αcal the end-effector rotation angle used 

during the camera calibration process and with P = [x, y] the 

corresponding planar position of the end-effector, lying on the 

circumference of radius R and center Po = [xo, yo] belonging to 

the rotation vertical axis: 

where Δx and Δy represent the misalignment of the 

microgripper with respect to Po when α = αcal. 

Now consider to rotate the end-effector of the angle αj 

relative to αcal; it will achieve the new position Pj = [xj, yj]: 

Thus, the position error ΔPj due to the misalignment results: 

In this model, Δx and Δy are two unknown constant 

parameters. Their estimation is fundamental, since it allows to 

compensate for the described error without hardware 

intervention and increase the overall system accuracy. In order 

to find the actual values of the parameters, the Least Square 

Method has been applied to a set of different achieved 

positions on the circumference. 

It is worth to note that increasing the number of rotations, 

a better estimation could be obtained. 

 

Fig. 4 Reference model for the end-effector calibration. 
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Fig. 3 Schematization of the end-effector error: (a) ideal model; 

(b) error affected model. 
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5.2 Experimental procedure and results  

It was decided to make the end-effector rotate over 360° 

with a step of 20°, thus 18 rotations about the vertical axis 

were executed. Since the previous camera calibration could 

not totally eliminate errors in the image acquired by the 

camera, the series of rotations were repeated in many different 

positions in the field of view, aiming to maximize the 

performance of the calibration process. Therefore, a grid of 30 

positions (6x5) was considered suitable. The process develops 

as follows: 

1. the robot end-effector, while grasping a sphere, is 

commanded to the first position of the grid with the same 

angle used during the camera calibration process; 

2. the camera takes a picture of the sphere, calculates its 

position and stores it in memory; 

3. the end-effector rotates of the chosen step angle (20°); 

4. steps (2) and (3) are repeated until the span of 360°; 

5. the robot is commanded to move in the second (or the 

following) position of the grid with the calibration angle; 

6. steps (2) to (5) are repeated until the last rotation in the last 

position of the grid has been performed. 

An over-constrained system of equations is obtained rewriting 

the equation of ΔPj for all the considered gripper poses. The 

system is linear in the unknowns Δx and Δy, thus they can be 

easily estimated by the Least Mean Square method (see Table 

5). This makes the compensation of their effect possible by 

means of a geometrical model. 

To evaluate the benefit of this calibration process, the final 

mean and maximum position errors and the standard deviation 

values have been measured before and after the correction in 

30 positions different from those used during the calibration 

process and scattered in the working area. The results are 

reported in Table 6: in particular, the first three columns in 

table report the errors that would be obtained if a position were 

achieved with different orientations ignoring the correction. As 

one can see, the errors without the use of end-effector 

calibration are an order of magnitude higher than those with 

the end-effector calibration. Thus, a dramatic improvement has 

been obtained. 

 
Table 5 Estimated values of the end-effector calibration 

parameters. 

Δx [μm] Δy [μm] 

-68.7 137.2 

 
Table 6 Results of the end-effector calibration (in all, two grids of 

30 positions each and 18 rotations per position have been 

considered). 

Error before calibration [μm] Error after calibration [μm] 

Mean 
error 

Max 
error 

Standard 
deviation 

Mean 
error 

Max 
error 

Standard 
deviation 

188.8 309.3 109.7 11.8 30.0 6.2 

 

 

6. Discussion 
 

In the previous sections, the developed strategies for the 

complete work-cell calibration have been addressed. 

Concerning the non-conventional calibration methods applied 

to the different areas, consider the obtained results reported in 

Table 1, 2, 3, 4. As one can notice, the virtual grid strategy 

appears more efficient than the hybrid one, both in terms of 

mean and maximum errors and standard deviation. 

An analysis of the two calibration strategies leads to the 

evaluation of the different sources of errors. With reference to 

the hybrid calibration, the total error is given by the 

combination of errors deriving both from the camera 

calibration and from its georeferencing. In particular, the 

camera calibration is affected by the dot spacing tolerance of 

the grid and by the error committed by the vision algorithm 

which detects the dot barycenters. In the georeferencing, a 

considerable error arises since there is an offset between the 

georeferencing and the calibration planes, which cannot be 

neglected without the use of high-precision devices. This 

causes the mean and maximum errors in the georeferencing 

points to be comparable with those in non-georeferencing 

points, oppositely to what happens in the case of the virtual 

grid strategy. Moreover, the use of the robot to move the 

spheres involves a further error due to the encoder resolution. 

Again, an error associated to the barycenter identification by 

the vision algorithm occurs. In the specific case of the first 

camera, a small error in the auto-centering of the sphere 

gripped by the robot end-effector can affect the process. In the 

case of the second camera, this error adds to the error in 

positioning the sphere on the adhesive substrate caused by the 

subtle collision between the gripper and the substrate itself. 

On the other side, since in the virtual grid calibration 

strategy the camera calibration and its georeferencing are 

performed simultaneously, less sources of error than in the 

previous strategy arise. In this case, errors due to the encoder 

resolution and to the vision algorithm performance occur. The 

error associated to the auto-centering of the sphere adds when 

the first camera is calibrated, and, for the second camera, the 

additional error in positioning the spheres arises. 

To support the calibration of the area2, it has been decided 

to exploit the already calibrated camera 1: on the other hand, a 

mechanically fixed reference place where spheres are picked 

up could also be adopted. This choice has been done to neglect 

the use of external devices.  

Concerning the end-effector calibration, an important 

aspect is represented by the need of a calibrated vision system 

to support its actual implementation. Thus, both from the 

conceptual and operational point of views, the end-effector 

calibration has been addressed subsequent to the calibration of 

the area1. For this reason, the main error source is the area1 

calibration error, which adds to the errors due to the encoder 

resolution, the vision algorithm performance and the auto-

centering of the sphere. 

It is worth to note that the sphere diameter is not an 

influential parameter as long as it does not involve mechanical 

interference among the placed spheres. Moreover, it does not 

need to be precisely known in advance.  

To conclude the discussion about the different calibration 

strategies, besides a performance analysis in terms of precision,  
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an investigation on the feasibility of the calibrations execution 

is fundamental. Comparing the two calibration strategies in 

terms of execution time, the virtual grid approach is slower 

than the other one, since the grid construction takes time: 

indeed, with reference to the calibration of area1, while the 

execution of the hybrid strategy takes some seconds (8 

seconds in the case of 4 georeferencing points), the 

construction of a 8x7 virtual grid takes about 2 minutes. This 

difference is due to the definitely fewer positions needed for 

the georeferencing than for the virtual grid calibration strategy, 

since the time needed for taking an image of the physical grid 

of dots is negligible. Furthermore, the time necessary to 

calibrate the area2 is always much higher than that needed to 

calibrate the area1, regardless of the adopted method, since 

both the virtual grid construction and the georeferencing 

derive from a pick and place operation. For example, in the 

case of a 4x3 virtual grid construction in area2, the execution 

time is about 3 minutes (note that, compared to the virtual grid 

of area1, 50% more time is necessary to build a grid of one-

fifth of positions). As to the hybrid strategy, the georeferencing 

of the second area using 4 positions takes about one minute, 

that is eight times more than that of the first one. Concerning 

the end-effector calibration, the execution time can take 

several minutes: for example, a 6x5 grid with 18 rotations for 

each position can be executed in 12-13 minutes. Obviously, as 

the number of points in the calibration grid or the step in the 

series of the end-effector rotations increases, the time will 

increase proportionally. In all cases, note that the time can 

vary depending on how fast the vision system recognizes the 

spheres. 

The economic aspect is also relevant: in fact, an accurate 

actual grid can be very expensive, thus the hybrid approach 

requires higher costs than the virtual grid strategy. Indeed, the 

price of a commercial grid can be two orders of magnitude 

higher than that of some glass spheres. 

 

 
7. Conclusions 
 

This paper presented different calibration strategies 

applied to a micromanipulation work-cell. Two methods for 

the camera calibration and the camera-robot georeferencing 

have been compared and critically analyzed. The virtual grid 

approach demonstrated its effectiveness and higher efficiency 

than the hybrid calibration strategy, both from the performance 

and economic points of view. Moreover, the developed 

kinematic end-effector calibration procedure allowed a 

significant improvement of the overall system accuracy, 

fundamental when manipulating parts with sub-millimetric 

dimensions. 
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1. Introduction  
 

Recently, the Micro-factory system technology covers more 

area in manufacturing industries for mobile electronics, 

automobile and biomedical area with various processes such 

as cutting, forming, joining and more. For the micro-

machining system with minimized size, it is regarded as 

beneficial to reach high precision easily during less usage of 

resources and energy. In this manner, we developed some 

micro-machining system such as desktop milling machine, 5-

axis milling machine, desktop turning machine and 

reconfigurable multi-axis machines. The developed systems 

were demonstrated for machining of complex mechanical 

parts less than 5 mm with accuracy of few m. 

There are various researches and developments on going for 

manufacturing micro-patterns on surfaces for special 

functionalities such as reduction of friction, biomedical 

absorption or desorption and optical performances. The 

required features have size of 0.1~100 microns with repeatable 

or arbitral patterns. Many methods of the machining were 

introduced so far, such as laser-based micro machining, 

chemical process and coatings, forming and molding on 

surface or film, and mechanical machining directly on surfaces 

of metal or other materials. 

For machining of micro-patterns in metal, micro turning, fly 

cutting and grinding can be implemented. The micro-milling 

with small flat or ball end mills can provide accurate 

machining features less than 10 m with precision micro-

machining systems. But the features must be created by 

movement of machines, stages or feed-drives, and the speed of 

the process is limited by the response time of the drive system. 

So, one possible solution for increasing productivity is making 

machining system react faster, so the miniaturization of 

machine system can be a solution as the Micro-factory concept. 

This limits the productivity especially when the features 

should be machined on large area. Hence, micro-machining 

with very fast moving tools such as fast tool servo (FTS) or 

fly-cutting were considered so far. In this paper, we propose a 

method of machining micro features using oscillating milling, 

oscillation of rotating axis of the tool with high speed micro 

milling spindle. To do this, a magnetically suspended micro-

spindle was developed and tested for its control bandwidth of 

the oscillation. The micromachining set-up was built with 

desktop 3-DOF double wedge platform with air bearing stages, 

and preliminary oscillation machining was performed. 

 

2. Proposed System  
 

2.1 Concepts  

The Fig. 1 shows the concept of the proposed method as an 

example. If a micro milling tool rotates with 100,000 rpm, and 

also rotating center is oscillating simultaneously with 200 Hz 
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This paper introduces a system to machine micro-sized patterns effectively on surface based on 
micro-milling process using tools with rotation and oscillation. A spindle supported by active 
magnetic bearings in radial directions were developed and implemented for proposed system. The 
rotating axis of the tool can be moved faster than stage system up to 500 Hz of within air gap as 
amplitude. This can be applied for repeated patterns without movement of stages carrying workpiece 
or spindle which have usually slower response time. To review the effectiveness of proposed concept, 
we integrated the proposed micro-spindle with active magnetic bearings with a precision 3-axis air 
bearing stage using double-wedge mechanism, and tested this oscillation milling. A flat end mill with 
0.8 mm diameter rotating 100 krpm was induced to workpiece with 35 degrees of inclination angle 
while oscillated 200 Hz in radial direction. The results show machined pattern spacing 20 m and 40 
m due to feeding speed of the workpiece 4 mm/sec and 8 mm/sec. 
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and amplitude of 10 m while a workpiece is moving with 

speed of 1 mm/sec, the result will be a pattern of 10 m wave 

with wave length of 5 m. Considering this uses rotating tools, 

the cutting mechanism will be similar to the micro milling 

with low cutting forces. If this is tried with conventional 

micro-milling, the stage carrying spindle or the workpiece 

should move as 200 Hz, and this is usually higher than servo 

bandwidth of the stage system. To realize this concept, some 

mechanisms that can oscillate rotating tools directly are 

needed, so a spindle supported by magnetic bearings was 

applied. For the movement of the workpieces, a 3-DOF stage 

with double wedge stage was implemented. 

 

Endmill (ø0.1~1 mm)

Rotation (100~180krpm)

Excitation(10 m, ~500Hz)

Workpiece feed 

(>1 mm/sec)

q

 

Fig. 1 Example of the concept of micro oscillation milling 

 
2.2 Spindle with magnetic bearings 

Fig 2 shows the micro-spindle proposed by the authors. The 4-

axis active magnetic bearings with permanent and 

electromagnets were designed for high speed rotation and 

active control of the tool position. The size of the spindle is 62 

mm of diameter including housing and 94 mm long. The shape 

memory based tool clamping system is located front end for 

tools with 3-mm shank diameter. This spindle can be run up to 

200,000 rpm with air turbine in the middle of the shaft. The 

desirable operating range is 80,000 ~ 180,000 rpm for stable 

rotational response. The control bandwidth for the radial 

motion of the spindle is about 1 kHz, and the radial auxiliary 

air bearing gap is 15 m. So, the shaft can be oscillated up to 

20 m within the air gap of the auxiliary bearings. 

 

Tool clamping with 
SMA

Permanent magnet

Radial AMB Sensor

Air turbine

Sensor

Auxiliary bearing

(air bearing)

Auxiliary bearing

(air bearing)

Radial AMB

Shaft

 
Fig. 2 Micro spindle with active magnetic bearings and air 

bearings 

 

Fig. 3 shows measured orbit result of tool position obtained 

from magnetic bearing sensors while spindle is rotating 

110,000 rpm (1.8 kHz) and excited 50~500 Hz in radial 

direction by injecting external signal to the reference signal of 

the magnetic bearing controller. It can be noticed that runout 

measured at the front and rear sensors were less than 10 m, 

and about 10 m of additional oscillations were possible up to 

500 Hz. Fig. 4 shows measured displacement at the shaft front 

end with a capacitive sensor with 50~500 Hz of excitation. 

Considering the outer envelope will be the machining 

trajectory, it can be noticed that about 10 m of shape can be 

machined if there is no deflection of the tool. 

 

Table1 Specifications of the active micro spindle 

Radial bearings 
Active magnetic bearings / 

air bearings 

Thrust bearings Air bearings 

Motor Air turbine 

Maximum speed (rpm) 200,000 

Static stiffness (N/m) 0.6 

Tool shank 3 mm 

(SMA clamping) 

Air gap of magnetic bearings, 

g0  (mm) 
0.05 

Radial clearance of air bearings 

(m) 
15 
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Fig. 3 Tool orbit measured by front sensors with excitations 
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Fig. 4 Radial displacement of tool measured with a capacitive 

sensor while rotating 110 krpm with 0, 50, 200 and 500 Hz of 

oscillation. 

 
2.3 3-axis wedge stage 

For the large long area of machining with high precision, a 3-

axis double wedge stage is used for work piece carriage. The 

wedge stage consists of two side wedges and a center wedge. 

The two side wedges are responsible for x-axis motion 

(horizontal) and z-axis motion (vertical). The movement 

direction (pure x-axis motion, pure z-axis motion, 

simultaneous motion of x and z-axis) of the wedge stage 

depends on a relative velocity of the two wedges. An 

independent y-axis slide is installed on the center wedge. So 

the wedge stage can move in the direction of three axes. A 
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pneumatic counterbalance system between the two side 

wedges is installed for counteracting the weight of the center 

wedge and the y-axis slide to achieve a better control ability of 

the z-axis motion.  A pressurized air is supplied in the 

pneumatic cylinder in order to support the weight of the center 

wedge and the y-axis slide. 

Fig. 5 shows the diagram of the stage, and Fig. 6 shows 

working principle of wedge stage. If the two side wedges 

move in the same velocity “a” and same direction, the center 

wedge also moves in the same direction with a velocity of “a”.  

On the other hand, if the two side wedges move in the same 

velocity “a” and opposite direction, the center wedge moves in 

the only z-axis direction with a velocity of “b”. The relation 

between “a” and “b” depends on the angle (θ). 
 

x

z

y

Side wedge

Center wedge

x1-motor

y-motor

x2-motor

 
Fig. 5 XYZ stage system with air bearings and linear motors 

 
 

Table2 Specifications of the double wedge XYZ stage 

Bearing type 
Air bearings with magnetic 

preloads 

Motors Linear motors (108 N peak) 

Positioning resolution (m) 0.05 

Moving range (X, Y, Z) (mm) 180, 25, 25 

Positioning accuracy (m) 0.85 

Straightness (vertical, horizontal) 

(m) 
0.22, 0.29 

 

 

a a

a

Side wedge θ

Center wedge

x

z

Counterbalance air cylinder
 

Pure x-direction motion 

qtanab 

a a

Side wedge θ

Center wedge

x

z

Counterbalance air cylinder
 

Pure z-direction motion 

Fig. 6 Principle of a double-wedge stage 

 

The prototype was built with a numerical controller (Delta-Tau 

UMAC system), and the angle of the wedge was measured as 

30.157°. The positioning accuracy and motion errors were 

measured and compensated by on-line compensation. After 

using conventional pitch error compensation method , 0.85 m 

for positioning accuracy reduced from 8.96 m, and 0.22 m 

and 0.29 m for vertical and horizontal straightness errors 

were obtained for 180 mm of movement range for x direction. 

These results are satisfactory for precision machining where 

relatively long stroke in one direction is required. 

 
3. Oscillation milling test 
 
3.1 Desktop machining set-up 

Fig. 7 shows the machining test system proposed in this 

research. The active magnetic bearing (AMB) spindle was 

attached on a rotary table horizontally to change tool incidence 

angle. The XYZ stage was used to carry a workpiece in three 

directions. As the moving range of the X axis of the stage 

covers enough space, the tool end point should not be near to 

the center of the rotary table. 

 

Rotary table

3DOF Stage
AMB Spindle

Workpiece

 

 
Fig. 7 Experimental set-ups for oscillation micro milling 

 
3.2 Oscillation micro milling results 

To verify proposed concept, we performed primitive 

machining test with a flat end mill with 0.8 mm diameter as 

shown in Fig. 8. The angle between tool and workpiece was 

35°, and rotating speed of the spindle is 100,000 rpm. During 

with rotation of the spindle horizontal oscillation of the shaft 

was applied from the controller of the magnetic bearing 

controller. 200 Hz of sine signal of the injected, and the 

resultant displacement of the tool was expected as shown in 

Fig. 4. The workpiece was fed x direction with two speeds, 4 

mm/sec and 8 mm/sec. Fig. 8 shows the machining set-up. 
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35°

Oscillation

200 Hz
Workpiece

AMB spindle

 
Fig. 8 Oscillation micro-milling set-up 

 

 

Fig. 9 shows the picture of the machined surface with and 

without oscillation at to feeding speed, 4 mm/sec and 8 

mm/sec. Four sections were machined. The area 1 is surface 

without oscillation, and the area 2 is machined surface with 

200 Hz of oscillation at 4 mm/sec. It can be observed that 

there is clear patterns with oscillation. For the area 3 and 4, 

which are fed at 8 mm/sec with different vertical feed step. the 

size of groove became bigger than those at area 2. These result 

can be also confirmed from the measured surface profile with 

con-focal microscope image shown on Fig. 10. At 8 mm/sec 

feed rate with oscillation of 200 Hz, pattern with 8 m period 

and 10 m of amplitude could be obtained. So, it can  be 

concluded that period can be controlled by choice of 

oscillation frequency and feeding speed. However, future 

improvement of spindle reducing runout may be needed to 

improve surface quality. 
 

1

2

3

4

 
a. Machined surfaces 

1. 4mm/s feed, No oscillation 2. 4mm/s feed, 200 Hz oscillation  

3. 8mm/s feed, 200 Hz oscillation 4. 8mm/s feed, 200 Hz oscillation  

b. microscope images of the 4 sections 

Fig. 9 Photo and optical microscope image (50x) of machined 

surfaces with oscillation milling 

 

 
a. section 1, no oscillation 

 

  
b. section 2, 200 Hz, 4 mm/sec 

 

 
c. section 4, 200 Hz, 8 mm/sec 

 
Fig. 10 Surface machined with oscillation milling measured by a 

con-focal microscope 

 
4. Conclusion 
 

In this paper, we proposed a micro-machining with a magnetic 

bearing spindle with oscillation while rotating high speed over 

100,000 rpm with conventional micro-end mills. The desktop 

machining set up was built with a 3-axis wedge stage with 

long travel in one direction and a rotary table to change 

incidence angle of tool to surface. The machining test was 

performed with rotating and oscillating end mill with 100,000 

rpm and 200 Hz, and the regular forms of the machined 

surface were observed to reveal the feasibility of the proposed 

concept. 
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NOMENCLATURE 
 
basis of the stator coordinate system 

   = S =< 𝐬1, 𝐬2, 𝐬3 > 
sequence of bases of the rotor coordinate system 
                  =  �R(𝑖) =< 𝐫1

(𝑖), 𝐫2
(𝑖), 𝐫3

(𝑖) >� 
basis of the sensor coordinate system 
                  =  M =< 𝐦1,𝐦2,𝐦3 > 
basis transformation matrix from R(𝑖) to R(𝑖+1)= 𝐊R𝑖 
basis transformation matrix from S to M  =  𝐊M

 

rotor angular velocity vector on S = 𝛚S  
unit vector of the rotational axis on S  =  𝐧S 
angle of rotation around 𝐧S  =  𝜃 
position vector of the mouse sensor j on S  = �𝐩𝑗�S 
unit vectors of sensing direction of mouse sensor j on S 

=  �𝐮𝑗1,𝐮𝑗2�S 
reading data of mouse sensor j  = �𝑣𝑗1,𝑣𝑗2� 
a set of reading data of mouse sensors  =  𝛖 

   sequence of sensing time interval  = {Δ𝜏𝑖} 
 

 

 
1. Introduction 

 
From humanoid robots to automobiles, the number of 

degrees of freedom of mechanical systems continues to grow. 
There has also been a proportional increase in the number of 
motors used in the mechanical systems. On the other hand, the 
human joints like the shoulder joints have at least three 
degrees of freedom (lateral direction, anteroposterior direction, 
and arm rotation). When a spherical motor with multi degrees 
of freedom like a human shoulder joint is in practical use, a lot 
of systems with multi degrees of freedom will be compact, 
lightweight, and high performance. 

Therefore, various kinds of spherical motors have been 
developed and tested [1-7]. The authors also proposed the 
structures of the spherical motors based on the polyhedrons 
[8,9]. The performances of the proposed spherical motors are 
expected to be the same in any rotational direction by their 
spherical symmetric structures. The experimental results of 
developed spherical motors are shown in the previous papers 
[10,11]. However, the motors are controlled by open-loop, as 
there are no good rotor position sensors. 

 
 
 

Proposal of a position sensor for the 
spherical motor 
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A Spherical motor is an actuator with multi degrees of freedom and the rotation centers coincide.  
As three conventional motors are replaced by a spherical motor, the spherical motor will make the 
multi DOF system compact. Therefore, it will be one of the key components of the small multi DOF 
systems like micro handling system. But there are no good sensors which measure the position of the 
spherical rotor in the spherical motor. This paper proposes a rotor position sensor for the spherical 
motor with two mouse sensors, which measure 2DOF circumferential speed. 
At first, several ideas of the position sensors for the spherical motor are reviewed and discussed.  
Select a position sensor with two mouse sensors. The basic ideas for getting the position from the 
data of two mouse sensors are presented. The mouse sensors which satisfy the specifications of the 
position sensor for the developed spherical motor are selected. Two mouse sensors are set on the 
manufactured rotor holder and the performances of rotor position measurement are tested. The 
problems of the developed position sensor and the future works are also discussed. 
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The performances of the developed motors are limited 
without position sensor. 

There are several reports for the position sensors of the 
sphere. The most popular sensing system uses gimbal 
mechanism fixed on the rotor output shaft [12]. Three 
rotational angle sensors are put on the pivots of the gimbal. 
The rotary encoders are usually used to measure the rotational 
angles. The absolute position is calculated from the measured 
three angles, which are roll, pitch, and yaw. However, the 
gimbal mechanism has several problems. It will make the 
motor large and heavy and limit the working area of the rotor. 

Wada, Y. and Gofuku, A. developed an absolute rotor 
posture sensor with 64 Hall devices [13]. The sensor can 
measure the absolute position of the 100mm diameter rotor 
with 32 permanent magnets. However, the position 
measurement error is around 5deg. As the radius of a Hall 
device’s sensing area is around 8mm, a lot of Hall devices 
should be needed for the precise position sensing. 

Aoyagi, M. et.al. developed an absolute rotor position 
sensor with CCD camera [14]. Two luminescence devices are 
fixed on the rotor surface. The rotor position is calculated from 
the two luminescence device coordinates on the graphic image 
of the CCD camera. The sensor resolution is 0.57 deg and the 
measurement area is 70 x 70 x 360deg3. This sensor system 
needs a wide opening in the stator for taking the graphic image. 

Stain, D. et.al. developed an absolute spherical encoder [15]. 
The rotor surface is colored in black and white Voronoi 
diagram. 192 one bit black and white detect devices are put on 
a ring. The sensor can measure the position of the rotor within 
1 deg error by reference to the prepared position map. This 
sensor needs a lot of black and white detect devices for the 
precise position measurement. 

Lee, K. M. developed an incremental rotor orientation 
sensor with a vision sensing device [16]. A grid pattern and an 
origin marker are painted on the rotor. The orientation of the 
rotor is calculated from the vision. 

Hama, N. et.al. developed an absolute rotor position sensor 
with a full color sensing device [17]. The rotor surface is 
colored in Hue, Lightness, and Saturation graduating color. 
Hue changes around z axis, Lightness changes around x axis, 
and Saturation changes around y axis. However, the sensing 
error is several deg. 

Kumagai, M. et.al. developed an incremental ball rotating 
sensing system with three mouse sensors [18]. The diameter of 
the ball is 200 mm. The sensing error is less than 3.6 deg for 
each rotational axis after rotating the rotor 360 deg around the 
rotational axis at 100 deg/s. 

This paper proposed a position sensor with two mouse 
sensors. The sensing method is similar to the previous work 
[18]. Although the previous work uses three rotational angles 
to obtain the rotation matrix, our work uses the basis 
transformation matrix to obtain the rotor position. 
 
2. Sensing Method 
 
2.1 Representation of the rotor position 

The basis of the coordinate matrix system R(0) =<
𝐫1

(0), 𝐫2
(0), 𝐫3

(0) > is fixed on the rotor and the basis of the 
coordinate matrix system S =< 𝐬1, 𝐬2, 𝐬3 > is fixed on the 
stator as shown in Fig.1. 

Fig. 1 Rotor coordinate system and stator coordinate system 
 

Matrix 𝐊R𝑖  is referred to as the “basis transformation 
matrix from S to R(𝑖)”, and can be used for transforming any 
vector 𝐚  from S representation to R(𝑖)  representation, 
according to the following theorem: 

 
𝐚R𝑖 = 𝐊R𝑖 

𝑡 𝐚S (1) 
 
Therefore, when the basis vectors �𝐫1

(𝑖), 𝐫2
(𝑖)𝐫3

(𝑖)� are 
measured on the stator basis such as equation (2) (Fig.1), 𝐊R𝑖 
is simply represented by equation (3). 

 

𝐫1
(𝒊) = 𝑥1

(𝒊)𝐬1 + 𝑦1
(𝒊)𝐬2 + 𝑧1

(𝒊)𝐬3 
𝐫2

(𝒊) = 𝑥2
(𝒊)𝐬1 + 𝑦2

(𝒊)𝐬2 + 𝑧2
(𝒊)𝐬3 

𝐫3
(𝒊) = 𝑥3

(𝒊)𝐬1 + 𝑦3
(𝒊)𝐬2 + 𝑧3

(𝒊)𝐬3 
(2) 

 

𝐊R𝑖 =

⎣
⎢
⎢
⎡𝑥1

(𝑖)
 𝑥2

(𝑖) 𝑥3
(𝑖)

𝑦1
(𝑖) 𝑦2

(𝑖) 𝑦3
(𝑖)

𝑧1
(𝑖) 𝑧2

(𝑖) 𝑧3
(𝑖)⎦
⎥
⎥
⎤
 (3) 

 
The rotor position is represented by 𝐊R𝑖. As 𝐊R𝑖 is the 

orthogonal matrix, the inverse matrix (𝐊R𝑖)−1  is the 
transposed matrix 𝐊R𝑖 

𝑡 . Therefore, from the theorem of 𝐊R𝑖, 
equation (4) are derived for any vector 𝐚. 

 
𝐚S = 𝐊R𝑖𝐚R𝑖 (4) 

 
This is a very important transformation equation. For 

transforming any vector 𝐚  from R(0)  representation to S 
representation, only multiply 𝐊R𝑖 

𝑡  to vector 𝐚 
𝐊R𝑖 is also calculated from 𝐧S = �𝑛1,𝑛2,𝑛3,� 

𝑡

S
 and 𝜃 by 

equation (5), where 𝐧S is a unit vector of the rotational axes 
and 𝜃 is an angle of rotation of the basis transformation from 
S to R(𝑖). 

IWMF2012  
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Equation (5) is derived from Rodrigues’ rotation formula (6). 
 
 𝐊𝑅𝑖 = 𝐈 +𝐍𝟐(1 − cos𝜃) +𝐍 sin𝜃 (6) 

 
where 

𝐍 = �
0 −𝑛3 𝑛2
𝑛3 0 −𝑛1
−𝑛2 𝑛1 0

� 

 

(7) 

𝐍𝟐 = �
−𝑛22 − 𝑛32 𝑛1 𝑛2 𝑛3 𝑛1 

𝑛1 𝑛2 −𝑛32 − 𝑛12 𝑛2 𝑛3 

𝑛3 𝑛1 𝑛2 𝑛3 −𝑛12 − 𝑛22
� (8) 

 
2.2 Sensor coordinate system 

Two mouse sensors are arranged at the arbitrary positions 
on a stator (𝐩1)S and (𝐩2)S. Each mouse sensor measures 
two circumferential speed �𝑣𝑗1,𝑣𝑗2� along the unit vectors of 
sensing directions �𝐮𝑗1,𝐮𝑗2�S. 

The basis of the sensor coordinate system                  
M =< 𝐦1,𝐦2,𝐦3 > is introduced. 𝐦1 , 𝐦2 , and 𝐦3  are 
determined by equations (9) to (11). 

 

𝐦1 =
 (𝐩1)S
|(𝐩1)S| (9) 

 

𝒎3 =
 (𝐩1)S × (𝐩2)S
|(𝐩1)S × (𝐩2)S| (10) 

 
𝐦2 = 𝐦3 × 𝐦1 (11) 

 
Then, 𝐊M, which is the basis transformation matrix from S 

to M, is [𝐦1,𝐦2,𝐦3]. As the mouse sensors are fixed on the 
stator, 𝐊M can be calculated previously. 

(𝐩1)M  and (𝐩2)M, which are the position vectors of the 
mouse sensors on M, are easily derived as 𝐊M(𝐩1)S and 
𝐊M(𝐩2)S. �𝐮𝑗1,𝐮𝑗2�M ,which are the unit vectors of sensing 
direction of mouse sensor j on M, are represented as 
�𝐊M𝐮𝑗1,𝐊M𝐮𝑗2�S. Fig.2 shows the sensor coordinate system 
M. 

Fig. 2 Sensor coordinate system and mouse sensors 
 

2.3 Obtain current position of the rotor from the sequence of 
the basis transformation matrices 

At first, the rotor coordinate system R(0) is set equal to the 
stator coordinate system, and at every sensing time interval 
Δ𝜏𝑖, the rotor coordinate system R(𝑖) is set to equal to the 
stator coordinate system after rotation. In other words, the 
rotor coordinate system R(𝑖−1)  is equal to the stator 
coordinate system S before rotation. 

Therefore, the basis vectors 𝐫1
(𝑖), 𝐫2

(𝑖)𝐫3
(𝑖)  of the rotor 

coordinate system after rotation is represented by equation 
(12). Equation (13) is obtained from equation (12). 

 
�𝐫1

(𝑖), 𝐫2
(𝑖)𝐫3

(𝑖)� = �𝐫1
(𝑖−1), 𝐫2

(𝑖−1)𝐫3
(𝑖−1)� 𝐊R𝑖 

𝑡  (12) 
 
�𝐫1

(𝑖−1), 𝐫2
(𝑖−1)𝐫3

(𝑖−1)� = �𝐫1
(𝑖), 𝐫2

(𝑖)𝐫3
(𝑖)�𝐊R𝑖 (13) 

 
After the rotor rotates h times from the initial position, the 

basis vectors of the initial position of the rotor 𝐫1
(0), 𝐫2

(0)𝐫3
(0) 

are represented by equation (14). 
 
�𝐫1

(0), 𝐫2
(0)𝐫3

(0)� = �𝐫1
(1), 𝐫2

(1)𝐫3
(1)�𝐊R1 

          = �𝐫1
(2),𝐫2

(2)𝐫3
(2)�𝐊R1𝐊R2 

 = �𝐫1
(ℎ), 𝐫2

(ℎ)𝐫3
(ℎ)�𝐊R1𝐊R2 ∙∙∙∙∙∙ 𝐊Rℎ 

(14) 

 
By introducing matrix 𝐊R  defined by equation (15), 

equation (14) is simplified to equation (16). 
 
𝐊R = 𝐊R1𝐊R2 ∙∙∙∙∙∙ 𝐊Rℎ (15) 
  
�𝐫1

(0), 𝐫2
(0)𝐫3

(0)� = �𝐫1
(ℎ), 𝐫2

(ℎ)𝐫3
(ℎ)�𝐊R (16) 

 
As R(ℎ) is equal to the stator coordinate system after h 

time rotation, equation (17) is obtained. 
 
�𝐫1

(0), 𝐫2
(0)𝐫3

(0)� = [𝐬1, 𝐬2, 𝐬3]𝐊R (17) 
 
𝐊R is the basis transformation matrix from S to R(0) after 

h rotation. Therefore, the current position of the rotor is 
represented by 𝐊R. 

 
2.4 Calculation of the basis transformation matrix 

In this section, a basis transformation matrix KRi is 
calculated. 

Three circumferential speeds among four measured 
circumferential speeds (𝑣11,𝑣12,𝑣21,𝑣22) are chosen such 
that three corresponding unit vectors of sensing direction are 
not in parallel. 

Assume that (𝑣11,𝑣12,𝑣21)  are selected. Then, 𝛚M  is 
obtained by solving equation (18) [18]. 

 
𝛖 = 𝐀𝛚M (18) 
 
where 

𝛖 = �
𝑣11
𝑣12
𝑣21

� , 𝐀 = �
(𝐩1)M × (𝐮11)M
(𝐩1)M × (𝐮12)M
(𝐩2)M × (𝐮21)M

� (19) 

 

𝐊𝑅𝑖 = �
𝑛12(1− cos𝜃) + cos𝜃 𝑛1 𝑛2 (1− cos𝜃)− 𝑛3 sin𝜃 𝑛3 𝑛1 (1− cos𝜃) + 𝑛2 sin𝜃

𝑛1 𝑛2 (1− cos𝜃) + 𝑛3 sin𝜃 𝑛22(1− cos𝜃) + cos𝜃 𝑛2 𝑛3 (1− cos𝜃)− 𝑛1 sin𝜃
𝑛3 𝑛1 (1− cos𝜃) − 𝑛2 sin𝜃 𝑛2 𝑛3 (1− cos𝜃) + 𝑛1 sin𝜃 𝑛32(1− cos𝜃) + cos𝜃

� (5) 
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Rotor angular velocity vector on M is transformed on S by 
equation (20) 

 
𝛚S = 𝐊M 

𝑡 𝛚M (20) 
 
Rotation angle θ and nS are calculated by equations (21) and 

(22). 
 
𝐧S =

𝛚S
|𝛚S| (21) 

 
𝜃 = |𝛚S| (22) 

 
𝐊R𝑖  is obtained by calculate equation (5), and 𝐊R  is 

obtained from equation (15). 
 
The flowchart for calculate KR is shown in Fig.3. 
 

 Fig. 3 Flowchart of calculate the current position 
 
3. Experimental Results 
 
3.1 Selection of mouse sensor 

Fig.4 shows the developed spherical motor. Eight 
permanent magnets are attached on the rotor such as the North 
poles and South poles appear alternatively at the vertexes of 
the hexahedron subscribed in the rotor. Twenty-five coils are 
attached on the stator at the vertexes, center of edges, and 
center of planes of the octahedron subscribed in the rotor. The 
rotor can be driven in any direction by the control currents of 
the coils. The rotor is sphere and the diameter 𝑑 is 78mm. For 

position feedback control of the developed motor, the mouse 
sensor should read the data at 300 rpm rotational speed and the 
angle resolution should be less than 0.01 deg. 

The calculation results of the rotor speed of the developed 
spherical motor to the tracking speed of the mouse sensor is 
shown in Fig.5, and the angle resolution of the developed 
spherical motor to the XY resolution of the mouse sensor is 
shown in Fig.6. 

Fig. 4 Developed spherical motor 

Fig. 5 rotor speed to tracking speed 

Fig. 6 angle resolution to XY resolution 
 
The mouse sensors are connected at the USB ports. The 

data is obtained through Windows 7 OS. Therefore, the data 
acquirement interval is not controlled. So, for checking the 
reliability of the obtained mouse data, the resolution of the 
mouse data is tested to put a mouse sensor on the XY 
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precision linear stage. Fig.8 shows the test results. The upper 
graph shows the large movement and the lower graph shows 
the small movement. 

  

Fig. 7 mouse sensor on XY precision linear stage 
 

Fig. 8 mouse count to the stage movement 
 
The mouse counts are 15 pixels short for 620 pixels at X 

direction and 9 pixels short at Y direction, which are 2.41% 
and 1.13% of the 620 pixels. For the small movement, the 
mouse counts are within 4 pixels from the ideal count line. 
The test results show that the mouse sensor is useful for the 
sensing device of the spherical position sensor. 
 
3.2 Experimental setup 

A rotor holder with two mouse sensor holders is 
manufactured and two sensing parts of the mouse sensors are 
picked up and mounted on the holder. Fig.9 shows the holder. 
The mouse sensors are set at the position vectors (𝐩1)S and 

 (𝐩2)S in equation (23).. 
 

(a) without rotor               (b) with rotor 
Fig. 9 manufactured rotor holder with mouse sensors 

 
Therefore, the basis vectors of the sensor coordinate 

system are represented by equation (24). 
 

[𝐦1 𝐦2 𝐦3] =

⎣
⎢
⎢
⎢
⎡ cos

𝜋
4 0 sin

𝜋
4

0 1 0
− sin

𝜋
4 0 cos

𝜋
4⎦
⎥
⎥
⎥
⎤
 (24) 

 
(𝐮11,𝐮12,𝐮21,𝐮22)M , the unit vectors of sensing 

direction on the sensor coordinate, are set as equation (25). 
 

(𝐮11,𝐮12,𝐮21,𝐮22)M = ��
0
1
0
� , �

0
0
1
� , �

−1
0
0
� , �

0
0
1
��

M

 (25) 

 
3.3 Experimental results 

A position calculation program is developed. Visual C++ 
language is used to develop the program. The display part of 
the position sensing program is shown in Fig.10. The 3D rotor 
position is graphically displayed at the lower right. 
 

Fig. 10 display of the rotor position measurement program 
 
The measurement error of the rotor position is evaluated 

by rotating the rotor around X, Y, and Z axis by hand. 
 

(𝐩1)S =

⎣
⎢
⎢
⎢
⎡ cos

𝜋
4

0
− sin

𝜋
4⎦
⎥
⎥
⎥
⎤

,    (𝐩2)S = �
0
1
0
� (23) 
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Fig. 11 sensing test around vertical axes 
 

The measurement rotational angles are shown in Fig.11. 
The measurement error increased gradually according to the 
measurement time. For avoiding the long term measurement 
error, the reference position marker which resets the 
measurement error or an absolute position sensor should be 
used in parallel. 
 
 
4. Conclusion 

Several ideas of the position sensors for the spherical 
motor are reviewed and discussed.  Among them, a position 
sensor with two mouse sensors is selected. The basic ideas for 
getting the position from the data of two mouse sensors are 
presented. Two mouse sensors are set on the manufactured 
rotor holder and the basic performance of the rotor position 
measurement is evaluated. As the mouse sensor is an 
incremental sensor, the measurement error increases during 
sensing. The reference position marker to reset the error or 
some absolute position sensor should be used with the 
developed sensor in parallel. 

In the near future, an automatic rotor position evaluate 
stage will be developed and more precise data are obtaoned. 
The reference position marker will be also added in this sensor 
to reset the error. 

The developed spherical motor is also controlled by 
position feedback with the developed rotor position sensor. 
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1. Introduction  
 

The Microfactory [1] is developed by AIST as a modern 

compact and distributed manufacturing system. This system 

allows a flexible combination of different manufacturing, 

assembly and measuring tasks. It was introduced 12 years ago. 

Various machine tools and production equipment to fulfill the 

different tasks covered by the Microfactory have been 

developed and introduced in the market. One of the 

remarkable characteristics of the system is the high level of 

modularity. The modularity allows the minimization as 

individual products by employing particular downsizing 

technologies and the fulfillment of customer-specific solutions 

[2]. There have been some significant approaches [3] to cover 

industrial practicalities by utilizing high modularity of the 

microfactories. However, sometimes the modularity has also 

prevented the provider of the Microfactory from promoting 

the system-level innovation of their business, since it is 

difficult to develop a new business model beyond combining 

the provided modules. This is the reason why there is no 

common strategy or framework to make the provider’s 

business successful. Facing the recent serious economic 

situation, on top of severe global competition and 

environmental legislation, service engineering and especially 

industrial product-service systems (IPS²) can be a key to 

overcome the underlying challenges by creating more 

innovative businesses and sustainable, customer individual 

combinations of product and service shares [2, 4]. Different 
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business models, which are coupled with the customer 

requirements, are available for such a provider [5]. One 

important aspect of market acceptance and therefore success 

of an industrial solution is the integration of product and 

service shares over a continuous lifecycle [2, 4]. In addition to 

this, emerging environmental concern is another reason to 

consider Microfactories as sustainable solutions in industries. 

A main goal of downsizing is reducing the environmental 

impact of production and operation of systems. Therefore it is 

a good strategy to consider how far a system can be downsized. 

However, since the production systems should be productive 

enough to make the business successful, a balance between 

productivity and environmental impact is needed. So-called 

eco-efficiency [6, 7] can be the key performance index in this 

aspect. Remaining questions are how the eco-efficiency can be 

applied to practical use-cases and what the strategies to plan, 

develop and use production systems eco-efficiently are. 

Especially, since it is said that “de-materialization” is one of 

the keys towards sustainability [8], a proper combination of 

product and service shares in a Microfactory should be 

discussed not only because of the enhancement of business 

feasibility but also for increasing sustainability. Thus, the 

objective of this paper is to clarify the framework of a service-

oriented business for the Microfactory by consideration of 

three exemplary IPS² business models; function-, availability- 

and result-oriented [4, 5]. Additionally, a concrete case of how 

IPS² product and service shares can be combined and managed 

properly will be introduced. The cases will be carried out by 

using a newly introduced desktop production system as an 

example, corresponding to the different lifecycle phases of the 

Microfactory. 

 

2. Product shares and characteristics of 
Microfactories 
 

2.1 The Microfactory  

The Microfactory combines different product shares, 

which are realized by machine tools, measuring systems and 

other production equipments. In the first prototype of the 

Microfactory [1], the total system was composed of five 

components. Thus, at the first look, the five micro production 

machine tools correspond to the basic product shares in the 

system.  

 

Figure 1: Schematic view of the first Microfactory [9] 

The product shares, indicated from 1 to 5, measuring 

systems and other production equipments are integrated in the 

concept of the Microfactory (Figure 1): 

1. Micro-lathe, 

2. Micro-milling machine, 

3. Micro-press machine, 

4. Micro-transfer arm and 

5. Micro-manipulator (two-fingered micro hand). 

 

2.2 Definition and potential merits of the Microfactory 

The Microfactory is a compact production system for 

precise microproducts [1]. However, a concrete definition has 

not been discussed thoroughly. Thus, the authors, hereby, 

define Microfactory by the following sentences: 

“A production system which is composed of properly 

downsized machine tools and other production equipment 

and realize at least one feature of a workpiece, such as 

tolerances, dimensions etc., with a `micron order´ 

requirement.” 

Based on an existing definition [4], it has been stated that a 

lifecycle of an IPS² can be divided into five stages. Those are 

IPS²-planning, IPS²-development, IPS²-realization (or IPS²-

implementation), IPS²-use and IPS²-reuse (or IPS²-end-of-life 

management). In Table 1 the potential merits of a 

Microfactory are related to the different IPS²-lifecycle stages. 

In addition to Table 1, for the different product shares of the 

Microfactory, potential merits are listed in Table 2. 

Because of the smallness of the machine tools and other 

production equipment, it might be possible to use more unified 

components and a simple design technique without any 

necessary critical simulation. By this aspect it is also possible 

to easily change the factory layout and add new components to 

the production line. Thus, time for the development process 

can be reduced (see Table 2). For the design aspect the degree 

of material use and parts use is usually small. Thus, if the 

machine tools and other production equipment are composed 

of commercially available components, the costs are lower. 

Since the machine tools and other production equipment sizes 

are small and work-loads are small, a low degree of secondary 

processes such as providing coolants, lubrication and spare 

parts is necessary (see Table 2). As an existing study [10] 

shows, modularized compact production systems can be 

energy efficient e. g. by designing process time of each 

modular unit consistently. Corresponding to the flexibility in 

the factory layout and modularity of the machines, it is 

possible to increase or decrease the number of machine tools 

and other production equipment and change production line 

configurations. Due to the smallness of the machine tools and 

other production equipment, it is possible to move the whole 

or the part of the production lines to where demands exist. 

Because of the size effects of various error factors in machine 

tools and other production equipment, a downsized machine 

tool has clear advantages, e. g. in the aspect of theoretical 

positioning errors [11]. The smallness of the machine tools and 

other production equipment leads to the characteristic that 
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some error factors may decrease its’ effect on the overall positioning error.  

Table 1: Potential merits of Microfactory and allocation to corresponding IPS² lifecycle stages 

Potential merits Related IPS²-lifecycle stages 

IPS²-planning IPS²-development IPS²-realization IPS²-use 

Fast design X X   

Low-cost design X X X  

Flexibility X X X  

Energy efficiency X X X X 

On-demand capability X X X X 

On-site / mobility X X X X 

Low-cost operation  X X X 

Precision  X X X 

Robustness against error sources  X X X 

Fast production   X X 

Safety    X 

 

Table 2: Potential merits of the Microfactory product shares

No. Product shares Potential merits 

1 

Micro-lathe 

On-site, Precision (decreasing 

absolute error), Robustness against 

vibration, Safety 

2 Micro-milling 

machine 

Precision, Low-cost operation, 

Safety 

3 

Micro-press machine 

Fast design, Energy efficiency, 

Precision, Low-cost operation, 

Safety 

4 
Micro-transfer arm Precision, Low-cost operation 

5 Micro-manipulator 

(two-fingered micro 

hand) 

Precision 

 

The smallness can also realize reduced process time such 

as e. g. warming up, heat treatment and cooling down. 

Because of the smallness of the machine tools and other 

production equipment, moving components of the machine 

tools and other production equipment may not hurt operators 

accidently (see Table 2). 

2.3 Specification of product shares of the Microfaytory 

For a specification of the different product shares of the 

Microfactory, different questions have to be answered. With 

this, a special data specification can be generated for the 

product shares of the Microfactory (Figure 2). 

Therefore the following seven questions should be 

answered to build up a suitable specification of the used 

product shares. 

1. Which production price does the product share 

have? 

2. How long is the process time of product share in the 

production process? 

 

 

 

 

3. Is the product share automated? 

4. Is the product share programmable? 

5. Is there a user interaction? 

6. Are there special requirements that have to be taken 

into account, e. g. clean booth? 
7. Which are the input media, e. g. electricity, air, 

water, oil or internet? 

 

 

Figure 2: Example answer-set of product share 

 

3. Lifecycle process model of Microfactory 

 

Based on the process modeling [10] of the test production 

carried out by the Microfactory, Figure 3 is the schematic 

illustration of general processes that service shares are 

composed of, focusing on the tasks and organization levels, in 

various stages of the lifecycle of an IPS². The level dimension 

of the Figure helps to allocate the roles that are relevant in the 

provision of a service share. On the network level, the IPS²-

provider and his network partners are involved in the process 

steps. On the system, machine tool and component level, the 

IPS²-provider, who e. g. is responsible for the IPS² 

development, is needed.
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Figure 3: Structure of potential service shares in the lifecycle of IPS² 
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4. Service shares of Microfactory 

 

By the identified characterization of the different product 

shares (Table 2) and the process view (Figure 3), the potential 

service shares at the different levels can be addressed. The 

proposed service share framework (Figure 3) can now be 

utilized to further characterize specific service shares listed in 

Table 3. Two detailed examples will be given. 

The service share factory layout planning can be localized 

on system level in the IPS² realization phase (see Figure 3). 

The results decision of system configuration as well as the 

concrete machine tool build-up serve as input parameters for 

the planning (see Figure 3). This implies that these two steps 

have to be performed, either on customer or IPS²-provider side, 

before the service share can be provided. Due to the 

minimized size of the manufacturing equipment of the 

Microfactory, their arrangement is highly flexible and enables 

quick layout changes. Therefore the factory planning becomes 

more important. Some tasks concerning the factory planning 

will be delivered by the IPS²-provider. Usually a factory 

planning consists of tasks which concretize the factory layout 

and control the execution of the planning afterwards.  

According to the literature these tasks can be arranged into 

the phases preparation, structural planning, detailed planning,  

execution planning and execution [12]. In the structural 

planning the IPS²-provider offers the transformation of a 

concrete production program into the ideal layout of the 

Microfactory under consideration of the necessary 

manufacturing technology; technology consulting; an 

optimized work piece flow or CAD-CAM can be offered. The 

workpiece flow is very specific in the field of Microfactory 

because of the miniaturized workpieces, machine tools and 

their components, like clamping systems. In a next step the 

existing boundary conditions on customer’s site have to be 

taken into account. This circumstance requires an information 

flow between IPS²-provider and customer. The IPS²-provider 

has to identify important boundary conditions at the customer 

side to ensure that the Microfactory can be used in an adequate 

way (see Figure 3). Subsequently the IPS²-provider 

customizes the ideal planning into a real factory layout plan 

and implements the Microfactory at the customer’s site. 

As a second example, the location of the service share Tool 

provision and management indicates that, during the use phase 

of a Microfactory, service shares on network as well as 

process level are required (see Figure 3 and Table 3). Because 

of the smallness of the Microfactory the needed resources 

have according dimensions, are fragile and very specific in 

their e. g. cutting conditions. 

 

Table 3: List of potential service shares of the Microfactory 
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Adequate resources have to be delivered by qualified 

network partners whom the IPS²-provider has to identify, since 

the market for e. g. micro cutting tools is not as large as the 

market for conventional cutting tools. Besides the search of 

the IPS²-provider for an adequate network partner for delivery, 

the support of customized process data to use these special 

cutting tools is necessary. This will be realized via technology 

consulting in the use phase (see Figure 3 and Table 3). For 

very specific manufacturing tasks appropriate cutting tools 

may not be available. In this case the IPS²-provider will 

cooperate with a company to deliver the needed resources. 

Additionally, a clamping system, due to the increased handling 

requirements in the micro production context, can be taken 

into account. 

The identified service shares have different influences in 

the level dimensions, as shown exemplarily (see Table 3). The 

factory layout planning is relevant for the early stages of the 

lifecycle and secures the flexibility of the Microfactory for 

manufacturing a wide range of workpieces. This service share 

has influences in the system level and the machine tool level 

(Table 3). The second service share Tool provision and 

management is coupled with the use of the Microfactory. The 

realized process, which constitutes the service share, 

influences the quality, productivity and availability of machine 

tools. The network level, component level and the process 

level should be changed for and by this service share (Table 3). 

Such a holistic view and the identified combination of the 

mentioned product and service shares lead to a customer 

individual solution and a long term customer provider 

relationship with a benefit for all involved partners.  

 

5. Summary 

 

In this paper, one of the first ideas to apply service shares 

to a compact modular manufacturing set-up called the 

Microfactory is discussed. The paper first identified the 

general merits of the Microfactory, and listed basic product 

shares featuring those merits. Furthermore the manufacturing 

processes using the Microfactory were analyzed, by 

categorizing the processes to five levels from network level to 

process level. It also categorized the processes to five lifecycle 

stages of an IPS², from the planning stage to the reuse stage. 

This categorization can be helpful to allocate service shares to 

corresponding lifecycle stages and structural levels of the 

Microfactory. By examining this categorization shown in 

Figure 3 and Table 3, the classification of service shares of the 

Microfactory can be possible. As a primitive step of this, two 

exemplary service shares were shown and discussed. 

As a future work the identified service shares have to be 

adopted for the Microfactory in detail by verification, e. g. if 

the mentioned requirements are relevant or not. After this step 

a wider variety of service shares should be discussed to design 

business models of IPS² utilizing the Microfactory. With the 

designed processes constituting the service shares, it is 

possible to increase the customization of the Microfactory and 

to generate more input for future modifications of the 

Microfactory. 

At last, the paper concluded that IPS² featuring the 

Microfactory can be a promising area, since the production 

system can be optimized by manual processes, which are part 

of many typical service shares in manufacturing industries. 
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1. Introduction  

 
A microfactory is a highly compact micromanufacturing 
system composed of micromachines and microrobots with 
very high precision. A microfactory transforms or assembles 
microparts in order to result microproducts. The resulting 
microproducts are often expensive due to the high complexity 
of assembly and fabrication of the microparts as their sizes are 
reduced and as the required precision of assembly is very 
severe (micrometric or sub-micrometric). In order to reduce 
the cost fabrication of microproducts and the cost of the 
microfactory itself, we present in this paper an approach for 
the design of a microfactory. Based on the concept of 
modularity of the elements (micromachines and microrobots) 
that compose the microfactory, this latter presents a high level 
of re-configurability and then can be easily used for a broad 
types of products to be fabricated.. The paper is particularly 
focused on the use of a 2-degrees of freedom (dof) microrobot 
named TRING-module microrobot developed in our previous 
works [1] as modular elements. Different configurations of the 
microfactory are therefore possible according to the combi-
nation and the structure of the different TRING-modules used. 
The paper is organized as follows. In section-2, we present the 
TRING-module microrobot and its performances. Section-3 is 

devoted to a non exhaustive list of possible configurations of 
the microfactory based on the TRING-module. Finally, in 
section-4 we present a case example of configuration that is 
afterwards used for pick-and-place tasks commonly utilized in 
micro-assembly applications. 
 
2. Presentation of the TRING-module micro-
robot 
 
In this section, we present the microrobot TRING-module 
which will be used as modular element of the reconfigurable 
microfactory. 
 
2.1 Kinematic and principle of motion   

 
The TRING-module is a microrobot that has 2-degrees of 
freedom (2 dof): a linear motion along the x-axis (Tx) and an 
angular motion about the same axis (Rx) (Fig.1). The axis that 
supports the microrobot is a cylindrical glass. A cantilever is 
placed at the extremity of the TRING-module and used as 
end-effector that facilitates the handling of the manipulated 
objects. Developed in the previous work [1], the principle of 
movement of the TRING-module is based on the stick-slip 
functioning and uses piezoelectric micro-actuators described 
in [2]. The main features of the TRING-module are its 

 
 
 

Towards reconfigurable and modular 
microfactory based on the TRING-module 
stick-slip microrobot 
 
 
 

Dominique GENDREAU, Micky RAKOTONDRABE and Philippe LUTZ 

Department of Automatic Control and Micro-Mechatronic Systems (AS2M) 
FEMTO-ST Institute, UMR CNRS / UFC / ENSMM / UTBM, Besancon, France 

# Corresponding Author E-mail: dominique.gendreau@univ-fcomte.fr, TEL: +33-381-402-810 FAX:+33-381-402-809  

 
KEYWORDS : microfactory, reconfigurability, modularity, stick-slip microrobot, TRING-module, station and cell, pick-and-place 

 
 

Abstract – This paper deals with the presentation of a reconfigurable and modular microfactory 
based on a stick-slip microrobot called TRING-module and that can performs 2-degrees of freedom. 
The main advantage of the presented approach is that the microfactory can be quickly reconfigured 
in order to match with the requirements of the microproducts to be fabricated or to be assembled. 
This high reconfigurability is obtained thanks to the modularity imposed at the microrobot level. In 
particular, we demonstrate in this paper that based on only one duplicable microrobot (the TRING-
module), several configurations of the microfactory are possible. The paper ends with an example of 
configuration based on two TRING-module microrobots followed by their characterization that can 
be further used for a controller design for pick-and-place tasks. 

 
 



2  / JUN 18-20, 2012, TAMPERE, FINLAND IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES 
 
theoretical unlimited stroke both in rotation and in translation, 
the high resolution that it can offer and its good dexterity 
(rotation and translation). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 A photography of the TRING-module. 

 
2.2 Performances of the TRING-module   
 
As a stick-slip microrobot, the TRING-module can perform 
the high stroke motion thanks to the step-by-step principle. 
This is obtained by applying a saw tooth voltage to the 
piezoelectric micro-actuators. The speed of the microrobot is 
proportional to both the frequency f and the amplitude U of the 
voltage, while the step-magnitude depends principally on the 
amplitude [3]. The high stroke motion is usually employed for 
a coarse positioning in a large distance. It is also possible to 
work within a step (sub-step). This sub-step motion, usually 
employed for fine positioning, is obtained by applying a 
voltage with limited slope to the micro-actuators. In sub-step 
motion, the resolution of the TRING-module is greatly 
amplified. The step-by-step motion and the sub-step motion 
can be managed and automatically switched by using the 
closed-loop control law developed in [3]. The principal 
advantage of the latter control law is the obtaining of high 
speed and high precision at the same time without manual 
reconfiguration of the controller. Tab.1 summarizes the 
performances of the TRING-module alone without closed-
loop control [1][3][4]. It clearly shows the high performances 
of the microrobot in term of resolution and stroke and that are 
well suited to the requirements in microfactory in general. 
 
Motion Step 

(=resolution) 
Max Speed Stroke 

Linear 70nm � 200nm 2mm/s unlimited 
Angular 17µrad � 44µrad 3.4rpm unlimited 
Table 1 Performances of the TRING-module microrobot [1][3][4] 
 
2.3 Modules and modular element 
 
The TRING-module itself is considered as a module in the 
proposed reconfigurable microfactory. Its principal 
functionality is the positioning. The end-effector of the 
TRING-module can also be considered as an active module if  

it has a function. For instance if a piezoelectric cantilever is 
used as end-effector, it can be used as manipulation force 
sensor at the same time, etc.  
 
3. Reconfigurable microfactory based on the 
TRING-module 
 
By using one or more TRING-modules and by conveniently 
adapting their emplacement, it is possible to obtain various 
configurations of cell, station or microfactory. A configuration 
is generally used such that it corresponds to the optimal 
production of a given microproduct, in terms of yield, 
reliability, rate, or other criteria. In this section, we give some 
example of configurations based on the TRING-module. 
 
The configuration in Fig.2 represents one TRING-module 
with an end-effector. This configuration can be used in pick-
transport-and-place tasks of objects by using only the 
cantilever (end-effector). The task is possible if the objects are 
small enough such that they can stick on the end-effector. 
 
 
 
 
 
 

 
Fig. 2 Configuration with one TRING-module for pick-and-place 

tasks and for manipulation. 

 
In Fig.3, the TRING-module is immobilized on the basis and 
the cylindrical glass that was initially the support is now the 
movable part. Hence, a platform placed at the extremity of the 
cylinder can rotate about or moves along the vertical axis Rz. 
This configuration can be used as a table to precisely place, 
orientate and position an object to be manipulated. 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Configuration with one TRING-module for linear and 

angular motions of a table. 
 
To tilt the table, the configuration of Fig.3 is extended as 
shown in Fig.4. In this latter configuration three TRING-
modules are used. According to the motion of the different 
TRING-modules, the table can be oriented in two directions: 
about Rx and about Ry axis. A vertical linear motion can also 
be made by moving in the same direction the three TRING-
modules. 
 

 

  

 

 

TRING-module 

Piezoelectric 
beam 

end-effector 

Rx Tx 



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012,TAMPERE, FINLAND  /  3 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Configuration with three TRING-modules for a tilt table. 

 
In Fig.5 two independent TRING-modules are used for pick-
and-place applications. The main advantage of this 
configuration is that the microgripper has a variable gap and 
therefore can manipulate various types and sizes of objects. 
The objects can be positioned along and about the axis of 
support of the microrobots. In addition to that, if the two 
TRING-modules rotate in opposite direction, the object can be 
oriented. 
 
 
 
 
 
 

  
Fig. 5 Configuration with two TRING-modules for pick-and-

place tasks. 

 
In Fig.6, we present a configuration where the two TRING-
modules are immobilized on the basis and where a belt is 
moved by the two cylindrical glasses and can position in the 
plane any object. As the strokes of the microrobots are 
theoretically unlimited, the strokes obtained with the final 
conveyor are only limited by the length of the belt and the 
length of the movable cylindrical glasses. 
 
 
 
 
 
 
 
 

 
Fig. 6 Configuration with two TRING-modules for xy-positioning. 

 
The different configurations presented so far can also be 
mixed in order to obtain a more complex configuration of 
microfactory. For instance, in Fig.7, the configurations in Fig.5 
and Fig.6 are combined. The advantage is that the cell, station 
or microfactory becomes more dexterous. 
 

 
 
 
 

 
 
 

 
 
 

 
 

Fig. 7 A configuration that combines Fig.5 and Fig.6. 

 
4. Study of a case of configuration 
 
We consider the configuration of Fig.5 in this example. 
Experimental tests were successfully carried out and reported 
in this paper. 
 
4.1 Presentation of the setup 
 
The two TRING-modules used for the setup is pictured in 
Fig.8. The end-effectors (also called fingers) are based on 
piezoelectric materials. If necessary, they can be used to 
measure and control the force applied to the manipulated 
object thanks to the direct piezoelectric effect [5].  
The challenge is to coordinate the movements of the two 
TRING-modules that carry an object between their end-
effectors such that the object is still maintained during the 
transport. A first solution is to control the force additionally to 
the position. In such solution, one of the TRING-module is 
closed-loop or open-loop controlled in position while the other 
one is closed-loop controlled in force. This solution requires a 
force sensor put on the end-effector which increases the 
complexity of the design. The second solution consists to 
control the two devices in an open loop manner. During the 
linear motion for instance, one of the TRING-module 
functions as a pulling module while the another one as a 
pushing module. In this second solution, the control law 
consists in conveniently giving a speed reference to each 
TRING-module. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 The setup. 
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4.2 Precise characterization of one TRING-module 

 
In order to open-loop control the two devices, it is essential to 
characterize their behaviors as precise as possible. Behind the 
characteristics listed in Tab.1, the velocity characteristics of 
each TRING-module are essential here. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 Identification of the displacement with a camera. 

 
The setup used for characterization is pictured in Fig.9. A 
camera records the successive positions of the end-effector of 
one TRING-module microrobot. A program developed with 
Matlab-Simulink® acquires the images of the end-effector, 
provides the contour plot with the Canny algorithm [6] and 
finally calculates its coordinates. Fig.10 gives the calculated 
position versus the time of the TRING-module.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10 Linear motions of one TRING-module. 

 
From Fig.10, an average speed of S1=0,704 mm/s is obtained 
with the following parameters: AM20 (Amplitude=157,8 V), 
FR10 (Frequency=4261 Hz). As we can see, a very low 
displacement variance is seen. Indeed the displacement 
variance is bounded by 0.1215mm 

 
4.3 Precise characterization of two TRING-modules 

 
The sequence of transfer is said successful if the two fingers 
move at two equivalent speeds. It is therefore necessary to 
characterize the two TRING-modules. In particular it is of 
important to determine what are the input frequencies and 

input amplitudes to be applied and with which the two 
microrobots have the same speed. Indeed, they do not 
necessarily have the same speed for the same input voltage. 
This is due to small difference in design, etc.  Several 
experiments were carried out for that (Fig.11) and we found 
that the with AM20 (Amplitude=157.8V) and FR14 
(Frequency=3125 Hz) applied to both TRING-modules, they 
have the same speed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11 Velocity characteristics of the two TRING-modules. 

 
5. Discussion 
 
5.1 TRING-module principle 
 
With the increasing need of precise tools for micro/nano-
manipulation, the microgripper structure based on two 
TRING-module we presented in this paper is new face to the 
existing industrial manipulators [7][8][9][10][11]. It has two 
main advantages: 1) the structure combines translation and 
rotation with the same microrobot which opens increases the 
possibilities of configurations of the microfactory; 2) different 
sizes and shapes of micro-objects can be manipulated thanks 
to the variable gap of the microgripper based on the two 
TRING-modules. The sizes of the micro-objects can vary from 
few tens of microns to some millimeters. 
The slip-stick motion principle used allows a precise and high 
stroke displacement of the TRING-modules. During the 
rotation however, the weight of the TRING-modules can 
affects the displacement variance. Feature works include the 
design of new versions of the TRING-modules that account 
this aspect.  
 
5.2 Design of microrobotic stations based on TRING-
modules 
 
We have presented some possible configurations of 
microfactory based on the TRING-module and we have 
focused on one of them as a case example. A feature work is 
now to provide a design method of the station itself. For 

Move in translation / AM20 / FR10 
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Position 
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δ=7,0375mm 

  y x 
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instance, according to the microparts to be assembled, to the 
microproducts to be fabricated and to the scenario of 
assembly/fabrication, the design method will provide the 
optimal configuration of the station/microfactory knowing that 
the modular elements are one or several TRING-modules. For 
that we will start with the DFµA technique (Design for Micro-
Assembly) [12]. 

 
5.3 Control of the TRING-modules 
 
As we saw in Tab.1, the performances in term of resolution 
and range of motion of a TRING-module are very interesting 
and convenient for the expected applications. In order to 
obtain the required precision during the pick-and-place tasks, 
the two TRING-modules that compose the station with the 
particular configuration in Fig.8 should be controlled. Two 
schemes of control exist: open-loop and closed-loop schemes. 
Closed-loop control techniques, for instance that presented in 
the previous work [3], allow the stick-slip TRING-module 
microrobot to be robust face to external disturbances and to 
any model uncertainties. These disturbances include for 
instance the interaction force between the microrobot and the 
manipulated object. However closed-loop control techniques 
are mainly limited to the lack of convenient sensors in 
micro/nano scale applications. Indeed precise enough sensors 
are bulky and expensive (e.g. interferometry, triangulation 
based optical sensors, etc.) while embeddable sensors (for 
instance strain gage) are fragile, with limited range and do not 
often provide the required resolution. This is why open-loop 
control techniques are recognized in micro/nano applications 
[13]. 
The control technique of the two TRING-modules used in this 
paper was an open-loop technique. The velocity is the output 
signal and the reference signal as well for each module. The 
success of the control mainly depends on the precision of the 
model to be used [14]. The characterization of the TRING-
modules as detailed in Section-4 is to allow the obtaining of 
such precise model. Open-loop technique can be assumed to 
be efficient in our applications as long as the interaction force 
(manipulation force) between the end-effector and the objects 
to pick-transport-place is weak, which is the case when the 
objects are small [15]. 

 
5.4 Application to micro-assembly 
 
In the case of more complex task such as micro-assembly, a 
visual feedback may be required (Fig.12). This visual 
feedback is used to track the assembly operation between the 
transported object and the second (receptacle) object. To 
summarize, open-loop control techniques are used during the 
pic-transport of the object while a visual feedback technique is 
used during the release assembly. The main advantage is that a 
high speed is gained from the open-loop transportation while a 
high precision of assembly is obtained from the visual 
feedback. This application of micro-assembly will be 
implemented and tested in future works. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 12 Pick and place sequence. 

 
6. Conclusion 
 
This paper presented an approach to develop microfactory, 
cells or stations that can be reconfigured easily according to 
the requirement. Based on the modularity of the elements that 
compose the microfactory, we use a stick-slip microrobot 
called TRING-module as modular element. Several possible 
configurations were presented and one of them has been 
developed as a case example for a pick-and-place task. The 
experimental results showed the interest of the modularity 
aspect in this example, in particular the simplicity of control. 
Indeed, as the modules are similar (TRING-modules), the 
same control law can be applied to each of them. Future works 
include the experimental tests on other configuration of the 
microfactory and the realization of more complex tasks. 
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1. Introduction  
 

Today’s industrial production is rather different than a 
couple decades ago. Products are becoming smaller, more 
complex and they have more variations. The cost advantage of 
mass production disappears with a high rate of product 
variation. Consequently, new production paradigms for more 
flexible production have been introduced, e.g. Lean 
manufacturing. In addition, ecologic and ethical issues affect 
the business. Companies have to think more about energy 
consumption, use of recourses and recycling, among others. 

New production technologies have been developed to 
meet the flexibility and ecological requirements of modern 
production and the new production paradigms. Miniaturization 
of production equipment has been suggested as one solution. 

The term microfactory originates from research conducted 
in Japan in the 1990’s. Research institutions, national 
universities and corporations developed smaller machines in 
order to produce micro parts and machines. Energy saving and 
economizing were some of the primary goals. [1] 

In the late 1990’s, the research spread around the world, 
and multiple miniaturized production systems were introduced. 
In addition, new topics, such as modularity [2], virtual models 
[3] and cleanrooms [4], embedded into the research.  

However, the level of commercialization remains relative 
low. The discipline lacks of empirical cases and industrial 
practice on microfactory-related business. 

 
1.1 Concept and equipment development 

Under terms “microfactory” and “desktop factory”, at least 
four types of concepts have been developed [5]: microfactories 
as a set of small-size equipment (e.g.[6][7][8]), modular 
microfactory platforms (e.g.[2][4][9]), miniaturized machining 
units (e.g.[10][11][12]), and robotic cells (e.g.[13][14][15]). 

So far, only few commercial desktop factories have been 
developed (e.g.[16][17][18]). Multiple small-size machining 
units exist (e.g.[19][20][21]). Desktop-size stand-alone 
automation units have been developed for different purposes 
(e.g.[22][23][24]). In addition, desktop-size rapid prototyping 
units are appearing on the market (e.g.[25][26][27]).  
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Micro and desktop factories are small-size production systems suitable for the manufacture of 
small products with micro and/or macro size features. The development originates in Japan. Small 
machines were developed in order to save resources when producing small products. In the late 
1990’s, the research spread around the world. Multiple miniaturized production systems have been 
developed. However, level of commercialization is still low and the breakthrough remains unseen. 

This paper discusses how micro and desktop factories could be used profitably in the industry, 
and what the real benefits for users and equipment providers are. The research includes 18 semi-
structured interviews in Europe. The interviewees are both from academic and industry, including 
equipment and component providers, as well as users and potential users. 

Within the academics, miniaturization links to a general philosophy to match the products in 
size. In the industry, the small size is still only a secondary sales argument. It appears that the main 
factors preventing breakthrough are lack of examples, lack of subsystems and engineers’ attitudes. 

Based on interviews, the systems are used currently as semi-automatic tools for component 
manufacturing and assembly. In the future, educational and laboratory use as well as prototyping 
are promising. Local cleanrooms interest but questions arise. In addition, retail level personalization 
and home fabrication include problems. For providers, the technology offers two promising customer 
segments (Lean manufacturers and fully loaded factories), few additional segments (e.g. education, 
laboratories and offices) and it eases some alternative charging models (e.g. and capacity sales). 
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1.2 Scope and structure 

Within the discipline, the terminology alternates 
considerably. Terms used to describe highly miniaturized 
production equipment include: “desktop factory”, 
“microfactory”, “mini factory”, “modular microfactory”, 
“factory-in-a-suitcase”, “palm-top factory” and “portable 
microfactory”. In addition, the definitions tend to vary.  

In this paper, micro and desktop production systems refers 
to micro and desktop factories, as well as miniaturized 
production equipment in general, including e.g. desktop-size 
machining units, robotic cells and rapid prototyping units.  

In the chapter 2, research objectives and methods are 
presented. In the chapter 3, six industrial cases are introduced. 
The applications are discussed in the chapter 4. The business 
models are discussed in the chapter 5. The chapter 6 concludes 
the paper. In the chapter 7, the findings are discussed and 
research recommendations are given.  
 
 
2. Objectives and method 

 
The aim of this research was to examine how micro and 

desktop factories are used in the industry, how they could be 
used business-wise in the future, and what the real benefits for 
both users and equipment providers are. In addition, 
commercialization of the research was examined. The research 
is a mixed-method research, and it has an inductive approach. 

Besides the literature, the research includes 18 semi-
structured interviews in Finland, Germany, Switzerland and 
France. The interviewees are both from academic and industry, 
including equipment and component providers, as well as 
users and potential users. In addition, one interview focused 
on product personalization processes, and another on 3D 
printing and home fabrication aspects. 

The interviews were used, because the literature lacks of 
empirical cases and industrial practice. In addition, they 
brought up different viewpoints to the topic, apart from the 
standard arguments within the discipline. For instance, current 
use, benefits, sales arguments and investment calculations, 
relating to micro and desktop factories, were discussed. 

 
 

3. Industrial cases 
 
In this chapter, six industrial cases are presented. All the 

cases are based on the interviews. Four principal cases relates 
to commercialization of microfactory research. Two following 
cases relate to use of micro and desktop production systems. 
 
3.1 Development of commercial systems based on research 

In this section, the four cases present different ways how 
industrial products can arise from the microfactory research. 

Percibio Robotics represents a traditional academic spin-
off. It further developed an academic micromanipulation 
system and made a product out of it. Asyril commercialized a 
miniaturized delta robot. However, the commercialization was 
achieved by an adaption of another company. Femos and 
microFLEX represent cases where products have been 

developed based on direct funding and cooperation between 
the industry and academics. Finally, MAG Lean is an example 
on how research can encourage product development.  

 
3.1.1 Percibio Robotics – an academic spin-off 

Percibio Robotics is a young French spin-off based on the 
research conducted at FEMTO-ST (Franche-Comté 
Electronique, Mécanique, Thermique et Optique - Sciences et 
Technologies). The start-up designs and prototypes robotic 
systems for micro handling. The core product is a precise 
electrostatic gripper based on two piezo electric beams (see 
the previous gripper in [15]). Currently, the core business is to 
build specific solutions for the high-tech industry, e.g. 
electronics, biomedical and clockwork industries. [28] 

In addition, Percibio Robotics designs standard desktop 
robotic systems for clockwork assembly. A tele-operated 
desktop system is under development (see the previous system 
in [15]). The new system consists of two grippers, robotic 
arms, a planary table, 2-3 cameras and control software. It is 
designed to work as a tool in the clockwork industry, for 
applications beyond capabilities of human hand. [28] 

 
3.1.2 Asyril – commercialization through adaption 

Asyril is a Swiss company focussed on miniaturized 
mechatronic devices for automation. The product line includes 
delta robots, flexible feeder systems and robotic cells [24]. 
Asyril was set up based on the small delta robot, PocketDelta. 

PocketDelta is a result of a common microfactory project 
at  HTI-Biel  (Hochschule für Technik und Informatik), EPFL 
(École Polytechnique Fédérale de Lausanne) and CSEM 
(Centre Suisse d'Electronique et de Microtechnique).[29]  

Alain Codourey searched funding to establish a company 
based on the robot. CP Automation (CPA) wanted to widen the 
engineering know-how. In the beginning, Codourey worked at 
CPA. The first task was to establish a new company. Asyril 
was established in 2007. It was not sure whether or not the 
miniaturized robot would sell. Therefore, a larger delta robot 
was launched as well. However, suitable applications in the 
watchmaking industry were found, and the robot started to sell. 
The start-up worked out well, but it is a relative risky strategy. 
Nowadays, Asyril focuses on developing equipment based on 
the customer needs, without forgetting innovativeness. [29]  

Together with CPA, the products can be sold for end users 
and system integrators. Asyril sells desktop cells for the end 
customers, as well as robots and feeders for system integrators. 
In addition, CPA integrates the systems for applications. [29] 

 
3.1.3 Femos and microFLEX – cooperation between the 

academics and the industry 
IEF Werner is a German component and automation 

provider. Two concepts, Femos and microFLEX, have been 
developed in cooperation between IEF Werner, Karlsruhe 
Institute of Technology (KIT) and few other companies [30]. 

The Femos project lasted from 2002 to 2005. A German 
company had developed a high precision optical distant sensor. 
A research project was proposed for the assembly process. As 
a result, the Femos machine was developed (see [31]). IEF 
Werner never sold the machine with the same layout. However, 
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based on the knowledge, multiple commercial products were 
developed, e.g. positioning systems and piezo driven axis. [30] 

The funded microFLEX project lasted from 2009 to 2011, 
in cooperation between IEF Werner, KIT and an industrial 
partner  (customer).  The  target  was  more  or  less  to  have  a  
finished product in a catalogue. As a result, microFLEX was 
created (see [17]). It is compatible with manual, semi-
automatic and fully automatic production. Dimensions of the 
unit respond to the manual assembly table in the industry. [30] 

KIT developed tools, interfaces and logistics in the project. 
Now the system is handed to the customer. IEF Werner has 
further developed and sold it to other customers as well. [30] 

 
3.1.4 MAG Lean – research as forerunner 

Master Automation Group (MAG) is a Finnish automation 
provider for telecom, marine and aerospace industries. MAG 
has participated the TUT (Tampere University of Technology) 
Microfactory projects since 2007 and launched two 
generations of commercial microfactories. 

The first miniaturized cells were mostly for the telecom 
industry. A 500mm wide floor standing cell was developed for 
assembly and packing. The cells performed well but they were 
still not competitive with low-cost manual production. [32] 

In the second phase, the desktop cells were developed. 
Targets included an A4 paper size footprint and cheaper price. 
The in-house component development was inspired by the 
TUT Microfactory projects. In the third phase, desktop cells 
were built out of commercial components. As a result, the first 
generation of MAG Lean cells was launched in 2010. [32] In 
2011, the second generation of Lean cells was launched [16]. 
Again, MAG acted as an auditor of TUT in the beginning. 

Lately, based on merging of MAG and JOT Automation, 
new JOT Lean cells have been launched (see Figure 1). The 
system is built for Lean and scalability of automation. For 
example, the Poka-Yoke assembly jigs can be used to increase 
efficiency and quality of manual assembly (see Figure 2). 
Secondly, a JOT Lean cell can be used as semi-automatic tool. 
Finally, an automation line can be built of multiple cells. 

 

3.2 Users and potential users 
In this section, two industrial cases, a user and a potential 

user of miniature production systems, are presented. Nokia is 
using desktop automation cells in production, and the use has 
evolved interestingly during the past years. Biohit instead, 
would like to use desktops for certain stand-alone processes. 
 
3.2.1 Nokia 

Nokia’s production is mainly assembly of subcomponents, 
including only little automation. The production is divided into 
high-end and mobile phone factories. [33] 

The mobile phone factories are based on mass production. 
Products do not vary much. In the high-end factories, small 
quantities of versatile products are produced based on orders. 
The production is organized into Lean production cells, each 
having 2-3 employees and semi-automatic tools. Desktop 
automation cells are used in the high-end production. [33] 

First, small assembly lines were designed out of desktop 
cells. The main motivation was floor-space reduction. The 
lines were abandoned because flexibility requirements. If 
technology is flexible enough, it becomes too expensive. [34] 

Currently, the desktop cells are used as tools for repetitive 
assembly steps, or for processes which cannot be conducted 
by humans. The processes include screwing, gluing and 
precision assembly. An operator loads a cell and the cell 
conducts a specialized task. Manual assembly is extremely 
flexible and thus always needed. For example, the Desktop 
cells can help to place components precisely. However, flex 
cables have to be attached manually. The approach suites also 
better to Lean, which is contradictory to automation. [33][34] 

In the future, one option is to combine manual assembly to 
low-level and high-level automation (see Figure 3). The 
desktop cells, i.e. the high-level automation, would provide 
quality improvements to manual assembly. In addition, a 
larger safety robot, i.e. the low-level automation, is tested for 
automated assisted assembly. It could operate next to operators 
to replace repetitive tasks, e.g. pick-and-place from trays and 
loading/unloading the desktop cells. The system might be in 
use within couple years. [34] 

 

Fig. 1 JOT Automation – JOT Lean cell [22] 

 

Fig. 2 JOT Automation – Final assembly jig [37] 
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3.2.2 Biohit 

Biohit is a Finnish company focused on liquid handling 
products, diagnostic tests and analysis systems. The products 
are mostly handheld devices, including micromechanics, 
electronics and plastic parts. 

Excluding the disposable pipette tips, the production is 
mainly Lean assembly. For instance, the production process of 
high-end electronic pipette includes seven steps: 1. Fabrication 
and purchase of component; 2. Assembly of subassemblies   
3. Assembly of the engine and gears; 4. Testing; 5. Marking 
serial numbers; 6. Final liquid testing; 7. Packing. [35] 

There is a need for desktop cells in the first and the second 
assembly steps. First, they could be used for machining of 
injection moulded components during the assembly. For 
instance, two current pipettes include a very similar plastic 
component, but other requires machining. Because of small 
batches, machining is difficult to outsource. Thus, the injection 
moulded components are machined once a year, including 
large stocks. Instead, the components could be machined on 
the spot. Process time is not highly critical, because takt time 
planning and kanban provide tools for scheduling. [35] 

Secondly, desktop automation could be used for flexible 
co-operation between humans and machines, eliminating 
repetitive working phases. Currently the Lean assembly 
includes flexible tools, e.g. electric screw drivers. Workers and 
the desktop robot(s) could work in as small area. In addition, a 
dust-free ISO 8 class environment is needed for the new 
products. Local cleanrooms could be one solution. [35] 

In addition, some other assembly phases, e.g. final liquid 
testing and packing, could have applications for desktop 
production systems. The production of disposable pipette tips 
has too large volumes. However, a small-size and stand-alone 
test device could be usable to test the tips on-line. [35] 
 
  
4. Applications 

 
In this chapter, the applications are discussed. In the 

section 4.1, the level of automation is discussed. There are a 
broad range of speculated applications in the literature. In the 
section 4.2, the applications are categorized by a supply chain. 
In the section 4.3, the current industrial practice is discussed. 
 

4.1 Scalability of automation 
Highly miniaturized products, which are too small to be 

assembled by human operators, require different automation 
strategy than traditional products. The adaption of automation 
includes usually different phases (see list below). [36] 
 

Levels of automation (based on [36]) 
1. Manual 
2. Semi-automatic 

A. Automatic Alignment 
B. Automatic Process 
C. Automated Batches 

3. Automatic 
A. Robotic material handling  
B. Automated Inter-Cell Transfer 

i. Offline ‘lines’ 
ii. Automated logistic system 

 
The classification above applies not only for MEMS 

products and fiber optic components, but also for any small 
products. Because of the small size, micro and desktop 
factories can be used for flexible human-machine cooperation.  

First of all, small products can be produced manually by 
simple and flexible electronic tools. Efficiency and quality of 
manual production can be enhanced e.g. by assembly jigs [37]. 
Production is still manual, but the jigs prevent human errors. 

To improve efficiency and quality further, tele-operated 
desktop factory units can be used. Even though the 
manipulation is semi-automatic, automation of simple and 
repetitive tasks can save up to 90% of time [28]. 

Secondly, a whole process can be automated. An operator 
feeds products and components and the desktop cell conducts 
a given process, as in the Nokia case above. 

Thirdly, automation can be applied for batches as well. 
Here, the operator feeds multiple products and/or components 
and the desktop cell applies the process for a batch (see 2C & 
3A above). However, part feeding, e.g. large trays, can be a 
problem. Nokia is trying to round the problem by using large-
scale safety robots to complement the desktop automation [34]. 

Finally, automated inter-cell transfer can be applied to few 
cells or to complete factory logistics system. In the former 
case, the operator is using the cells as an offline process. The 
process is just divided into few cells (e.g. optical lamination). 
The latter represent a fully automated factory system, build on 
microfactory modules. It should be noted that e.g. flexibility 
requirements in some industries may prevent such systems. 
 
4.2 Applications within and beyond production chain 

In this section, the use of microfactories is categorized into 
three scenarios: I miniaturization of production equipment in a 
traditional production chain, II relocating production further 
into the downstream and III production on the spot.  

If microfactories were used just to replace the large-scale 
production equipment, it is the scenario I. If microfactories 
were  used  to  at  the  place  of  use,  it  is  the  scenario  III. 
Everything else between the factories and consumption, 
including the point of purchase, is the scenario II. 

 

 

Fig. 3 Combining low-level and high-level automation 
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4.2.1 Replacing the large-scale machinery I 

The first scenario takes place in a traditional production 
chain. In general, micro or desktop factories could be applied 
to all products and processes, which fit into the reduced 
working space. However, it does not mean that the 
miniaturization was feasible.  There is usually large-scale 
machinery for any given process. Desktop machinery is 
bought if it is better for the application. However, if the large-
scale machinery is replaced with the small machines in order 
to cut costs, the investment has to yield e.g. 15% annually.  

By definition, micro and desktop factories are small and 
they can save space. Thus, they are expected to cut costs of 
facilities, e.g. rents or capital costs, as well as costs of energy, 
material, heating, air conditioning, illumination, waste and 
recycling. Similarly, local cleanrooms can cut cleanroom 
investments and maintenance costs. In addition, desktop 
solution might suite better for Lean and manual production in 
general, enhancing quality of products. The benefit might be 
difficult to quantize. However, it reflects to e.g. costs of poor 
quality. Finally, microfactories are expected to be more 
flexible, having shorter set up times. The flexibility reflects to 
capital costs as less stock, of products and semi-finished 
products, is needed. The cost reduction factors have been 
discussed in the literature (e.g. [38][39][40]). Furthermore, 
some product characteristics might be enabled. E.g. small-size 
machinery and grippers might prevent fragile products. 

 
4.2.2 Relocating production downstream II 

The second scenario relates to relocating production 
further into the downstream. Because of the small size, 
microfactories could be used for e.g. production on the way or 
personalization at wholesaling and/or retailing level. 

On one hand, a small and mobile production system could 
be integrated e.g. into a car, truck, train, ship or aeroplane. The 
process could shorten delivery and enable production of 
perishable products on the way. [41] The shorter delivery 
could gain add-on sales. In addition, capital costs decrease, as 
delivery is faster and stocks of finished products decrease. 
Suitable products would be small and perishable products 
having a long time of delivery and a stabile demand. 

On the other hand some production phases could be placed 
at wholesaling and/or retailing level. At wholesaling level, the 
model would suite well for personalization of small products 
having modular design and an intermediate level of 
personalization. At retail level, microfactories could be used to 
personalize small and highly personalized products e.g. 
contact lenses, watches, jewellery, cosmetics, small sport 
equipment, pharmaceutics and other medical products. 
Potential processes include coating and UV-printing (e.g. 
electronics), marking (e.g. jewellery), final assembly (e.g. 
optics), machining (e.g. custom-fit sport equipment) and 
sorting (e.g. drug dosage and encapsulation). The process 
relate  mostly  to  add-on  sales.  Customers  might  choose  the  
product because it is more personalized. In addition, 
decentralize production hubs are expected increase dynamics 
of the supply chain, adapting more easily to a fluctuating 
demand and decreasing costs of logistics. Goldsmiths, 

opticians, and orthotics are examples of current businesses, 
relating to retail level personalization. Miniature production 
systems could enable more processes to be automated. 

However, a lot of uncertainty relates to the advantages. For 
instance, the production on the way might not shorten much 
the delivery time. Production is usually only a small fraction 
of the delivery time. The total delivery time might not 
decrease a lot by producing the products on the way. Therefore, 
the capital costs would not decrease much either. In addition, 
the equipment and handling require space. More products can 
be packed e.g. in a ship in a normal way. 

In addition, the impact of personalization on costs of 
logistics depends highly on the processes. If assembling 
process is personalized, the components have to be transported 
to many locations instead of one factory. As a result, the costs 
of logistics might even increase. Subtractive manufacturing, 
coating and marking and are more potential instead. 

Furthermore, the retail level customization should relate to 
some products which can be bought on impulse. If a customer 
wants to buy a highly personalized product, he or she can 
usually wait few days to get the product from a factory. 

Finally, the number of personalizing retailers includes a 
compromise as well. Multiple retailers can serve many 
customers but it increases costs. Companies might choose to 
personalize only in large flagship stores for marketing 
purposes, and centralize the service for other customers. 
 
4.2.3 Production on the spot III 

As microfactories are small, they could be used to produce 
products on-the-spot, if time of delivery is critical and there is 
no space for traditional factory and/or machinery. Battlefields, 
trouble spots and the Third World as well as city centres and 
researchers' special conditions are examples of situations 
where logistics can be problematic. Exchange part fabrication 
is one potential application. Medicament is another specific 
application area. Microfactories could be used in the field for 
fabrication of custom implants [42] or dental products [21], as 
well as for sterilization and drug fabrication and dosage. 

The U.S. Army has Mobile Parts Hospital containers 
(MPHs) for replacement part fabrication. For example, the 
MPH made a rotor brake seal for an Apache helicopter. Instead 
of waiting two months, the helicopter could be used within 
days, and $393,000 was saved. [43] In addition, the U.S. Army 
has Mobile Army Surgical Hospital (MASH) container 
hospitals. MASHs are used to for lifesaving surgical care. [44] 
Respectively, micro and desktop production systems could be 
used in containers for distinct processes. Because of the small 
size, more machines can be fitted into a container. 

In addition, in some occasions, ordering is not a direct 
substitute but it would be beneficial to use a machine locally. 
The most potential applications are prototyping (e.g. in 
engineering, design, or architecture offices) and educational 
use. In addition, small automation could be used in 
laboratories [23], and for processes inside of industrial and 
laboratory equipment [45]. The small size is a benefit because 
non-manufacturing facilities are usually not built for heavy 
and large-scale machinery. Ordering is not a direct substitute, 
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because the process is the product (education). Similarly, the 
process provides information for prototyping. In laboratories 
instead, logistics might be a problem. Samples cannot always 
be transported elsewhere. The processes are conducted on the 
spot, either manually or automated by machines which fit into 
the space. Finally, small machinery could be used even for 
personal fabrication at home or communities [46]. 
 
4.3 Current practice 

The current use of microfactories relates mainly to the first 
scenario (q.v. 4.2.1). According to the interviews, they are 
used in the industry mainly as stand-alone tools for component 
manufacturing and assembly processes. 

MAG Lean cells are used mostly in the electronic and life 
science industries as well as within component manufacturers 
(e.g. in the automotive industry). Processes include e.g. screw 
insertion, precision assembly, plasma treatments, dispensing, 
marking and cleanroom processes. In addition some special 
processes and assembly are combined into one cell. [47] 

Similarly at Nokia, the desktop cells are used currently as 
tools for repetitive assembly steps, or for processes which 
cannot be conducted by humans. The processes include 
screwing, gluing and precision assembly. For example, 
components might have small gaps at joints. If a component is 
placed exactly in the middle, the human eye does not see the 
difference. However, an operator would not be able to place it 
precise enough. [33] 

In addition, two companies had manual Lean assembly. 
The production is divided into Lean cells and products are 
assembled with simple tools, e.g. electronics screwdrivers. 
Similar to Nokia, microfactories could be used as stand-alone 
processes to enhance quality and efficiency. 

The watchmaking industry is the largest industry for all the 
products of Asyril. In addition, the medical and semiconductor 
industry have some applications. Applications include e.g. 
pick and place, feeding, palletizing and other standard 
applications. PocketDelta and Asycube are used together as a 
feeder, substituting e.g. vibrating bowls. The customers prefer 
individual machines instead of lines. In addition, CPA 
integrates Asyril’s products for special applications, e.g. 
systems with multiple manufacturing steps or gluing. [29] 

The watchmaking industry is also important for Percibio 
Robotics. The applications include e.g. placing small stones in 
the encore of the motion and placing axis for gears in as small 
holes. Swiss clockwork industry is currently under revolution. 
The monopolistic production of the movements will stop in 
2012. More companies need to set up their own production. 
The situation is highly favorable for equipment providers. [28] 

At Biohit, desktop cells could be used for machining of 
injection moulded components during the assembly. Secondly, 
desktop automation could be used for flexible co-operation 
between humans and machines, eliminating repetitive working 
phases. Finally, some other assembly phases, e.g. final liquid 
testing and packing, could have applications. [35] 

In addition, challenges relating to few industries and 
applications were brought up. For example, Percibio Robotics 
aimed for the MEMS industry in the beginning, as it was often 

referred within the academics. However, it turned out that the 
industry has already up to 20-year technology roadmaps. The 
companies preferred to develop the old processes instead. [28] 

Health care and laboratory work were cited as potential 
applications. However, medical industry is highly regulated 
and it can be challenging for traditional automation providers. 
It is vital to understand the industry and the application area. 
In addition, desktops might have more potential in research 
and laboratory use. Pharmacy requires too high volumes. 
Same applies for micro cultivation. [48]  

For example, local cleanrooms interest companies in the 
bio industry. However, practical issues, relating to e.g. 
maintenance, raised questions. They require still development 
and standardization. For instance, traditional cleanroom 
standards are still applied for local cleanrooms. A specific ISO 
standard is currently under development [49]. 

On-the-spot medical applications were also brought up. 
Instead of having all the different variations of an implant, a 
hospital could buy bulk implants and specific machine to 
personalize them. Especially specific operations e.g. face and 
scull surgery, would benefit of the personalized implants, if the 
amount of surgeries could be decreased or they would shorten 
dangerous operations. In case of average fracture, the surgeon 
has enough time to modify the implants. Metallic implants 
might be the first applications. The processes of biodegradable 
implants are still under development. [50] 

A Finnish retailer of home electronics is personalizing 
products with a laser carver, a UV-printers and a vinyl printer. 
For them, automated microfactories include two problems. 
First, the process is currently manual. An employee picks the 
product up and opens the box. After personalization, the 
products are packed manually. Small bulk batches would be 
more expensive and they do not want to change the business 
model. Secondly, larger equipment, instead of smaller, is 
needed for home electronics. Smaller equipment could be used 
parallel e.g. for MP3 players and phones. However, the 
specific machines, e.g. UV printers, are already small. [51] 
 
 
5. Business models 

 
In this chapter, the business models for equipment 

providers are discussed. By definition, micro and desktop 
production systems are small and portable. In addition, they 
represent a new production technology on the market. The 
main question relates: how do these factors benefit the 
equipment providers? 

The section 5.1 discusses business models for providers of 
small-size automation cells. Similarly, the section 5.2 
discusses the business models for providers of small-size 
machining units. The section 5.3 discusses the characteristics 
of non-manufacturing users as a customer segment. Finally, 
the section 5.4 discusses the technology for subcontractors. 
 
5.1 Small-size automation cells 

For equipment providers, the technology offers two 
promising customer segments: Lean manufacturers and 
manufacturers with fully loaded factories. 
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Lean is much more than a set of tools [52][35][53]. 
However, it appears that Western companies tend to adapt 
primary only the Lean tools and method invented by Toyota 
[53]. As a result, production is often divided into Lean cells 
(islands of excellence), one-piece-flow is favoured and the 
production is mainly manual [am]. Therefore, Lean is 
contradictory to traditional automation [34]. Process 
equipment has been one of the least covered topics in the key 
Lean literature [ak, p.131]. In addition, according to Lean, 
robots and automation must remain as tools for men, not the 
other way around [am]. Automated desktop cells can improve 
quality and enhance efficiency of certain processes because 
they fit into the Lean production cells, and they can be used as 
tools [48][33].  

It appears that the compatibility to Lean production might 
be actually one of the primary benefits. The CEO of JOT 
Automation, cites the “next coming of lean assembly” as one 
of the major trend for automaton as well [54]. 

However, Lean is not an easy segment for the automation 
providers. On one hand, the reliability is important for 
traditional mass production as the production volumes are 
usually huge. On the other hand, Lean tends to favour robust 
and thoroughly tested technologies by offset. In case of a 
breakdown, there are no (or small) safety stocks. In addition, 
Jidoka and andon stop the process [55].  

The manufacturers with fully loaded factories relate to the 
fact that the floor space is relative cheap (€/m2), even with all 
the fixed costs. However, acquiring new space includes huge 
step costs [34]. It can be a major competitive advantage for a 
provider of miniaturized production system. Even if the 
smaller option is more expensive, it might be selected because 
it fits well into the factory layout. 
 
5.2 Small-size machining units 

For providers of machining units, the small size of 
machines might enable new business and charging models, e.g. 
leasing, tie-up sales and capacity sales. Small machines can be 
carried in, e.g. with a pallet jack, and the space at customer’s 
premises does not require any preparations. As the technology 
is new, customers are more likely to accept the new models. 

A company could provide free or inexpensive machines 
and charge the use. It is kind of leasing but it enables the 
company to move the machine elsewhere if needed. Charging 
is only a matter of a contract, e.g. €/hours, €/working hours or 
€/produce. Depending on a customer and a contract, an 
employee could be provided as well. [48] It decreases the 
buying decision as investments include always risk. In 
addition, many small and medium size companies do not 
evaluate the investments broadly enough. It is therefore easier 
to justify cash flow financing. Furthermore, buyer’s shifting 
costs increase. The machine at customer’s premises binds the 
customer. Changing provider becomes more difficult. 

In addition, the small size enables capacity sales, i.e. the 
machines lay at provider’s premises and only capacity is sold. 
As the machines are small, more machines fit into the same 
space. Wegera, a Finnish subcontractor for metal industry, has 
developed a miniaturized 5DOF CNC machine Kolibri [55]. 

They are providing already such service. Customer can order 
instant machining services for monthly payment. [56]  

Finally, a provider could have multiple machines on stock 
and provide a service of capacity scaling. In this case, the 
provider would adjust the amount of machines, either in 
customer’s or provider’s premises, based on how much 
capacity the customer needs. However, both the business 
models, tie up sales and capacity sales, increases capital 
requirements, and thus marginal utilities have to be evaluated. 

 
5.3 Small-size equipment for non-manufacturing use 

In the non-manufacturing market segment, the small size 
of machinery can be a major competitive advantage. Three 
primary scenarios came up in the interviews: prototyping on 
the spot, laboratory automation and education. Prototyping 
relates mostly to machining and rapid prototyping units. 
Laboratories relates mostly to desktop automation. For 
education, there are different small-size machines on the 
market. Prototyping and education will be probably important 
applications for Wegera’s Kolibri as well [56].  

At KIT, there is an interesting research project going on, 
relating to laboratory automation. Small machine-vision based 
robotic cells have been developed for sorting and analysing of 
zebrafishes. Currently the process, of breeding, pipetting, and 
analysing, is mainly manual. It takes approximately 14 
minutes for a researcher to sort manually 384 chambers. In 
addition to saving in time, the system can maintain a constant 
temperature of 28°C. [57] 

The size is a benefit because facilities (offices, laboratories 
and classrooms) are not built for heavy and large-scale 
machinery. If, for example, an engineering company wants to 
buy  a  CNC  machine  to  prototype  metal  parts  in  an  office,  a  
traditional machine is not a reasonable option. In addition, 
there are usually no direct substitutes for the use. 

In addition, retail level product customization has been 
suggested as one application. However, it includes a different 
setting. For a retailer, it is important to customize locally only 
if the products which can be bought on impulse. If a customer 
wants to buy a highly personalized product, he or she can 
usually wait few days to get the product from a factory. 
Therefore, ordering substitutes the customization on the spot. 

Similarly, personal fabrication includes a different setting. 
If the machine is used as a hobby, it  is not substituted easily. 
However, if a consumer produces utility articles for itself, 
there  is  always  an  option  to  buy  the  articles  elsewhere.  The  
desktop-size hobby 3D printers have gained popularity. The 
industry seems to have a strong network effect and the critical 
mass might be already obtained. It is possible that desktop-size 
hobby machining units will gain more popularity in the future.  
 
5.4 Subcontracting with small-size machines 

Finally the small size and modularity of microfactories 
might enable some new business models for subcontractors. 

 For example, a subcontractor or a contract manufacturer 
can acquire a stock of small-size process modules. Based on 
orders, different production lines can be built out of the 
modules and more customers can be served. Because of the 
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small size, more modules fit into the space. The subcontractor 
can be the equipment provider but they can be separate 
companies as well. Apparently, the Japanese manufacturers 
have used microfactories for this purpose [58].  

Subcontracting is also good counterbalance for machine 
development. Subcontracting can provide parts for the 
machines, and the machines can be tested in production. [56]  

On the other hand, the small of machinery can enable 
portable maintenance service. The examples of MPH and 
MASH are presented above (q.v. 4.2.3). Similar model can be 
expanded into other industries as well. A company could 
provide spare parts locally for factories and other machines.  
 
 
6. Conclusions 

 
In this paper, applications and business models as well as 

commercialization relating to micro and desktop production 
systems were discussed. In the literature, there are a broad 
range of speculated applications for the systems relating to 
different advantages. The MEMS industry is stated as a 
potential industry. In many cases, the research aims for 
integrated desktop production systems and high level of 
automation, including e.g. intelligent conveyors. 

The applications were categorized into three scenarios, 
relating to different benefits and what substitutes the use The 
first scenario is to replace the traditional large-scale machinery 
by miniature production systems. The expected benefits relate 
mainly to different costs. However, because of the small size, 
the desktop solution might suite better for Lean and manual 
production in general. The second scenario relates to 
relocating production further into the downstream, e.g. 
production on the way or personalization at wholesaling 
and/or retailing level. The benefits relate mainly to add-on 
sales. The third scenario is to produce products on the spot by 
small machines. Here, the small equipment might enable the 
production and the whole business. 

The current use of microfactories relates to the first 
scenario. According to the interviews, they are used in the 
industry mainly as stand-alone tools for component 
manufacturing and assembly processes. In many cases, 
flexibility requirements are too high for desktop lines. 
Conveyors are against new production paradigms, e.g. Lean. 
Industries include e.g. watchmaking, telecom, medical and 
semiconductors. Processes include e.g. precise pick and place, 
screwing, dispensing, palletizing and marking, as well as laser 
and plasma treatment. The miniature machining systems suite 
for versatile materials and applications, for example metal (e.g. 
micro mechanics, jewellery and watches), glass (e.g. micro-
optics), plastic (e.g. hearing aids), ceramics (dental 
applications) and biodegradables (implants). 

However, the small size of equipment is usually only a 
secondary sales argument. There is no urgency to replace the 
large-scale machinery. In general, a customer buys a specific 
process, impact or working phase. The most important factor 
is whether or not the machine does what it is supposed to do. 
Price and size are secondary arguments if there are equal 

products on the market. Although, one real benefit for 
companies that desktop systems can be used as tools. One 
employee can operate multiple small-size machines.   

In the future, non-manufacturing applications, e.g. 
educational and laboratory use as well as prototyping are 
promising. Within manufacturing industry, local cleanrooms 
interest companies, especially in the bio industry. However, 
practical issues, relating to e.g. maintenance, raise questions. 
The MEMS industry might not be the first industry having 
specific processes. Retail level personalization includes 
problems relating to logistics and business models. Home 
fabrication will be likely relative small niche in the near future. 

For equipment providers, the technology offers two 
promising customer segments (Lean manufacturers and 
manufacturers with fully loaded factories), few additional 
segments and it eases some alternative charging models. Lean 
manufacturers are a promising segment because Lean is 
contradictory to traditional automation. Currently, based on 
Lean production principles, the production is mainly manual. 
Automated desktop cells can improve quality and enhance 
efficiency. The fully loaded factories relate to the fact that the 
floor space is relative cheap, even with all the fixed costs. 
However, acquiring new space includes huge step costs.  

The additional customer segments can be reached because 
the small machines fit well into non-manufacturing 
environments, e.g. offices (prototyping), classrooms 
(education) and laboratories (e.g. automatic pipetting).  

The alternative charging models are enabled because the 
small machines can be carried easily in, and the space does not 
require any preparations. A company can provide cheap or free 
equipment, and make the profits out of net billing, easing 
buying decision and increasing buyer’s shifting costs. On the 
other hand, provider can to store multiple small-size machines 
and sell only the capacity. Similarly, subcontractors, focusing 
on small batches, can have multiple modules on the stock and 
build versatile production lines can out of the modules.  

 
 

7. Discussion 
 
As discussed in the section 3.1, industrial products already 

arise from the microfactory research. However, introduction of 
new production technology takes time. Companies and 
engineers prefer not to use new production technologies as 
there are few examples. Consequently, few examples arise. 

To bring microfactories faster into the industry, more 
cooperation is needed between academics and the industry. 
More precisely, academics should continue on searching the 
limit of downscaling. In addition, they should inform the 
industry and the new engineers about the technology. A large 
scale production demonstration is needed, so that the industry 
would understand the potential. The equipment providers are 
already modifying and commercializing the concepts. In 
addition, the users of automation should inform the academics 
which miniaturized applications and processes are needed.  

More attention should be directed towards industrial and 
business aspects. As noted, the academics and the industry 
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have slightly different viewpoint to the miniaturization. It 
should be explored, what the feasible applications in various 
industries are and what the real benefits for companies are. 
Cases and demonstrations should be selected respectively. 

In addition, combination of Lean and miniature production 
systems requires more examination. It should be identified 
how, in practice, companies tend to combine Lean production 
practices and desktop automation and/or production machines. 
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1. Introduction  
About micro metal forming, the micro press or micro 

punching has outstanding advantages, which are simple 

process, high production rate and machining accuracy. 

Consequently, toward realizing advanced micro fabrication, 

this machining method is able to compete with other precise 

machining methods, such as laser forming, etching or micro-

EDM. 

AIST has developed the desktop size micro press system
 

[1] for the desktop machining factory [2-3]. And there are 

many other studies about development for the micro press by 

universities, research institutes, and companies in the world. 

Many of them are stand-alone press systems for challenging 

the possibility of new micro forming [4-8], and the others are 

rather practical forming systems with micro progressive die 

[9] or micro transfer system [10]. 

Not only in [1], AIST also developed the micro press 

which uses micro progressive dies, to produce micro 

mechanical parts with millimeter size in 60 shots per minute 

[11]. In this system, four in-lined press machines press the 

material one after another, and the products are machined 

gradually. 

This micro progressive press uses strip material-feeding 

system, which is thin rolled metal belt with sub-millimeter 

thickness. The circumference area of the product in strip 

material is used for positioning and sending for press 

machining. This area is finally removed and disposed as waste 

in the last press machine to get the product. 

Because the strip or coil material-feeding system [12] is 

able to send materials stably and continuously, progressive 

press style is usually selected for multi-in-lined press 

machines. However, the strip material-feeding system has two 

disadvantages shown below. 

(1) Disadvantage of yield rate: As mentioned, many part of 

strip materials are only used for positioning and sending for 

press machining and become waste. The ratio of waste to 

product becomes higher when the product is smaller. The cost 

of materials is important issue. Therefore, the efficient 

technique for material feeding is demanded. 

(2) Disadvantage of difficulty for high value-added 

machining: During multi-in-lined press machining, the high 

value-added machining, such as changing the direction of 

work material between in-lined press machining, is sometimes 
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AIST has developed the micro press system, which uses micro dies and strip materials, to produce 
small and complicated profiles. This type of micro press system can machine sub-millimeter order 
profiles in 60 spm using a series of in-line press machines. Although this system is one of the effective 
micro factories, there is a disadvantage from the point of view of saving material consumption. B
ecause of the strip material feeding system, many materials become scraps to throw away after 
machining. To reduce the waste of materials, the technique of transfer press processing, which 
machines the pre-cut materials of product size and transfer them between press machines, is 
effective. The transfer press machining is already realized in large scales. But still there is no case of 
applying the transfer press to the micro press machining. Therefore in this study, we developed new 
micro transfer hand system for the micro transfer press. Two types of grasp sensors for the transfer 
hand were selected and we had a series of experiments to evaluate these sensors. The developed 
transfer system also has a function to transfer the material in reverse or half rotate for value added 
press machining. A test bench for transfer experiment was developed to check the micro transfer 
and reverse setting. The transfer experiments were performed and not less than 99% of micro 
transfer was achieved by this system without the mistake. 
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needed. Sending and turning upside down materials between 

two dies is one of the typical example. Directions of burs 

become reverse with press direction for material. Opposite 

direction bur may be suitable for smooth connecting when 

those parts are assembled by screw. And turning materials to 

lateral direction realizes a press machining for lateral side. 

Thus the application of press processing spreads further. The 

strip material feeding system cannot realize such sending and 

turning of materials. 

To overcome these disadvantages, transfer press [13] 

technique is proposed. The transfer-press uses the transfer bars, 

which make reciprocating motion synchronizing with press 

motion. The transfer hands are attached to the transfer bar, and 

transfer the pre-cut materials between the adjacent dies. Since 

the materials are cut within almost same size of products, the 

yield rate becomes higher than the strip material-feeding 

system. Moreover, if the transfer hands turn over the materials 

during sending, the high value-added machining with different 

press directions is realized. 

The transfer press machining has been used for automobile 

parts or electric motors shells with size of several ten to 

hundred millimeters. But there are no examples of micro 

transfer press system for minute parts with size of millimeters 

order. The micro transfer press has own problems on account 

of its small size, such as grasp error or setting space for 

transfer system. 

Therefore, our final goal of this study is to establish the 

micro transfer press system, which includes multi-in-lined 

press machines and multi-transfer systems with synchronizing 

reciprocation to press motion. This paper reports about the 

basic study for the final goal of this study. 

To realize the micro transfer press system, repeatable and 

fast workings of transfer machine are needed. The transfer 

workings should be, 1) approaching grasp finger to the 

material from stand-by position, 2) grasping the material, 3) 

picking-up the material from machining position to transfer 

position, 4) sending the material to the next press position with 

material turning, 5) putting-down the material to the next 

machining position, 6) releasing the material, 7) going back to 

the stand-by position. 

For 1) 2) 6), we developed micro finger with grasp sensors 

for detecting hold position of materials to realize stable 

transfer. And for 3) 4) 5) and 7), we also developed a test 

bench, which is able to turn the materials by a few actuators 

for high value-added press machining. 

 

2. Development of micro finger with grasp 

sensors 
2.1 Overview of the micro finger 

We selected a desired value for developing the transfer 

system as 60 rpm transfer working with more than 99% strike 

rate. A prototype of micro finger with grasp sensor was 

developed to accomplish the aim as shown in Fig. 1. 

This system has tweezers type fingers to grasp plate 

materials. A liner actuator’s slider moves ball rollers and the 

rollers exchange the linear slider motion to open and close 

motion of the fingers. Sliding amount of the actuator changes 

grasping force of the fingers. From actual measured value, the 

maximum grasping force of the fingers is approximately 2N. 

Since the weight of the materials to transfer is about 150mg, 

this finger system has enough force to grasp. 

For the first-step to control a contact state of finger to 

materials, we developed two types of grasp sensors as follow 

sections. 
2.2 Strain gauge type 

The first type of grasp sensor uses a strain gauge sensor to 

detect flexure of the fingers when the fingers grasp the 

material to transfer. This method realizes grasp detection 

easily with simple principle and structures. 

We tested relationship between positions of grasping 

points and outputs of strain gauge. The strain gauge was 
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Fig. 1 Overview of a prototype micro finger 
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attached at 25 mm position from the tip of the finger. Fig. 2 

shows the results. In this experiment, the material was set to 

the each position, which are 1.5mm to 5.5mm from the chip of 

the finger. And the output voltage of the strain gauge was 

plotted respectively when a finger was closed gradually. No 

clamping result is also shown in this figure. From these results, 

we can see that the output of sensor is stable when fingers do 

not grasp the material, and the outputs vary with the setting 

positions at same finger closing position when fingers grasp 

the material. From 2.0mm to 5.0mm positions, this sensor is 

able to detect the setting positions at least 0.5mm resolution. 

Repeatable grasping and releasing tests for material by the 

finger system in Fig. 1 was conducted, and Fig. 3 shows the 

typical results. This figure shows the no clamping case and 

clamping case at 5mm from the chip of the finger. The speed 

of grasping motion was set to 60rmp to satisfy the transfer 

working speed. 

From this result, the differences of outputs are easily 

confirmed between no-clamping and clamping. Consequently, 

even in repeatable motion, we can detect the error of grasp by 

this sensor type. 
2.3 Electric contact detection type 

Although the strain gauge can detect grasp position of the 

materials well, there is some problem about stability of output. 

Gradual change of sensor output with progress of time, what is 

called drift, occurs and to confirm a stable detection, we need 

frequent zero-adjustment of sensor. 

The second sensor, the electric contact detection type was 

developed to overcome this problem. 

Fig. 4 shows the principle model of the sensor and the 

actual model for attaching to the finger. This type of sensor 

has a series of electrodes, and detects conductivity of the 

electrodes and material to pick-up when the finger closes. 

The output of this sensor is shown in Fig. 5. In this 

experiment, we set an electrode for applying voltage to upper 

finger, and set a series of electrode patterns for detecting 

conductivity to lower finger. Fig. 5 (a) shows no-clamping 

state and (b) shows full-clamping state that means a tip of 

picked material was set at 9mm position from the tip of the 

sensor. In (a), the conductivities of electrodes are not detected 

at 0 micron position, which is a standard close position of 

finger. And at –400 microns position, the conductivities of all 

electrodes are detected because upper finger contacts to lower 

finger. On the other hand, in (b), conductivities of all 

electrodes are confirmed at the standard close position. Both 

(a) and (b), unevenness between conductivities detecting 

position is observed. The reason is that there is some variation 

in height of electrodes. When we distinguish the grasping at 

200 microns position for example, even in (b), some grasping 

error should be detected. Therefore, we decided to distinguish 

the grasping at 0 micron position as a standard close position 

of finger. 

This electric contact detection type does not need zero-

adjustment of sensors and have an advantage of stability of 

output compare with the strain gauge type. But there is some 

disadvantage in possibility of miss detection caused by the 

variety in height of electrode. Moreover, contamination by oil 

of press machine may bring a miss-conductivity and make a 

detection error. Consequently, to select which sensor should be 

selected, it is necessary to observe actual finger style and the 

hardware requirement. 

3. Test bench for micro transfer system 
3.1 Overview of the test bench and development of the 
finger and arm system 

To develop a transfer press machining system, a series of 

repeatable transfer motions as sown in section 1 should be 

required. For the high value-added machining, a procedure of 

changing the direction of work material is applied to sending 

motion. 

In this study, we developed a finger and arm system for 

test bench of the micro-transfer system to realize repeatable 

motions between two places. We selected distance of two 

places as 100mm, which is approximately same as our 

developed in-lined press machines. This test bench has a 

transfer arm with finger to change the direction of work 

material while arm moves. If we use five actuators -- 1) 

approaching 2) grasping 3) picking up or putting down 4) 

 
Fig. 4 Principle and actual model of electric contact 
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transfer 5) rotate, this system can be realized. But when the 

multi transfer systems for multiple press system are built, we 

need many actuators. It causes complication of transfer system 

and rising of price for the system. 

Therefore, we applied a kind of link system for picking 

and rotating material to reduce actuators. 

Fig. 6 shows a schematic diagram of the test bench. A 

linear actuator set behind the finger pushes and pulls the finger, 

and a link system for finger exchanges the linear motion to 

finger closing and opening motion. The finger closes after 

approaching to the material by this link system. Fig. 7 shows 

the actual motion photographed by high-speed camera which 

the finger grasps material. The material to grasp is set on a 

pseudo-die and a plunger is holding the material. This plunger 

rolls a pushpin of real press machine. In the upper figure, the 

finger is in stand-by position. The finger approaches to the 

material in the middle figure. And in the bottom figure, the 

finger grasps the material. After these sequences, the plunger 

moves to upper direction to release, and the finger picks up 

and moves the material. 

A pinion in Fig. 6 meshes with a rack by the picking up 

actuator and rotates the finger with the motion of transfer 

actuator. There is a slip clutch between the finger and pinion 

as shown in Fig. 8. The finger stops to rotate when a latch hits 

to a stopper and a holding system of the stopper holds the latch. 

Then after the latch hitting, although the pinion continues to 

rotate, finger keeps same direction of rotation while transfer 

actuator is moving. In going back motion after the finger puts 

the material, the pinion meshes with the rack again and finger 

rotates opposite direction until the latch hit to the stopper in 

another side. If the position of stoppers is changed, the angle 

of finger rotation changes optionally. When we set the 

stoppers to 90 degree, the finger can put the material in lateral 

direction, that realize lateral press machining of material. 

Fig. 9 shows the actual rotating motion of the finger while 

the arm is moving. In this figure, the acceleration of the 

actuator for transfer was 1G and the maximum stage speed 

was set as 500 mm/s. Selected rotation angle of finger was 180 

degrees that means the turn over putting of material. We took 

these photographs at middle point of the transfer distance. In 

the upper figure, the material is already rotated in 90 degrees 

and in the middle figure, the finger finished to turn over the 

materials. Since the slip clutch keeps the direction of the finger, 

the material is moved in turned position as shown in the 
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Fig. 7 Photograph of the finger grasping material 
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Fig. 6 Schematic diagram of the test bench 
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bottom figure. 
3.2 Repeatable transfer experiment by the test bench 

We integrated the arm and finger system to develop the 

test bench shown in Fig. 10. This is an actual set-up of Fig. 6. 

There are two points to picking up and putting down the 

materials, and the transfer arm moves between these two 

points repeatedly. Two air sliders in each point move each 

plunger as shown in Fig. 7.  

A sequencer controls the finger, arm and assisting systems 

as procedure. In this system, we did not prepare a parts 

feeding system for repeated transfer motions. Then only one 

time material transfer can be realized after the material is set 

on the first point. 

The system has an emergency stop circuit which acts when 

the external personal computer sends TTL signal. If we attach 

the grasp sensor mentioned in section 2 to the finger, and 

detect the grasp miss by the personal computer, this test bench 

is able to stop to avoid the transfer miss when the grasp miss 

of the finger occurs. 

We had a transfer experiment by using this test bench. The 

timings of the stage, liner actuator, and air slider are adjusted 

to realize 60 transfer numbers for one minute. A series of 

photographs when the hand is putting material on the die 

continuously are shown in Fig. 11. In this figure, we can see 

the sequence as follows: the finger is approaching to the die, 

positioning to putting point, putting the material, the plunger is 

holding the material, the finger is releasing, and leaving from 

the die. 100 times repeatable transfer experiment was 

performed. In this experiment, there was no case, which failed 

in transfer the material. From this result, we can say that not 

less than 99% of micro transfer was achieved by this system 

without the mistake. 

4. Future works 
To realize the practical system set-up of transfer hand for 

in-lined press machine, we have a plan for the system as 

shown in Fig. 12. This figure stands for the four in-lined 

transfer system. There are four transfer fingers to move the 

materials between adjacent dies. Because of the mechanical 

system for grasping and rotating materials as mentioned in 3.1, 

basically, we need only three actuators to realize this system. 

Ordinal material to cut is a kind of strip material, and the 1st 

die cuts the material to the same size of the final products. 2nd 

die makes bending machining, 3rd die makes hole to the 

material, and 4th die also makes bending machining to a part 

of material. In this example, we need 180 degrees rotation 

between 2nd and 3rd dies, and 90 degrees rotation between 

Transfer arm
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Plunger
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Fig. 10 Set-up of developed test bench 
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Fig. 11 Sequence of putting material on the die 
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3rd and 4th dies. Then two of the fingers have pinions behind 

each finger to rotate the materials. If we can set each position 

of the stopper as shown in Fig. 8, the finger is also selected as 

no rotating motion when the stopper is set on 0 degree position. 

Therefore, we can use same system for four fingers and it 

brings extensibility and flexibility to the transfer hand system 

such as installing more press machines or changing the dies 

and products for micro press. 

 

5. Summary 
In this study, we had the basic study for establishing the 

micro transfer press system. This system includes multi-in-

lined press machines and multi-transfer systems with 

synchronizing reciprocation to press motion.  

This study is summarized as follows: 

1) A sensor system for transfer hand to detect the state of 

the grasped small materials is proposed. Strain gauge type and 

electric conductivity type were selected as the sensor and we 

had a series of experiments to evaluate these sensors. Strain 

gauge type sensors can detect the grasping position within 

0.5mm. Electric contact detection type has an advantage in 

stability. 

2) A test bench to move the material in reverse or half 

rotate for value added press machining is developed. Rack-

pinion, slip clutch and rotation stopper mechanism realized 

this motion. The transfer experiments were performed to 

evaluate micro transfer system. Not less than 99% of micro 

transfer was achieved by this system without the mistake. 
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1. Introduction  
The need for high-precision parts has recently become an 

important concern in the manufacturing industry. Such a 

machine is required to provide versatility, speed and 

workspace as well as high precision positioning [1]. This 

requirement impacts on machine tool design by improving 

machining performance, especially in terms of accuracy and 

precision. For such high-precision machines, drive systems 

with sub-micrometer accuracy over a travel range of several 

hundred millimeters are necessary [2]. 

 The ball-screw is currently the most frequently used in 

feed drives of the machine tools [3]. Together with rotary 

motors it forms a linear stage system which has high load 

capacity and simple configuration for long stroke application. 

Linear stages positioning accuracy depends on a number of 

factors, for instance their control electronics, motors, 

mechanical parts, and transmission configuration. For these 

reason, linear stages have several limitations such as: 

transmission errors, dead zone, backlash, elasticity, large 

inertia and wear [4]. This deficiency will greatly impact the on 

micro-milling machining results. 

Positioning systems based on piezoelectric materials have 

received increased attention recently in many high-precision 

applications [1]. They have advantages that include: unlimited 

resolution, large force, fast expansion and no magnetic effects 

[5]. These characteristics make piezoelectric actuators a good 

choice for precision actuator. The disadvantages of 

piezoelectric actuators are their short travel range, hysteresis 

and creep. Hysteresis and creep are undesirable characteristics 

which lead to large errors when a piezoelectric actuator is used 

in positioning application [6]. 

The main goal of micro-milling with active piezoelectric 

stage error compensator in this work was to obtain overall 

system that has the travel range of linear stage and the 

accuracy of piezoelectric actuators which leads to 

improvements in machining results. The control method 

proposed in this paper applies the concept of active error 

compensator, where the error from linear stage cancelled by 

piezoelectric actuators stage in synchronous motion. To 

analyze the positioning performance, experiments were carried 

out for linear motion, circular motion, and micro-machining to 

map the overall performance of the system. 

 
2. The Experimental Setup 

 
2.1 Design of Piezoelectric Stage for Error Compensation 

Although piezoelectric devices can provide large output 

forces, the typical 15 µm displacement of stack-type actuator 

is not sufficient for most general engineering applications, for 

which much larger movement ranges (0.05-0.5 mm or more) 

are typically required. In most cases, therefore, the use of a 

flexure-hinge mechanical displacement amplifier is the most 
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An active error compensation for positioning system in micro-milling application was designed. The 
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compensator. The control method used in the system was active error compensation type, where the 
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improvement of machine accuracy and ensured by machining results. Therefore, this technique can 
be implemented for high-precision positioning in manufacturing and machining systems. 
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appropriate approach to magnifying the output displacement 

of the piezoelectric actuators [7]. A piezoelectric stage with 

flexure-hinge-type lever mechanisms was designed to increase 

the error compensation range. Simulation results for the 

piezoelectric stage deformation are shown in Fig. 1 and Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Piezoelectric stage simulation for x-axis deformation 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Piezoelectric stage simulation for y-axis deformation 

 

Piezoelectric actuators used in the stage were PI-830.20 

made by Physik Instrumente. They had a travel range of 30 

µm and a 1000 N pushing force with a voltage range of 0 to 

100 V. With the help of the lever mechanism, simulation 

shows the maximum travel ranges of the piezoelectric stage 

become 106.90 µm and 84.85 µm for the x- and y- axes, 

respectively.  

The open-loop relation between given voltage and 

displacement was tested by measuring the piezoelectric stage 

displacement using capacitive displacement sensor. The results 

are shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Measured result of relation between applied voltage and 

piezoelectric stage displacement 

 
    The measurement shows that hysteresis phenomena occur 
in both of piezoelectric actuator. The overall displacement also 
lower compared to simulation results because of the preload 
force added to the piezoelectric actuators. The frequency 
response was performed to analyze the piezoelectric stage 
respond at various frequencies. The test was done by using 
dynamic signal analyzer with amplitude 0 to 85 Volt started 
from 0 to 3000 Hz. The results are shown on Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Piezoelectric stage frequency response 

 
2.2 The Developed System 

A standard 3-axis milling machine was modified by 

stacking the piezoelectric stage on top of the x-y (horizontal) 

working table. The linear stages used 50000 pulse/rev step 

motor, 8 mm ball screw lead and 0.1 µm linear encoder 

feedbacks. The piezoelectric stage used 0.05 µm resolution 

linear encoders as a feedback for each x- and y-axis. A 2-D 

grid encoder with 0.1 µm resolution monitored the positioning 

error of the overall system. The sensor arrangements are 

shown in Fig. 5. 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 5 Sensor arrangements 

 

The controller used for the system was DeltaTau UMAC 

DSP. The active error compensation algorithm was 

downloaded to the controller. Position commands were 

generated on the controller with program code and sent to the 

actuators. All the actuators were tuned by integrated tuning 

software from the controller. The piezoelectric amplifier 

magnified command voltage by 10 times before passing it to 
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the piezoelectric actuator. The spindle used for the micro-

milling was NSK Nakanishi air spindle attached to the z-axis 

(vertical). Complete experimental setup is shown in Fig. 6. 
3. Control Strategy 

The control strategy used in the system was active error 

compensation type, where an error from linear stage cancelled 

by the piezoelectric stage motion. The concept is to have 

compensation action by the piezoelectric stage simultaneously 

with the movement of linear stage. 

For the control law in the piezoelectric stage, a PI 

(proportional-integral) controller was applied (Fig. 7.). The 

parameter used in the controller was obtained by experiment 

and was tuned to compensate the nonlinearities characteristics 

of piezoelectric actuators. The performance was tested by step 

response analysis detected by linear encoders (Fig. 8.). The 

initial position of x- and y-axis in the piezoelectric stage 

should be shifted approximately 50 µm from the resting 

position in order to have compensation capability in both 

forward and backward direction. 

 

 

 

 

 

Fig. 7 Piezoelectric stage control block diagram 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Piezoelectric actuator step response; a) x-axis 

direction; b) y-axis direction 

 

The piezoelectric stage works as an error compensator for 

the linear stage which made the command for the piezoelectric 

stage is a deviation from commanded position and actual 

position of linear stage. The linear stage was controlled by PID 

(proportional-integral-derivative) controller, and the resulting 

control block diagram for the overall system is shown in Fig. 9.  

 

 

 

 

 

 

 

 

 

Fig. 9 Overall system control block diagram 

 

4. Experiments on the Milling Machine 
 

4.1 Linear Trajectory Motion Test 

To perform the positioning experiment for linear trajectory, 

commanded trajectory for 1 mm back-and-forth was sent to 

linear stage with 500 µm/s constant speed and 1 s delay before 

reversing direction. The linear trajectory motion experiment 

for x- and y-axis was performed separately. For each x- and y-

axis, we compared the results of motion positioning error with 

 

Fig. 6 Complete experimental setup 
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and without error compensation. The results for linear stage 

motion without error compensation are shown in Fig. 10, Fig. 

11, Fig. 12, and Fig. 13. 

The graph shows us the magnitude of error along the y-

axis was greater than along x-axis because in the milling 

machine the x-axis was stacked on top of the y-axis, which 

meant the y-axis experienced a larger load than the x-axis. The 

maximum positioning error in the x-axis was 25.56 µm, with 

11.92 µm error average. For the y-axis the maximum 

positioning error was 30.06 µm, with 13.92 µm error average. 

However, these errors were still within the compensation 

range of the piezoelectric stage. The positive and negative 

signs of the error magnitude indicate the error direction. The 

most important concept is that the magnitude of error at any 

given time will affect the accuracy of a target point that needs 

to be achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 X-axis linear trajectory motion commanded and 

measured position without error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 X-axis linear trajectory motion error map without 

error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Y-axis linear trajectory motion commanded and 

measured position without error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Y-axis linear trajectory motion error map without 

error compensation 

 

The analysis of linear trajectory motion without error 

compensation confirmed that the errors generated from the 

linear stages were still in the compensation range of the 

piezoelectric stage. For this reason we performed a linear 

trajectory motion experiment with error compensation. The 

results are shown in Fig. 14, Fig. 15, Fig. 16 and Fig. 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 X-axis linear trajectory motion commanded and 

measured position with error compensation 
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Fig. 15 X-axis linear trajectory motion error map with 

error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Y-axis linear trajectory motion commanded and 

measured position with error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 Y-axis linear trajectory error map with error 

compensation 

 

The graphs show error reduction in the x- and y-axis for 

linear trajectory motion, although there were still some error 

peaks, in particular at the beginning of motion and when the 

motor reversed direction. Both conditions are times when the 

linear stage brings out the largest error because of the inertia 

of the system. The x-axis maximum positioning error with 

error compensation was 17.11 µm, with 1.61 µm error average. 

For the y-axis the maximum positioning error was 18.79 µm, 

with 2.26 µm error average. This result indicated accuracy 

improvement by using piezoelectric stage as error 

compensator. 

The performance of the error compensation system was 

defined largely by the relationship between the linear stage 

and the piezoelectric stage. Piezoelectric stage responses also 

affect the overall performance of the system. The ability of the 

piezoelectric stage to respond error generation in the linear 

stage will determine the performance of the system. 

 
4.2 Circular Motion Test 

During milling processes, circular motion also plays an 

important rule. Circular motion requires collaboration between 

two or even more axis. In our system we used x- and y-axes to 

generate circular motion in x-y plane. The interpolation 

command generated in the controller was to generate a circular 

motion with radius 1 mm at 500 µm/s constant speed. 

Experimental results for circular motion with and without 

error compensation are shown on the next figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 X- and y-axes circular motion commanded and 

measured position without error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 X-axis circular motion error map without error 

compensation 

 

 

 

 

 

 

 



6  / JUN 18-20, 2012, TAMPERE, FINLAND IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES 
 

IWMF2012 
 

 

 

 

 

 

 

 

Fig. 20 Y-axis circular motion error map without error 

compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 X- and y-axes circular motion commanded and 

measured position with error compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22 X-axis circular motion error map with error 

compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Y-axis circular motion error map with error 

compensation 

 

The maximum error on circular motion without error 

compensation for x-axis was 23.10 µm with 10.92 µm error 

average. For the y-axis the maximum error was 28.26 with 

11.73 error average. By using active error compensation this 

error could be reduced with the maximum error in x-axis 

becoming 4.29 µm with 1.14 µm error average. For the y-axis 

the maximum error was reduced to 16.15 µm with 2.20 µm 

error average. 

 

4.3 Machining Test 

Amongst several mechanical-machining processes, micro-

milling is the most flexible process and thus is able to generate 

a wide variety of complex micro-components and 

microstructures [8]. Experiment under real metal cutting was 

performed to evaluate the performance of the system. Method 

used on the experiment was to try the micro-milling machine 

ability to mill micro-pole structure. Micro-pole structures, 

such as column, rectangular pole and gear shaft, made by the 

micro-endmilling process, can be utilized in industry. 

Examples include electrode for electrical discharge machining 

and micro-mold for injection molding [9]. The objective was 

to fabricate 3 pieces of 5 µm height aluminium micro-poles 

with 100 µm, 50 µm and 25 µm diameters. The tool used in 

micro-milling process was 0.1 mm diameter micro-endmill 

rotated with 80000 RPM spindle speed. The neatness of the 

micro-poles indicates the accuracy of the micro-milling 

process. The results are shown in the following figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24 Machining result without error compensation 
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Fig. 25 Machining result with error compensation 

 

As shown on the figures, the machining result with error 

compensation shows a better micro-poles structure. The 

sections of the micro-poles were more rounded by using active 

piezoelectric compensator. This result indicates the 

improvement of the micro-milling machine positioning ability 

by implementing active error compensation with piezoelectric 

stage. 

 
5. Conclusions 

In this study, an active piezoelectric stage error 

compensator mechanism for micro-milling application was 

designed and developed. The purpose was to improve the 

positioning performance of micro-milling machine. The 

control strategy used on the system was active error 

compensator type where errors from linear stage cancelled by 

piezoelectric stage motion.  

Experiments for linear and circular motion were carried 

out. We evaluated the positioning performance by comparing 

the performance of linear stage motion without error 

compensation and the one with error compensation. In both 

cases there were significant improvements in machine 

accuracy by implementing active error compensation. The 

results were ensured by performing micro-milling on real 

metal cutting. Therefore, this technique can be applied to 

develop high-precision positioning in the manufacturing and 

machining systems. 
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Scanning Electron Microscope is becoming a vital imaging tool in desktop laboratories because of its high
imaging capability. Through this work we evaluate the performance of two different SEMs consisting of a
tungsten gun and a field effect gun, with respect to time and magnification by estimating their image signal-
to-noise ratio. SNR is mainly applied to quantify the level of image noise over changes in the acquisition
time and magnification rates. Majority of the existing methods to estimate this quantity are based on cross-
correlation technique and requires two images of the same specimen area. In this paper we propose a simple
and efficient technique to compute signal-to-noise ratio using median filters. Unlike other techniques the
proposed method uses only a single image and can be used in real time applications. The derived results
show the effectiveness of the developed algorithm.

NOMENCLATURE

FIB = Focused Ion Beam
SEM = Scanning Electron Microscope
TEM = Transmission Electron Microscope
GIS = Gas Injection System
SNR = Signal-to-Noise Ratio
FEG = Field Effect Gun
SE = Secondary Electron
BSE = Back Scattered Electron
ACF = Auto Correlation Function
I,S,N = Acquired, signal and noise images
STD = Standard deviation

1 Introduction

The control of machining provided by FIB facilitates a fast ex-
pansion of desktop laboratories dedicated to the preparation of
S/TEM samples. These laboratories commonly include a FIB,
a GIS, a robot manipulation system and a SEM. The FIB per-
forms machining to obtain a very thin specimen transparent to
electrons and the width varying between 500nm and 10nm. It
also enables cutting of samples before transferring them to the
final support. The GIS performs the deposition or removal of
matter by SEM electron beam or by FIB. The robotic system
performs the lift-out i.e. picking up a sample from the primary
matrix, transferring and placing on the final support. All these
elements are positioned inside the SEM chamber that supplies

adequate level of vacuum and cleanliness for the overall pro-
cessing [1]. Besides sample preparation, a SEM based desk-
top laboratory can be used to perform dynamic analysis and
characterization of samples to retrieve their structural, mechan-
ical, electrical or optical properties. Both applications sample
preparation and analysis require long operation times and also
a change in SEM magnification to fit the accuracy of measure-
ments as well as the field-of-view.

Moreover, SEM is a powerful imaging instrument used
in a variety of applications mainly because of its capability
in providing images with high resolution and magnification
ranges. These images are produced by detecting and convert-
ing various signals emitted during the electron beam - specimen
interaction [2]. They are used to provide a dynamic visual feed-
back and real-time monitoring of the working scene in order to
perform the assembly/handling task [3].

However, to perform an autonomous micro-
manipulation of a sample (< 10µm) using a SEM based desk-
top factory, the primary requirement is that the quality of ac-
quired images is high enough (i.e. having less percentage of
noise) to be exploitative. One main indicator of the acquired
image quality is the SNR mainly because of its efficiency in
quantifying the level of noise in an image.

SNR is a commonly used measure in the field of signal
processing to estimate the strength of a signal with respect to
the background noise. So far, two microscope images of the
same specimen area have been used in many research works to
compute the SNR based on cross-correlation technique [4, 5].
The primary disadvantage associated with the used methods is
that they require two images to be perfectly aligned and in ad-
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dition, requires long processing times which makes them diffi-
cult to use in real-time applications. Apart from that for SEM
imaging, if a sample is scanned for too long by probe it may
become contaminated and unusable. Thong [6] used a single
image to compute the SNR based on the simple approximation
and first-order extrapolation. Even though the results are good
enough but the used method is highly dependent on the nature
of images.

In this work, assuming the level of noise is high and
presence of the image drift, we overcome the above difficul-
ties by developing a simple and robust noise estimation method
based on non-linear filtering and then computing the SNR us-
ing a single image. In turn, it is used to estimate the SEM’s
performance in real-time at varying time and magnification
rates. This work is mainly aimed to evaluate various SEMs
and to choose an available best configuration for the future vi-
sion based autonomous micro sample handling process. It is
also used to quantify any SEM with respect to the noise.

This paper is organised as follows. The basic concepts
of SEM imaging are described in Section 2. In Section 3
we present the related work regarding SNR computation along
with the proposed method. Experiments with the system and
results are shown in section 4 followed by the conclusion.

2 SEM Imaging

The two different SEMs used for this work are JEOL JSM 820
with a tungsten filament gun and Carl Zeiss Supra with a FEG.
The important difference between them is the maximum possi-
ble resolution with a tungsten gun SEM is 10nm whereas for a
FEG it is 1nm. Conventionally, a SEM consists of an electron
column equipped with an electron gun (to produce a continuous
beam of electrons), a sample chamber with a positioning stage
and different electron detectors for detecting various types of
emitted electrons during probe-sample interaction. The aper-
tures and coils present inside the column are responsible to
reduce the generated beam diameter, accelerate and focus the
beam on the supplied scanning surface of a specimen. The ba-
sic construction of the column is shown in the Figure 2.1.

Figure 2.1: SEM electron column construction in reference with
JEOL SEM

SEM images are formed by raster scanning the speci-
men area with produced electron beam and by recording the
emitted electron information during this process. Later the
gathered information is amplified and displayed on the moni-
tor. SEM produces two dimensional gray scale images. The

main advantage with a SEM is its ability in producing images
with high depth-of-field and magnification. Typically, the mag-
nification rates vary from 25× to 250,000×. The image reso-
lution can be changed by changing the probe current and the
acquisition time. In general, the common trade-off for image
resolution in electron microscopy is the image SNR. The qual-
ity of the images produced can be expressed in terms of SNR.
Operationally, high quality images can be acquired by increas-
ing the beam current or by increasing the scanning time.

The images produced by a SEM are classified into dif-
ferent types based on the emitted electrons. Commonly used
image types for most of the micro/nano applications are SE and
BSE images. In this work, SE images have been used. Figure
2.2 shows a sample SE image of a standard gold on carbon sam-
ple. Normally the SE images are result of inelastic collisions
and scattering of incident electrons with the electrons present
on specimen surface. These images mainly provide the surface
topographical information. More information about the other
image types can be found in [2].

Figure 2.2: SE image of gold on carbon sample at 100k×magnifi-
cation

However, SEM image acquisition is known to be
affected by the addition of noise during beam production, its
interaction with the sample and also by the presence of insta-
bilities and non-linearities in the electron column during the
scanning process [7]. At low scanning times the level of noise
in the images is high in turn reducing the level of SNR. More-
over, noise can also be added by the charge-up of specimen
surfaces due to continuous scanning by electron beam and also
by mechanical vibrations. This work mainly focus on selecting
the best possible quality images over time and magnifications
based on the image SNR to estimate the variance of noise under
the particular instrument in use.

3 SNR computation
SNR is one of the commonly used quantitative measures in the
context of image quality as a measure of image noise. Many ap-
plications like image restoration, noise filtering algorithms use
this parameter for estimating the noise variance [8]. Mainly
with SEM SE imaging, the quantification of SNR is an im-
portant task where the images are possibly degraded by noise.
SNR provides the level of original details present in the image
in comparison with the level of noise. The higher the value of
SNR the better the quality of acquired image. Following the
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industry standards, SNR can be defined as

SNR , 10log10
variance{signal}
variance{noise}

(3.1)

3.1 Related work

One of the most commonly used methods to compute SNR is
by using image cross correlation technique [4]. However in or-
der to use this method, two perfectly aligned microscopic im-
ages of the same specimen area are required. This approach as-
sumes that the drift effects are negligible and only noise varies
between images. Thong [6] proposed a single image SNR esti-
mation method using the same technique by assuming that the
noise in the image is additive white noise. Later, the ACF is
computed for the corrupted image from which the noise and
noise free peaks are estimated using interpolation. Figures 3.1a
and 3.1b shows the ACF and 2 dimensional ACF curve taken
along x-axis respectively for the sample image shown in Figure
2.2.

Figure 3.1a: ACF curve for the image shown in Figure 2.2

Figure 3.1b: ACF curve along x-axis
From the computed ACF, noise free peak is found

using interpolation. Figure 3.2 shows the two peaks. The SNR
is described as:

SNR =
Noise f reepeak− (mean(pixels))2

Noisepeak−Noise f reepeak
(3.2)

It is difficult to use the above method for online applications
mainly because of the reason that the Overal computational
time is more. Moreover, accuracy of the method is highly de-
pendent on noise free peak estimation.

Figure 3.2: Estimated noise and noise free peaks

To overcome the drawback associated with the above method,
a simple technique using single image to estimate the SNR for
online applications is implemented based on noise filtering by
convoluting the image with a nonlinear filter kernel. By com-
paring all the available nonlinear filter masks like Gaussian,
median etc., median filtering seem to provide best performance
in filtering the noise and preserving image details [9]. Even
though Gaussian is good at filtering noise, it removed fine im-
age details like sharp edges. The proposed method is explained
below.

3.2 Proposed approach

Assuming the acquired image is corrupted by spatially uncorre-
lated additive Gaussian white noise [5, 6, 10] the image model
is given by

I(x,y) = S(x,y)+N(x,y) (3.3)

Each captured frame undergoes histogram equalisation as a step
of normalising the intensity levels and enhancing the image
contrast. This is an optional step as the software provided with
modern SEMs includes this functionality directly while acquir-
ing the images. The normalised image is then convoluted with
a median filter of appropriate size in order to reduce the noise
effects. In detail, each pixel in the image is replaced by the me-
dian value of its surrounding neighbourhood. The size of the
filter is chosen by trial and error. Figures 3.3a and 3.3b shows
the resulting filtered image, S and removed noise image, N re-
spectively for Figure 2.2.

Figure 3.3a: Filtered image
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Figure 3.3b: Noise image

Using S, the noise can be formulated by subtracting S
from I resulting in N. In turn both S and N are used in com-
puting SNR. The final SNR following industry standards of
20log10 can be defined as:

SNR = 20log10
ST D(S)
ST D(N)

(3.4)

A specimen is positioned upon the positioning stage in-
side SEM vacuum chamber. A set of images are acquired from
t0 to t f with a sampling time T for each magnification ranging
from g0 to g f with a sampling step of G. The SNR quantifi-
cation using the proposed approach is described in algorithm
3.2.

Algorithm 3.2 Algorithm for SNR quantification

1: for g = g0→ g f do
2: for t = t0→ t f do
3: Acquire image, I;
4: Normalise intensity levels;
5: Apply median filter to get S;
6: I-S to get N;
7: Compute SNR using 3.4;
8: end for
9: end for

The robustness of the proposed method is evaluated by
corrupting a noise free image shown in Figure 3.4a with addi-
tive white Gaussian noise for which the SNR level is known
prior to the addition. Later the SNR is computed from the cor-
rupted image using proposed method and is compared with the
original values in order to test its efficiency. Table 3.1 shows
the original and obtained SNR values.

Figure 3.4a: Noise free image

Figure 3.4b: Image corrupted with Gaussian noise of 20dB

Table 3.1: Original and obtained SNR values
Original SNR (dB) Obtained SNR (dB)

15 14.3743
16 15.2436
17 17.2480
18 18.1332
19 19.5319
20 20.0264
21 21.0056
22 21.8679
23 22.6670
24 23.7125
25 24.6833
26 25.2426
27 26.7032
28 27.9277
29 28.6508
30 29.4661

From the obtained results it is clear that the proposed method
has a reliable performance in estimating the noise level from a
given corrupted signal as well as in computing SNR values.

4 Evaluation and discussion

The performance of two different SEMs Jeol JSM 820 and Carl
Zeiss Supra is evaluated using the proposed approach. It uses
SE images of standard Gold on Carbon sample with low voltage
resolution (30nm−500nm) for Jeol SEM as it is an aged SEM
and normal resolution (5nm−150nm) for Carl Zeiss SEM.

The accelerating voltage used to accelerate the produced
beam is 10kV and the magnifications used for this work are
ranged from 10k× to 100k× with an increase of 10k. For each
magnification 20 – 30 images are acquired with a sampling time
of 30 seconds i.e. a single image is captured for every 30 sec-
onds. Chosen image size for this work is 512 × 512. Once an
image is acquired its SNR value is computed using algorithm
3.2.

The evaluation process is performed in two steps. The
primary step is to estimate the SEM performance with increase
in time. Tables 4.1 and 4.2 summarises the obtained SNR val-
ues (in dB) for different magnifications with increase in time
(30 seconds for each count) for tungsten gun SEM (Jeol) and
FEG SEM (Carl Zeiss Supra). Sample plots comparing the
SNR levels with both the SEMs at different magnifications are
shown in the Figures 4.1 and 4.2.
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Table 4.1: SNR values (in dB) for Jeol SEM

Magnification rates
10000× 15000× 20000× 25000× 30000×
17.4536 18.9045 17.7562 20.8551 19.5582
17.4708 18.9635 17.8127 20.8353 19.6026
17.5719 18.9120 17.8672 20.7796 19.6623
17.5645 18.9678 18.9029 20.8866 19.6288
17.7280 18.9216 18.9257 20.9368 19.7071
17.7317 18.9774 18.9626 20.0229 19.7394
17.7580 18.9923 18.9819 20.1088 19.7572
17.7815 19.0035 18.0084 20.1029 19.8194
17.8303 19.0058 18.0263 20.2038 19.8408
17.8454 19.0827 18.0523 20.2695 19.8644
17.8698 19.0426 18.0831 20.2787 19.8408
17.9208 19.1212 18.1636 20.3237 19.8904
18.0420 19.1128 18.2382 20.3480 19.8707
17.9926 19.1868 18.2554 20.3478 19.9000
18.0404 19.1412 19.2752 20.3786 20.9191
18.0637 19.1544 19.2871 20.3900 20.9219
18.1012 19.1549 19.2466 20.3842 20.9297
18.1205 19.1755 19.3011 20.3497 20.9101
18.1626 19.1797 19.3197 20.3293 20.9209
18.1596 19.1864 19.3117 20.3190 20.8867

Table 4.2: SNR values (in dB) for Carl Zeiss SEM

Magnification rates
60000× 70000× 80000× 90000× 100000×
17.3942 16.9059 15.4394 16.2897 16.6367
17.8734 16.9669 15.5451 16.4657 16.9874
18.2265 17.1716 15.5451 16.4657 17.2667
18.6786 17.1716 15.8911 16.8509 17.4951
18.7267 17.6672 15.9604 16.9306 17.6999
18.9605 17.8276 16.0912 17.1262 17.8748
19.1688 17.9797 16.2547 17.3217 18.0521
19.2134 18.0416 16.3372 17.4020 18.2933
19.3825 18.1382 16.4224 17.4020 18.4179
19.2693 18.2387 16.4833 17.8535 18.5065
19.5012 18.3103 16.6785 17.9680 18.4610
19.8314 18.4442 16.7113 18.1125 18.5710
20.0031 18.4381 16.9536 18.2303 18.7546
19.8055 18.7222 16.9712 18.3546 18.7331
20.6075 18.6924 17.0032 18.4183 18.8932
20.8755 18.7884 17.0457 18.6238 18.9844
20.8318 18.8678 17.1389 18.6963 19.0937
20.8405 18.9278 17.1812 18.8157 19.0546
21.0915 19.0026 17.4818 18.9375 19.2215
20.9610 19.4176 17.4339 19.0563 19.3941

Figure 4.1: Acquisition time vs. SNR at 40,000 ×magnifications

Figure 4.2: Acquisition time vs. SNR at 70,000 ×magnifications
After evaluating the two SEMs, it is observed that the

level of SNR is increased with increase in time. And also it is
clear from the Figures 4.1 and 4.2 that the SNR level is weak
for Jeol SEM in comparison with Zeiss SEM. However, in ev-
ery case the SNR level is high enough (>15dB) to make the
images exploitable. Next, the SEMs performance is evaluated
with increase in magnifications and the results are summarised
in Figures 4.3 and 4.4 for Jeol and Carl Zeiss SEMs respec-
tively.

Figure 4.3: Magnification vs. SNR for Jeol SEM

Figure 4.4: Magnification vs. SNR for Carl Zeiss SEM
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The results obtained shows that, unlike with time the
level of SNR decreases with increase in magnification rates.
From figure 4.3 we can say that this rate of decrease is compar-
atively negligible for Jeol SEM.

5 Conclusion
In this paper, we evaluate the performance of two different
SEMs with respect to time and magnification using image SNR.
After evaluation it is clear that the FEG SEM (Carl Zeiss)
shows better performance or imaging abilities in comparison
with the SEM containing a tungsten gun (Jeol). The results ob-
tained show that the level of SNR increases with respect to time
for both the SEMs, but the rate of increase is more for the FEG
SEM than the tungsten gun SEM.

To compute image SNR a new, simple and fast method
based on median filtering has been proposed. It overcomes the
difficulties associated with various other SNR computation al-
gorithms by using only a single image. As the time taken for
overall process is very less the proposed method can be used
with real time applications. The obtained results show the ef-
fectiveness of the proposed algorithm.
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1. Introduction  
 

Micromachining techniques are widely needed day by day 

with the progress of industry, such as micro-channel of biochip, 

micro-holes of fiber optic connector, optical lenses and micro-

mold. The facilities and expenses conventional 

micromachining processes, such as electro beam machining, 

laser beam machining, Laser machining, LIGA process et al 

[1-5], are costly but the surface machining in a highly quality 

is not easy to reach the goal. Therefore, how to reach the 

process in low-cost, high accuracy and high quality is very 

important. Micro electrical discharge machining (MEDM) is a 

kind of process which could reach the high accuracy. However, 

micro-EDM suffers from the defect of poor surface quality 

because the recast layer formed on the machined surface is 

covered with discharge craters and micro-cracks. These 

defects affect the diameter of the micro-hole and undermine 

the precision of the geometric shape. These machining shape 

accuracy and surface roughness are not easily to be improved. 

However, conventional grinding methods have difficulty in 

extending the tools into the micro-hole to perform precision 

grinding. In order to overcome these issues, previous studies 

[11, 12] have studied the surface roughness of micro-holes 

using micro- EDM combined with fluid grinding particles. A 

grinding tool combined with complex procedures has been 

proposed for improving machining accuracy and surface 

roughness after MEDM process in previous study [8], 

although changing the every procedure is still inconvenient.  

For this reason, in order to achieve in-situ manufacturing, 

this study presents the manufacturing module was designed to 

satisfy could be added upon suitable machine to in-situ 

produce a micro grinding tool as shown in fig. 1, so as to reach 

multi-function as miniaturization, modularization, high 

accuracy, low cost and in-situ adjustment are addressed.  
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This research presents an in-situ manufacturing module could be added upon suitable machine to 
produce a micro grinding tool, so as to reach multi-function as miniaturization, modularization, high 
accuracy, low cost and in-situ adjustment. The manufacturing system included five working stations 
as electro co-deposition, water cleaning, acid pickling, electrolytic machining and regenerating 
process. A micro cylindrical tool was machined by WEDG, and which tool was deposited with the Ni-
diamond composites to be a micro grinding tool by electro co-deposition. The in-situ adjusting or 
regenerating process could be carried out immediately if the tool size of which want be changed or is 
over setting value. The module was designed to reach miniaturization via circulating channel and 
reducing volume of working fluid. The module includes a plurality of stations to be arranged side by 
side and all of which has some portions being arranged forming a row to reach multi-workability. 
The experimental result shows the design characteristic of the module can be executed successfully to 
produce a micro grinding tool more flexible. 
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Fig.1 The in-situ manufacturing module could be added upon 

suitable machine 

 

2. The design of module system 
 

2.1 The design of electro co-deposition unit 
2.1.1 Circulating channel type 

Figure 2 presents the single-cycle channel design in electro 

co-deposition unit. The concept of circulating channel type is 

adopted. It makes most of the channels to hide inside the body, 

but some portions are adopted in open channel. Therefore it 

makes electrolyte flow inside the circulating channel. It forced 

the electrolyte to only flow in circulative way into the channel. 

The suitable diameter of the channel outlet for the electrolyte 

can be gushed out, which is the best dimension design to fit 

the electro co-deposition unit, that the efficiencies of fluid 

driver and electro co-deposition are enhanced. This circulating 

channel type design is different from any square or circle 

open-type tank [7]. The quantity and its flow directions of 

electro co-deposition electrolyte cannot be controlled in open-

type tank. Those would cause a lot of shortcomings as lavish 

of electro-deposition electrolyte, enormous volume, deposition 

is not equally divided, et al. Thus the shortcoming of the open 

groove has been improved by this circulating-channel type 

design.  

 

 

Fig. 2 The single-cycle channel type 

 

The above designs are based on single-cycle channel. In 

order to increase the particle density and uniformity of micro 

grinding tool, another design is adopted by twin-cycle channel. 

The particle density and uniformity are also elevated while 

twin-cycle channel is adopted as shown in fig. 3 [8]. 

 

 

 

 

 

 

 

 

Fig. 3 The twin-cycle channel type 

 
2.1.2 Electrode unit 

When electro co-deposition procedure of grinding tool is 

produced, the adhesion force condition and equalization of 

grinding grains are affected by the shape and dimension of 

electrode. The adhesion quantity of grinding grains would be 

increased when grinding tool is much closer to the electrode, 

but it would also cause unqualified influence for too close to it. 

Therefore the adhesion quantity and equalization of grinding 

grains on grinding tool were reached by positive ring electrode 

and optimal design [8]. This positive ring is placed on gushing 

extremity. The grinding tool is extended inside the center of 

positive ring to carry out electro-deposition. 

 
2.1.3 Temperature control unit 

To heat the electrolyte equally, this temperature control 

unit is different from traditional method which used heater 

immerse into the electrolyte directly. In this heated design, the 

heater and thermo sensor are embedded the metallic tank body 

as shown in fig. 4. The whole inside tank wall can heat the 

electrolyte up equally. 

 

 

Fig.4 The temperature control unit  

 
2.2 All the manufacturing procedures layout 

The manufacturing system included five working stations 

as electro co-deposition, water cleaning, acid pickling, 

electrolytic machining and regenerating process as shown in 

fig. 5. The main design concept is that tool inlet points were 

arranged as an alignment to enhance the precision. 
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Fig. 5 All the manufacturing procedures layout 

 
3 Results and discussion 
 
3.1 In-situ manufacturing module assembly 

Figure 6 shows the entity picture of manufacturing module. 

After all modules are integrated, and make it possess the 

function of grinding tool making/adjusting/regeneration, with 

the characteristic of miniaturization, simple structure, less 

solution, low-cost, high deposition uniformity and easy 

maintenance etc. 

The electro deposition module includes a circulation flow 

tank, fluid drive unit, the electrode unit and temperature 

control unit. The circulation flow channel tank is made up of 

the stainless steel with thermal conductivity and corrosion 

resistance. The fluid drive unit is assembly by the motor, gear, 

blades. The temperature control unit is composed of heating 

rods, cooling fin and the temperature sensor. In addition, fig. 7 

shows the situation of the liquid pours out from the positive 

ring outlet and flow into channel with suitable height and 

width. 

Adjusting/ regeneration module is made of plastic 

materials in order to achieve the insulating effect of the 

machine. When manufacturing the plastic module, the milling 

process is used on the plastic material to form the electrolytic 

bath, acid bath, water bath and etching bath for adjusting/ 

regenerating module. 

 

  

 
 

 

Fig.6 The entity picture of the manufacturing module 

 

Fig.7 The liquid pours out the outlet of positive ring 

 
3.2 Electro co-deposition situation of the grinding tools 

The WEDG process is utilized to manufacture the original 

tool diameter of 0.1mm as shown in fig. 8. The nickel-base 

mixed grinding particle of 2µm diamond is utilized to carry 

out electro co-deposition on grinding tool for 5 min, 10 min, 

15 min and 20 min. Deposited tool diameter dimensions 

respectively are 0.12 mm, 0.132 mm, 0.15 mm and 0.163 mm 

as shown in fig. 9. Figure 10 shows the SEM image 

comparison before and after co-deposition. 
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Fig. 9 A contrast of coating layer thickness increases with co-

deposition time. 

 

 

Fig.10 The SEM image comparison before and after co-

deposition 

 

 
3.3 The reproducibility of grinding tool 

In order to achieve the high accuracy to effective apply for 

process, the reproducibility must be tested to know. Four 

grinding tools are co-deposited in 5 minutes to make sure the 

diameter reproducibility. The diameters of grinding tool are 

about 128 µm as shown in fig. 11.  
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Fig. 11 The reproducibility of grinding tools by co-deposition 

 
4. Conclusions 

The major conclusions drawn from this study are 

summarized in the following. 

1) In-situ manufacturing module could be added upon 

suitable machine to produce a micro grinding tool, so as 

to reach multi-function as miniaturization, modularization, 

high accuracy, low cost and in-situ adjustment as well as 

to enhance machining accuracy. 

2) The in-situ adjusting or regenerating process could be 

carried out immediately if the tool size of which want be 

changed or is over setting value. 

3) The experimental result shows the design characteristic of 

the module can be executed successfully to produce a 

micro grinding tool more flexible. 

 

REFERENCES 
 

1. Wang, A. C., Yan, B. H., Li, X. T. and Huang, F. Y., “Use 

of micro ultrasonic vibration  lapping  to  enhance  the  

precision  of  microholes  drilled  by micro  electro-

discharge  machining,”    International  Journal  of 

Machine Tools and Manufacture, Vol. 42, pp. 915-923, 

2002. 

2. Ehrfeld, W. and Lehr, H., “Deep X-Ray Lithography for 

the production of three-dimensional microstructures from 

metals, polymers and ceramics,” Radiation physics and 

chemistry, Vol. 45, pp. 349-365, 1995. 

3. Choi, S. S., Jung, M. Y., Kim, D. W., Yakshin, M. A., Park, 

J. Y. and Kuk, Y., “Frabrication and microelectron gun 

arrays using laser micromachining,” Microelectronic 

Engineering, Vol. 41/42, pp. 167-170, 1998. 

4. Huang, H., Zhang, H., Zhou, L. and Zheng, H. Y., 

“Ultrasonic vibration assisted electro-discharge machining 

of microholes in Nitinol,” Journal of Micromechanics and 

Microengineering, Vol. 13, pp. 693-700, 2003. 

5. Kupka, R. K., Bouamrance, F., Cremers, C. and S. 

Megtert, “Microfabrication: LIGA-X and applications,” 

Applied Surface Science, Vol. 164, pp. 97-110, 2000. 

6. Hung, J. C., Yan, B. H., Liu, H. S. and Chow, H. M., 
“Micro-hole machining using micro-EDM combined with 
electropolishing,” Journal of Micromechanics and 
Microengineering, Vol. 16, pp. 1480-1486, 2006. 

7. Chen, S. T., Lai, Y. C. and Liu, C. C., “Fabrication of a 

miniature diamond grinding tool using a hybrid process of 

micro-EDM and co-deposition,” Journal of 

Micromechanics and Microengineering, Vol. 18, No. 5, 

pp. 55005-55012, 2008. 

8. Hung, J. C., Wu, W. C., Yan, B. H., Huang, F. Y. and Wu, 

K. L., “Fabrication of a micro-tool in micro-EDM 

combined with co-deposited Ni-SiC composites for micro-

hole machining,” Journal of Micromechanics and 

Microengineering, Vol. 17, pp. 763-774, 2007. 

 



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012, TAMPERE, FINLAND / 1

Comparison of Five Low Cost Manipulators for
Microfactories

Niko Siltala1, # , Asser Vuola1 , Timo Prusi1 , Riku Heikkilä1
and Reijo Tuokko1

1 Department of Production Engineering, Tampere University of Technology, Tampere, Finland
# Corresponding Author E-mail: niko.siltala@tut.fi, TEL: +358-40-536-6017, FAX: +358-3-3115-2793

KEYWORDS: microfactory, manipulators, robots

This paper presents and compares characteristics of five low cost manipulators for microfactories.
Four of the manipulators are self designed and implemented prototypes. The fifth one is a commer-
cially available product. They all are fitting in the TUT microfactory concept developed at Tampere
University of Technology. The main focus is on construction, performance, accuracies, and costs
of these manipulators. The characteristics and issues of each of the manipulators are compared,
discussed and finally summarised.

NOMENCLATURE

CAD = Computer Aided Design
DOF = Degrees of Freedom
TCP = Tool Centre Point
TUT = Tampere University of Technology

1 Introduction

The concept of microfactories origins back to beginning
of 90’s in Japan [1] and has been ever since researched in
various places globally [2]. The main characteristics and
benefits are in the savings of energy, material and space.
These are achieved through smaller sized machinery, which
is closer the size range of the part billets and final prod-
ucts. Machinery should be preferably in portable range,
so that a human can handle the modules easily without
any lifting aid.

Almost any application for microfactories require
some kind of part transfer or manipulation operation. In
many cases some kind of manipulator with two to four or
more degrees of freedom (DOF) would be perfect for the
job. Generic type, reusable manipulators as reconfigurable
modules would be perfect and covering large proportion
of the tasks. However, as example the required accuracy,
range of motion and payload vary case by case and set
boundaries for implementation.

The TUT microfactory concept is developed at de-
partment of Production Engineering at Tampere Univer-
sity of Technology. It has been introduced at 2005 and de-
tails of the concept can be found from [3, 4, 5]. The main

characteristics of this microfactory concept are: modular-
ity, well defined interfaces, construction kit type of struc-
ture, reusable and self-contained modules, and easy recon-
figuration.

The difference compared to many other microfac-
tory concepts are mainly in self-containing approach and
seek for lower cost solutions. In many other approaches
the modules might have large control cabinets under the
desk to make system live. In our case all controllers, am-
plifiers, etc. are included inside the module. The strive
for lower cost reflects on focusing not the most accurate
and demanding tasks, but to find optimum solution for
miniaturising manufacturing and assembly tasks. There
exist a vast amount of tasks, which do not require that
high accuracy, but which could benefit greatly from small
size machinery.

We have identified that the manipulator is a key
component as it can be used flexibly for various han-
dling and manipulation operations needed in most of (mi-
cro)assembly and (micro)manufacturing tasks. Therefore
this paper compiles together and compares some of the
TUT microfactory manipulator implementations and sum-
marise the findings of these different cases.

The paper is organised as follows: After the intro-
duction the research method is defined. This is followed
by representing and characterising the modules used in
this comparison. The results are presented and key fig-
ures are summarised on a table. The results are analysed,
discussed and finally concluded.
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2 Method

This paper compares and evaluates the characteristics of
different manipulators used in our TUT microfactory con-
cept. The characteristics considered here include: perfor-
mance mainly velocity and acceleration; payload; accuracy
(i.e. construction, feedback configuration and resolution);
mechanical construction of the manipulator; work enve-
lope of the manipulator and its workspace; and of course
the costs.

The manipulators included to the study base on ex-
istence in our laboratory and that they all are integrated
as modules to TUT microfactory concept. They all are
dedicated for pick-and-place type of operation or process-
ing a stationary product with a moving tool fixed in the
manipulator.

There does exist other similar or even smaller in size
manipulators and robots as Prusi et.al. describes in [6].
Ones not included into this comparison, but which should
be mentioned at this context are Parvus[7] and APIS[8]
manipulators from IWF, TU Braunschweig. These are
comparable or even beyond by size, construction, and ac-
curacy with the ones discussed in this paper.

3 Special Microfactory Issues

In our experience, micro and desktop size devices demon-
strate special types of issues comparing to larger scale ma-
chinery [Vai olisko tähän joku hyvä REF???]. The
issues are related to the smaller size of components, and
the constructional and design changes, which therefore are
needed. Downscaling of existing macro solutions is not
possible or at least are not providing the optimum solu-
tions; cabling and tubing create issues; relative accuracies
are getting into high demand class, even if absolute accu-
racy requirement is kept the same as in macro.

Small size components are difficult to handle and
they are usually costly. Reduced size of components shows
smaller performance, like force or torque, which is mak-
ing it also necessary to completely rethink the application
from a new perspective. Only this way it is possible to
manage with the components available and not to over
size and over design the application. The system is possi-
ble to be kept lightweight and high performing with new,
innovative design choices.

Cabling is getting difficult as relative size of cabling
is increasing. Also small wire diameter together with small
connectors and junctions are causing issues at connectiv-
ity and in signal quality. Therefore new solutions like flat
cables and/or serial buses are used.

The accuracy issues are arisen from the fact that the
manufacturing tolerances are getting closer to the range
of the feature size of the component itself. Maintaining
the same relative accuracy requirement level as in macro
domain is getting very hard or even impossible to keep.
This sets also requirements on system, machine or end-
product design, as larger relative tolerances should be al-
lowed. Tarkista väitteet ja kirjaa ne oikein!

4 Devices

Four of the compared devices are self made and focus of
this comparison. The fifth is a commercial minirobot pro-
vided as reference. The devices are introduced following in
chronological order of appearance. Labels for each manip-
ulator are set in titles, and these are used later as reference.

4.1 Manipulator A: H-Portal

The three DOF manipulator together with its screwing
application is presented in [9]. It is a belt driven, parallel
kinematic manipulator. The belt is a loop forming a H-
pattern, which provides the slide movements in XY-plane.
The belt goes through pinion of both motors and some
pulleys, establishing a the H-pattern. It is firmly attached
to the moving slide from one side. The position of the slide
is determined by driving the combination of both motors
into specific positions. Z is a ball screw driven and motor
is located into the moving body. A pneumatic cylinder is
used to provide a constant Z directional force while screw-
ing operation is performed. At the same time it provides
fast movements for the Z axis.

The Fig. 4.1 shows in addition to the manipulator
the manual screwdriver integrated to the manipulator and
its controller. The black cylinders on top are the motors
and gears for the XY movement and the box between mo-
tors is the controller for electrically driven screwdriver.

Figure 4.1: 3D CAD illustration of the H-Portal ma-
nipulator with screwdriver

The main design drivers have been reduction of the
mass of the moving body and reduction of the wiring to
the moving parts. Thus, the motors for X and Y axes are
located out of moving body. The belt driven parallel H-
structure construction itself has been also the interest for
the development.

The measured accuracy of the manipulator at XY
plane is at worst case 201 µm [9]. The measurement was
made with laser interferometers. The sources of position
error are: elasticity and flexibility of the belt, transmis-
sion and gear backlash, guides, and encoder resolution.
Encoder with 512 pulses per revolution (p/rev) is placed
at the end of the motor. After quadrature count and gears
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it represents resolution of 0,9 µm at linear axis. The sec-
ond component of the position error is transmission, gear
backlash (10,4 µm) and guides. Use of combination of two
motors determining the position doubles the error for an
axis. The position error caused from encoder and trans-
mission is calculated to be around 22,6 µm ( = 2 × (resolu-
tion + gear backlash)). However, the main component of
the error is the elasticity and flexibility of the belt, which
causes around ten times more error than all the other com-
ponents together.

4.2 Manipulator B: H-Scara

The good experiences gathered from the H-Portal led us
to develop a magnitude more complex construction - a H-
Scara manipulator as shown as CAD model in Fig. 4.2
and a photo of the final module in Fig. 4.3. The ability
to access workspace of parallel cells has been the main de-
sign driver. Manipulator is a dual parallel kinematic ma-
nipulator, which is composed from two parallel kinematic
structures mounted on series [10, 11]. The first part is a
H-belt driven structure mounted on the back wall provid-
ing motion at XZ plane. The second kinematic structure
- parallel scara - is mounted in series to the slide of the H-
structure. The second part is providing movement at XY
plane - a bit like the human arms when keeping hands to-
gether and moving only your shoulders. The fourth DOF
is the W in the end tip of the parallel scara. It has un-
limited rotation, standard gripper interface with four pass
through service ports, each of which can be either electri-
cal or pneumatic.

Figure 4.2: Illustration of the H-Scara manipulator [10]

Figure 4.3: Photo of the H-Scara manipulator module
[6]

The workspace of the scara structure is limited on
large arc and two smaller ones making together a pat-
tern which is a bit like a side profile of an open umbrella.
The entire workspace of the manipulator is illustrated on
Fig. 4.4.

All drives and wirings are integrated into the single
manipulator module. Because of this, the only connections
to the module are power supply, fieldbus communication
and pressured air. The controls (position, numerical and
logic) are located on different physical module.

The manipulator, its kinematics and controls, its
development steps and challenges are discussed more
deeply in [10, 11, 12]. The entire case application for this
robot cell is presented in [12].

Figure 4.4: Workspace of H-Scara manipulator. Illus-
trated is also the base module on which the manipula-
tor module is located. [10]

The H-structure is working reliably and is fairly ac-
curate. The position accuracy has been increased com-
paring to H-Portal (A) by using external linear encoders.
These encoders, with resolution of 1 µm, are used for di-
rect position feedback of X and Z axes. The velocity feed-
back for the servo loop is received still from the encoder
at the end of motor. The resolution of the motor encoder
is 512 p/rev = 0,9 µm, which is on range of the linear en-
coder. But, on the other hand the gear backlash is 9,9 µm.
Which makes it necessary to use external encoders. W axis
has been working quite well, even though the accuracy of
the axis is not very high, due to the low resolution of the
used sensor. It has only 500 p/rev leading to angular res-
olution of 0,18◦.

The main issues with this delicate manipulator has
been mainly related to the parallel scara structure. More
specific these are the feedback and backlash of shoulder
angles, cabling, and the Z directional stiffness of the ma-
nipulator. The gear system has significant backlash. We
have accurate encoder to directly measure the exact shoul-
der angle (0,005◦ = <14,1 µm), but the backlash from
gearing makes the control unstable. The control situation
could be improved by having additional encoder at the axis
of the drive motor and use same configuration as we have
in case of XZ axes. However this would not improve the
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overall accuracy of the manipulator as the huge backlash
in gearing remains. There has been many thoughts and at-
tempts of pretensioning the manipulator to eliminate the
backlash. None of them has fully solved the issue.

A lot of wires need to be delivered to the moving
parts. First from frame to slide of H-structure and then
to the end tip of parallel scara. Cabling with small and
slender wires is not an easy task. Reliability and quality
issues are constantly present, which are realised by broken
and cut wires, and noise or malfunction in encoder signals.

The stiffness of the scara falls short and originates
from the mechanical construction. Especially the distance
between bearings on joint axis and construction of links
causes the lost of stiffness. This will become an issue in
many assembly cases, when pressing force is needed. This
issue is solved in the next generation model of the manip-
ulator (D) discussed in Ch. 4.4.

Considering the manipulator B, we should only fo-
cus on XZ part, because the design and implementation
issues in XY part reduce the manipulator performance and
accuracy too much. The accuracy of the manipulator is
not measured, but some approximation can be made from
configuration, construction and resolution. This is done
here considering separately each section of the mechan-
ics. The accuracy estimate for XZ (H-structure part) is
under ±10 µm. This originates from resolution of linear
encoder, backlash in gearing, guides, and controls. The
XZ part demonstrates high performance and high accu-
racy, but with high price. The play of XY (scara part) is
so large that accuracy is not even estimated here. Accu-
racy of W is determined by encoder resolution and accu-
mulated angle errors from XY, because W is affected by
inaccuracies in XY position. Gear backlash is negligible
in this case. The W error is around or more than 0,2◦.

4.3 Manipulator C: Low Cost Cartesian

For a case demonstration [12] we needed an additional cell
for glue dispensing. The main objective was to design
low cost solution of a manipulator. Sub-objectives or de-
sign restrictions were: the use of linear motors [13], reduce
wiring to minimum, and traditional cartesian construc-
tion. This determines the design of our low cost cartesian
manipulator. More information about the cell and appli-
cation can be found from [12].

The manipulator has three DOF and it follows
schema of traditional cartesian manipulator. XY move-
ments are made with linear motors, with configuration of
having one motor responsible for each axis. The Z axis
is based on a ball screw driven by a rotational motor.
Model of the manipulator is illustrated in Fig. 4.5. The
largest possible work envelope is (width × depth × height)
130×140×73, but the application instrumentation limits it
smaller to size of 120×102×50. The speciality in this case
has been that the position feedback is collected from the
HALL-sensors used for motor commutation. This reduces
the amount of components in and wiring to the moving
parts. The resolution and accuracy is not therefore very
high, but it is sufficient for many applications.

The dynamics of the manipulator are quite high or

at least reasonable. It is simple, robust and parts are lim-
ited to minimum.

Figure 4.5: Illustration of the Low Cost Cartesian ma-
nipulator.

Issues with Low Cost Cartesian manipulator are
mainly from mechanical stiffness, guiding and bearings,
and in controls. The selected guides are not stiff enough
and represents significant source of position error. Situ-
ation could be improved just by selecting one size larger
guides. This is partially due to the fact that the final ap-
plication and all its requirements were not known during
the time of design. For example the mass of dispenser
that is located at the end of a long beam increases torsion
around X and Y axes.

In case of controls, the linear motors and the drives
used, set some limitations for the position control. Be-
cause velocity control mode was not available option for
the motors, it is impossible to have trajectories or interpo-
lated movements implemented with the manipulator. Cur-
rently it makes only point to point movements.

The accuracy of the two motors making XY move-
ments are 220/400 µm and the repeatability respectively
40/60 µm [13]. The overall accuracy of the manipulator is
not measured, but should be worse than motor accuracy
because of position error from guides.

4.4 Manipulator D: Parallel Scara

This shows the next iteration of parallel scara construc-
tion after implementing the H-Scara (B) (See Ch. 4.2).
Main differences are in use of the direct drive technology,
stiffer construction of the arm structure, and simplified
construction as we focus only to the parallel scara struc-
ture. [14, 10] The construction is similar to the arms of
H-Scara, but this has currently three DOF implemented
with three axes. There is a ball screw driven axis providing
the Z movement. The parallel scara structure is mounted
on the slide of Z axis. The scara provides movement in
XY-plane (See Fig. 4.7). The XY workspace of robot is
presented in [14]. The hole matrix at front in Fig. 4.7 rep-
resents more or less the largest rectangular workspace of
the scara.
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Figure 4.6: The Parallel Scara manipulator

The stiffness and rigidity of the arms are substan-
tially improved in this version of the parallel scara manip-
ulator compared to the previous one. On the other hand
new issues arise at dynamics and control side. The absence
of gear removed completely the backlash, but as a con-
sequence the stiffness at control is significantly reduced.
Tuning is getting difficult as the inertia of arm structure
varies greatly depending on the distance between TCP and
shoulder joints of arms (i.e. axis of motors).

The accuracy of the manipulator is measured with
optical coordinate measuring machine (CMM) [14]. The
measured worst case accuracy of the manipulator is
300 µm. The unreliable edge areas are excluded from error
i.e. places where the links are getting almost overlapped.
The encoder has resolution of 0,005◦ leading to less than
9,9 µm resolution, because the position resolution is func-
tion of arm angles. The scara is most accurate when the
arm angle is around 90◦ and worst at arm angles close to
0◦ or 180◦.

4.5 Manipulator E: Pocket Delta

PocketDelta 100 is last on the list as it is not made by our-
self, but a commercial robot from Asyril[15] (developed at
CSEM [16] ). It has been introduced to public at 2005 [17]
and acquired to TUT at the end of 2006. Therefore it is
older than ourself developed manipulators. However, it is
by size fitting nicely to our concept and it is mounted on
our interface adapter plate thus included for comparison.
This particular manipulator is one of the first prototype
devices CSEM delivered, and it differs from the current
ones of Asyril. However, the performance figures are ac-
cording the latest models from Asyril.

The pocket delta manipulator is three DOF delta
kinematic manipulator and has option for W rotational
axis. The moving mass has been reduced to minimum;
TCP is moving on cylindrical workspace (φD100 × 30
mm) with help of lightweight bars driven by three mo-
tors. The motors are mounted on top part of the frame,

120◦ angle between each other. The manipulator has po-
sition accuracy of ±2,5 µm [15]. This is most sensitive to
payload changes of these five, as the whole weight is hold
directly by the actuator torque. There is not mechani-
cal construction bearing the weight. For the same reason,
the performance is dropping quicker when payload is in-
creased.

Figure 4.7: Asyril’s Pocket delta manipulator mounted
on TUT microfactory

5 Results

This chapter compiles together the results from different
manipulators. The key performance indicators for manip-
ulators are performance, accuracy, payload, module size,
and its workspace. Also investment cost plays an impor-
tant role. The construction of the manipulator affects in-
directly to all of the mentioned key performance indica-
tors. The facts from manipulators are collected together
in Table 5.1.

5.1 Construction

The detailed construction of each manipulator is presented
together with the presentation of each manipulator. At
the same time specialities associated to the choice of con-
struction are presented.

5.2 Module Size and Workspace

The module size includes the space a manipulator con-
sumes in minimum when in operational configuration. In
most of the cases the interface of TUT microfactory con-
cept determines the occupation in XY plane (i.e. width
and length). The actual real occupation of the manipula-
tor is generally much smaller. Occupation at Z dimension
varies more between manipulators. Workspace is the vol-
ume the manipulator is capable to reach of for an opera-
tion. In this comparison, workspace is usually below the
size of module, except in case of B.
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5.3 Payload

The payload of the manipulator can carry. This includes
also the weight of the gripper and possible gripper ex-
change interfaces. The payloads are estimated with spring
scale and visual observation, when bending starts. Täyt-
tyy tehdä mittaustarviot!

5.4 Performance

Performance includes the maximum velocity and acceler-
ation of the manipulator. These are based on realised fig-
ures on controllers. Not the calculated maximum values,
which are some times considerably higher.

5.5 Accuracy

Encoder resolution, linear resolution in operation plane,
and overall accuracy are reported for each robot. The ac-
curacy of some axis is not measured or not known. The
latter considers mainly Z-axes, as our interest has been on
the manipulator design and its accuracy.

5.6 Costs

The costs for manipulators A..D are component acquir-
ing costs (list prices) for a single piece of prototype de-
vice without value added tax. Shown prices include only
manipulator and its control related costs like mechanical
construction; bearings and guides; motors, gears and am-
plifiers; I/O interfaces; and controllers. The work and
company profits are all excluded, thus the E is not directly
comparable with these ones.

Table 5.1: Comparison of characteristics
Characteristic\ Device
name

H-Portal H-Scara LC Cartes. ParallelScara Pocket Delta

Device label / reference A [9] B [12] C [12, 13] D [14] E [15]
Axis Denote XY/Z XZ/XY/W XY/Z XY/Z XYZ
Kinematic construction belt H-

structure/
screw

belt H-
structure/
parallel
kinematic
scara arms/
rotation

cartesian/
screw

parallel kine-
matic scara
arms/ screw

delta kine-
matics

Module size (W×L×H)
[mm]

200×300×270 200×300×275 200×300×204 200×300×215 153×153×191

Workspace [mm] 101×123×46 525×130×150
Rec ?×?

120×102×50 224×112×50
Rec 100×72

φD100×30

Payload [g] <100? <50? <50? <200? <40
VeloMax [m/s] 0,7/0,013 0,63/0,2/

(3,1rev/s)
1,0/0,24 1,0 na

AccMax [m/s2] 2,8/0,032 3,1/1,0/
(9,4rev/s2)

20/2,4 0,030 na

Encoder Resolution [µm] 0,9/0,03 1/0,005deg/
0,18deg

6/0,12 0,005deg/na na

Resolution [µm] 0,9/0,03 1/<14,1/
0,18deg

≈40/?? <9,9/na �±2,5

Accuracy [µm] 201/na ≈<20/na/
≈>0,19deg

≈>400/na 300/na ±2,5

Component costs [EUR] 5100 11000 4400 5600 ≈15k..20k(*
Notes: ≈ = estimated values.
na = not available.
(* = Acquiring price.

6 Discussion

6.1 Construction

Design and construction of the manipulator plays the main
role for determining the rest of the manipulator character-
istics. The design and construction are actually predeter-
mining the success or failure of the following parameters.
Use of rigid, stable and lightweight construction; use of
backlash free gears and mechanics; direct and accurate
feedback; and simplicity are all coming back to the ini-
tial constructional decisions. Therefore the construction
of the manipulator is most important part to be designed
well and wisely.

6.2 Module Size and Workspace

From the user perspective this is reduced more or less to
a boolean value. In order to meet the size requirements,
the workspace must be larger than the application require-
ments and module itself needs to fit on space available.

Modular solution like TUT microfactory concept
improves the reuse and reconfiguration - sustainability.
The manipulator and controller module can be quickly
and easily exchanged, and taken to other use at different
application with minimum effort.
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6.3 Payload

Payload is one key term from application requirements.
It shows great difference between different constructions
and designs. Usually the performance of the manipulator
is starting to get reduced immediately when the payload
is increased. Carried weight affect to the fastest possible
movements (more precise to maximum accelerations and
decelerations). This will be easily visible in case of ma-
nipulator E as the whole payload is hanging directly from
the torque of actuators.

6.4 Performance

Performance is always a trade-off between speed and ac-
curacy, at least on some level. When building a low-cost
device, normally neither is at excellent level (or at least
both at the same time), but even though solution is suf-
ficient for many applications. If both properties are re-
quired at excellent level, the costs of the device increase
exponentially. Thus keeping a balance of speed, accuracy
and costs, a trade-off is needed between these three prop-
erties. This means that the user requirements must be
appropriately defined in advance, so that the application
does not get over specified or over costly for a specific
purpose.

This is also visible at our case. The cost of ma-
nipulator C has been reduced for example by leaving out
additional position sensors. It has high velocity and ac-
celeration, but on the other hand accuracy is poor. On
the other hand, the expenses are almost tripled from C to
B, where the manipulator represent better feedback and
accuracy properties (considering only results of XZ part).

6.5 Accuracy

Accuracy of the manipulator mainly originates from rigid
and stiff mechanical construction of the manipulator; ac-
curate and allowance free (i.e. backlash free) mechanics
specifically gears, gearboxes and belts; and from high res-
olution encoders. In high accuracy applications, the ther-
mal stability arises as well a meaningful component for the
accuracy.

The gears and gearboxes are the main sources of
backlash. The allowance happens in all other joints and
bearings as well. The use of backlash free gears like har-
monic drives improves the situation, but with a penalty
of high cost. An other option is to leave out the gear
completely i.e. direct drive solution, but in this case the
available torque remains easily very small or the actuator
size is increased drastically. The belts and other flexible
structures are causing deflections and elasticity, which rep-
resent large proportion of the position error. This effect
may be slightly reduced by pre-tensioning the belts. The
belt construction should be avoided for the high precision
application, at least without use of additional, direct po-
sition feedback.

Use of high resolution encoders measuring position
directly from the mechanical body improves the accuracy
(like the H-structure (B) or arms of scara of manipulator
(B&D)). Use of double sensors improves the situation. The

manipulator B also demonstrates the issues with backlash
and having the feedback measurement on the ”other side”
of the gear (Scara of the manipulator B), because of non-
availability of small sized encoders for used motors. This
demonstrates that the control and feedback loops need to
be well designed and implemented for stable and optimal
solution. The optimum situation would be when velocity
control loop is closed by encoder at the end of the mo-
tor offering direct measurement of the motor angle. The
direct position sensor (e.g. linear encoder) provides feed-
back for the position control loop. The backlash from the
gear gets eliminated from the measurements with this ar-
rangement and controls can be provided with more exact
information.

The mechanical rigidity of links and their stiff and
stable construction is one key for high accuracy solution.
The same implies also to the design of the joints. By se-
lecting wrong construction the end result may be spoiled.
On the other hand selecting wisely, the construction is giv-
ing good performance and other parts of construction can
be improved by e.g. reducing weight.

6.6 Costs

The complexity of manipulator, high performance and
high accuracy are all directly visible at the costs. The
price gets increased by adding components and especially
if the component needs to be a high precision one.

7 Conclusion

The manipulator or other parts for microfactories bear al-
ways the balance between the performance, accuracy and
costs. Therefore it is important to specify and select ap-
propriate level, and not more, for the components for your
application needs. Not all applications require the most
accurate or highest performance machinery, which directly
affects positively to the cost of the machine.

The paper compare some manipulator solutions
which fits into the TUT microfactory environment. The
comparison shows that construction and design has large
effect on the final result, especially on accuracy, perfor-
mance and costs. The construction of the manipulator
predefines indirectly all the following properties, thus in-
creasing its importance. Additional encoders are needed
for high accuracy applications to compensate errors ap-
pearing different parts of the axis and to optimise config-
uration of different control loops.
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R. Tuokko, “Robots for micro and desktop facto-
ries : Examples and experiences examples of micro
and desktop scale robots,” in Proceedings of the joint
conference of the 41st International Symposium on
Robotics, ISR 2010, and 6th German Conference on
Robotics, ROBOTIK 2010, pp. 1088–1094, 2010.

[7] A. Burisch, J. Wrege, A. Raatz, J. Hesselbach, and
R. Degen, “Parvus - miniaturised robot for improved
flexibility in micro production,” Assembly Automa-
tion, vol. 27, no. 1, pp. 65–73, 2007.

[8] G. Borchert, A. Burisch, and A. Raatz, “Apis - a
miniaturized robot for precision assembly with low-
cost piezoelectric motors,” in Proc. of 7th Int. Work-
shop on Microfactories (IWMF2010), pp. 5–10, Oct
2010.
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h-scara mini robot - a dual parallel kinematics mini
manipulator,” in Proceedings of the joint conference
of the 41st International Symposium on Robotics,
ISR 2010, and 6th German Conference on Robotics,
ROBOTIK 2010, pp. 1218–1224, 2010.

[12] N. Siltala, T. Prusi, A. Vuola, R. Heikkilä, and
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1. Introduction 
Micro system technology is one of the most important 

cross-sectional technologies and the trend of miniaturization 

will continue the next decades [11]. Although industries 

demand constantly miniaturized products, common production 

techniques reach their limits with a decreasing size of the 

processed products. These limits are implied by physical 

constraints of the used materials, tools and production 

processes. In order to produce miniaturized products, the size 

of product components and pre-products has to be adapted. 

Thereby, material properties do not scale appropriately for 

very small components. For instance, characteristics like 

yield-stress, maximum elongation and hardness of metal 

sheets in a deep drawing production process are not affected, 

while reducing the sheets thickness. Consequently, the 

production process results in a hardly predictable number of 

sub-standard commodities. In comparison to chip 

manufacturing and the use of lithographic technologies such as 

LIGA-processes, mechanical micro manufacturing is not yet 

very advanced. Therefore, the development of micro 

manufacturing technologies and micro production concepts is 

still an active field of research. The most challenging issue in 

the development of high performance micro processes is the 

balance of accuracy and efficiency [15]. 

 

In micro production, precise manufacturing is decisive for 

the product quality. Vollertsen et al. (2004) define a micro 

component as follows: at least two of its geometrical 

dimensions are smaller than one millimeter [23]. In production, 

geometrical structure deviations below one micrometer are a 

common goal setting. To ensure these high quality 

requirements, quality tests are indispensable. Up to now, 

standardized methods and instruments for automated quality 

inspections are missing [9]. In general, there is a lack of 

knowledge about the behaviour of micro production processes 

and the relationships between their parameters. In addition, 

micro production processes are highly sensitive to changes in 

the production process parameters. Therefore, actual quality 

management techniques are insufficient. As a result, adequate 

processes and tools are necessary, which ensure high quality 

production while satisfying the required small tolerances. In 

conclusion, the use of common downscaled production 

processes is not any longer able to satisfy customer needs. 

Therefore, manufactures and researchers have to focus on the 

development of micro products and production processes, 

which enable a profitable and reliable middle and high volume 

production. 

This article presents a quality-measurement technique, 
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With a decreasing product size, the complexity of components and production processes increases. At 
a certain level of miniaturization, the application of common production techniques is not feasible 
anymore. In order to ensure a profitable micro manufacturing in spite of these production 
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necessary. Therefore, the Collaboration Research Centre 747 is investigating specific cold forming 
techniques. Second, due to the lack of standardized techniques and interfaces, a detailed planning of 
the overall production process chain, covering handling, production and appropriate quality 
assurance processes becomes increasingly important. Finally, despite high process uncertainties, 
micro components require very small manufacturing tolerances. Thus, micro processes require strict 
quality assurance mechanisms. This article presents a method for the visual quality measurement of 
metallic micro components and their integration into the design of process chains.  
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which is designed to satisfy the high requirements of micro 

production. Therefore, the second section characterizes the 

application field of micro cold forming. It presents common 

problems as well as technologies which are specifically 

designed for this area. Section 3 describes a quality-

measurement system for an automatic surface inspection of 

micro metal components. The fourth section discusses the 

integration of this system into higher level process chains. 

 

2. Micro Cold Forming for Metallic Micro 
Components 

The Collaborative Research Centre 747 “Micro Cold 

Forming – Processes, Characterisation, Optimisation” (CRC 

747) is motivated by the requirement to produce tiny, 

lightweight, and cost effective high-precision components and 

products that provide a wide range of functionality. For 

instance, today, micro-vents in a car’s anti-lock braking 

system nearly have the size of a ball pen. In future, the size of 

these components is required to be reduced to the size of a 

match stick. The CRC 747 focuses on the provision of 

processes and methods for the systematic design of reliable 

micro cold forming processes for metallic micro components. 

The CRC regards the entire process chain from material 

development and analysis, over quality management to 

production planning. Therefore, it investigates and develops 

processes and techniques that can be applied in micro cold 

forming.  

 

2.1 Size-Effects 

At first sight, the development of a micro production 

process, under the assumption of a well-known macro process, 

seems to be a simple task: If the process, including all process 

properties, is scaled down, then the product will be as well. 

Although this is theoretically true, the downscaling of all 

dimensions and forces, relevant to the production process is 

not possible. For instance, it would have to include the 

downscaling of natural constants, such as the density of 

materials, or the gravity force. The deviations of process 

parameters, which occur, while scaling down geometrical 

dimensions, are called size-effects [28], [4]. As a result, a 

direct downscaling of traditional macro metal-forming 

processes to the micro-level is not applicable [8]. Vollertsen et 

al. (2008) distinguish between three main categories of size 

effects: density, shape and micro structure [21]. An overview 

of the size-effect categories is given in Fig. 1. 

Density effects occur, when the density of materials 

remains constant, while downsizing. For example, material 

defects are widely distributed in larger scaled materials, 

averaging their impact on the materials quality. In contrast, in 

small-scaled materials, local defects can have a high impact on 

the quality depending on their location in the sample. 

Shape effects occur due to the fact that holding the shape 

constant during downscaling, leads to a change in the relation 

of the surface to volume ratio. Hence, surface effects become 

more important, especially if only a fraction of the surface is 

involved in the process. 

The last category, the microstructure effects, combine all 

effects that occur, due to the simultaneous downscaling of all 

structural values is physically or practically impossible. For 

example, it could be that lubrication cannot be used on a micro 

part, because the surface structure does not allow the creation 

of lubrication pockets and the frictional resistance increases 

with the downscaling. 

In general, the impact of size-effects on manufacturing, 

handling and quality-measurement technologies has to be 

regarded. On the one hand, classical technologies can be 

rendered inappropriate, e.g. because of the increase of 

adhesive forces due to shape effects. On the other hand, size 

effects also provide the opportunity for new technologies like 

the laser-based free form heading process developed as a part 

of the CRC 747 [5], [24], [25]. 

 
2.2 Size-Effect related Manufacturing Techniques 

The aim of the CRC 747 is the development of processes 

and methods for the manufacturing of metallic micro 

components by means of micro cold forming techniques. This 

paragraph presents two of these techniques exemplarily. 

 

2.2.1 Laser-Based Accumulation 

Several forming processes such as micro rotary swaging 

require a preliminary accumulation of material. A common 

technique to obtain an accumulation is an upsetting process. In 

order to achieve a high amount of formable material, high 

upsetting ratios are desired. Commonly applied multi-stage 

processes lead to an upsetting ratio up to 2.3 [5]. Nevertheless, 

the application of multi-stage processes in micro production is 

not feasible, due to imprecisions of handling devices and the 

diminishing correlation between the product’s internal 

microstructure and its size.  

Therefore, the CRC 747 developed a single-stage 

Fig. 1 Schematic representation of the three 

main groups of size effects: F force, FA adhesion 

force, Ff friction force and FG gravity force [21] 

Fig. 2 Conventional (left) and laser-based (right) free  

form heading processes [25] 
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accumulation technique for the application in micro 

production. The laser-based micro upsetting process is able to 

benefit from the size-effects and thereby provides a new 

accumulation technique, which is capable to substitute the 

critical mechanical process. Due to the fact that, with 

increasing miniaturization, the surface tension exceeds the 

gravitation force, a melted material accumulation forms a 

droplet shaped pre-form for consecutive calibrating processes 

(Fig. 2) [25]. Even more, the laser-based free-form heading 

process improves an upset ratio up to 45 which is about 20 

times higher than in macro-scale [24]. Hence, a laser-based 

accumulation process leads to a robust and efficient free-form 

heading process and opens possibilities to process more 

complex geometries as well as to control the material 

microstructure. 

 

2.2.2 Micro Deep Drawing 

A special technique in the cold forming domain is micro 

deep drawing. Micro deep drawing is defined as the forming 

of a sheet metal part using pressure, for example by means of 

a stamp. Using this technique, micro components with a 

diameter of one millimeter or smaller can be produced in a 

very high manufacturing frequency. Furthermore, the 

application of deep drawing in micro-scale allows a lubricant-

free production process. This leads to a decreasing amount of 

detrimental effects on the environment and facilitates the 

cleaning of the parts [6]. In this paper the focus is set to micro 

cups, as shown is Fig. 3.  

The diameter of the a micro cup is 1 millimeter with a sheet 

thickness of about 20 microns [22]. For producing micro 

components with this technique a micro deep drawing 

machine was developed (Fig. 4). The MDM is able to produce 

more than 1000 micro parts per minute [18]. In comparison to 

macro deep-drawing, there are still small crinkles on the 

flange of the micro part. The drawing velocity of the micro 

cup is 1.0 mm/s. The realization of large production requires 

an automated measurement system, which is able to identify 

surface defects. Afterwards, a machine vision system is 

necessary to detect the surface imperfections and to classify 

the defect.  
 
2.3 Measurement Uncertainty 

Exact knowledge about geometry, forces, surface 

roughness and flow characteristics is required to guarantee 

high quality (micro) products. The generation of a quality 

control concept that integrates all of these aspects is a 

challenge and probably the reason, why quality control in 

micro-technology has not been completely established yet [9]. 

The major quality characteristics consist of dimension and 

surface properties. The impact of calibration uncertainty, 

uncertainty of the repeated measurement, uncertainty from 

variations of work piece features and the absolute value of the 

systematic measurement error have to be considered within 

the field of measurement uncertainty.  

Micro manufacturing processes are characterized by high 

process variability and increased significance of measurement 

uncertainty [1]. For example, the assumption that 

measurement devices are 10 times more precise than given 

tolerance intervals is hardly satisfiable in micro manufacturing.  

The measured data is always a result of a superposition of 

process variation and measurement variation. Hence, 

dimensional metrology is based on imprecise information, so 

that a probability distribution is induced. The superposition of 

process and measurement variation renders the micro process 

control and therefore it needs defined rules and guidelines. 

The relationship between tolerances, processing capability 

and metrology methods is challenging in micro technology. 

Significantly small tolerances are a result of absolute small 

Fig. 3 Micro cup produced by micro deep drawing [26] 

Fig. 4 Micro Deep Drawing Machine 

(MDM) [18] 

Fig. 5 Illustration of relationship between tolerance and 

measurement uncertainty [20] 
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part dimensions in micro forming. In order to verify tolerances, 

which are necessary to ensure product functionality, the 

measurement needs to be sufficiently exact. In general, 

measurement uncertainty becomes larger; the tolerance 

conformance zone for process variations becomes smaller. The 

reduction of the conformance zone in the micro dimension due 

to an existing and constant measurement uncertainty is shown 

in Fig. 5. 

 

3. Surface Inspection for Logistic Quality 
Control 

Due to the arbitrary shape, size and orientation of surface 

imperfections as well as the size of micro parts, automated 

surface inspection in the micro domain is a very challenging 

task. In a first step, suitable metrology technologies have to be 

selected. Measurement techniques successfully applied in the 

micro domain are confocal laser microscopy, digital 

holography and low-coherence interferometry [2]. Each 

technique is able to generate 2D and 3D form and surface 

information. To fulfill the strict requirements with respect to 

measurement accuracy, the focus in this paper is set to 

confocal laser microscopy. 

In a second step, a reliable, fast and accurate surface 

inspection method is required, based on image processing 

techniques. The structure of the Surface Inspection Framework 

(SIF) is shown in Fig. 6. In the first stage of the framework, 

the 2D input image is decomposed in a number of images 

defined by specified orientations and resolutions. They are 

generated using the steerable pyramid technique introduced by 

Simoncelli [19]. The decomposition in orientation sub-images 

enables the framework to find defects with arbitrary 

orientation, even in very noisy and strong textured images. To 

find defects of arbitrary size and shape, each orientation sub-

image is decomposed in different resolution images. The 

resolution decomposition is realized by applying Gaussian low 

pass filters and reducing the image size by a factor of two in 

width and height, compared to the previous stage. Coarse 

structures remain in the sub images with smaller resolution, 

whereas fine structures are in the upper resolution domain. As 

a reasonable tradeoff between computation time and accuracy 

we choose 4 scales for decomposition. The orientation 

decomposition is calculated in 30° steps starting from 0° up to 

150 degrees. Negative angles are treated as their positive 

counterparts and therefore not focused. This gives 6×4=24 

sub-images for each input image. On each sub-image, the local 

binary pattern (LBP) operator is applied [7]. This operator 

represents each pixel of the input image as variation in texture 

by applying local pixel thresholding. The result is a number 

for each pixel between [0, 255], where zero denotes no change 

and 255 maximum change in texture. 

After that each LBP sub-image is divided into overlapping 

blocks with a size of 32px×32px with half block size of 

overlap. In each block several statistics are calculated like 

mean, median, maximum, minimum and standard deviation. 

Finally, all statistic block representations are merged using a 

non-maxima suppression technique. The final results show the 

most probable defect regions for each block-statistic separately.  

A very important aspect in surface inspection is real-time 

behavior. Therefore, each input image will be acquired by the 

CPU and copied to GPU global memory by using the GPU 

library NVIDIA CUDA. A GPU consists of hundreds of cores 

and massively parallel block processing is possible. This 

technique shows great potential for accelerating runtime 

intensive algorithms (e.g. [27]). 
 
4. Integration of the Automated Surface 
Inspection in Micro Process Chains 

Due to the high customization of production, handling 

and quality measurement techniques, interdependencies 

between the different process types have to be regarded in 

micro production. The lack of standardized interfaces in the 

area of micro production requires a very precise design of the 

overall processes. Thereby, specific requirements and 

characteristics of products, production and handling devices as 

well as of quality-management systems need to be integrated 

and aligned within and between different processes and 

operations. It is necessary, to describe these process and to 

combine them into process chains to enable a comprehensive 

planning [13].  

 

4.1 Simultaneous Engineering of Micro Process Chains 

Process chains include all processes that have an impact 

on the product quality, including parameters of material, tools, 

and associated product components. Various scientific 

research has already be done on the topic of micro production 

processes ([23], [10], [3], etc.) .  

In general, process chains in micro production subsume 

different production, handling and quality-management 

processes. Each process consists of elemental operations. For 

example, a quality-management process can consist of a 

combination of handling and measurement operations all 

conducted at a single workstation (e.g. [16]). Planning of the 

micro production process chains is proposed to be performed 

Fig. 6 Service Inspection Framework 
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jointly with the product design, due to the dependencies 

between distinct processes and the small tolerances in micro 

production, [14], [13]. This approach is called Simultaneous 

Engineering. In general, “Simultaneous Engineering describes 

an approach, in which the different phases of new product 

development, from the first basic idea to the moment when the 

new product finally goes into production, are carried out in 

parallel.” [17]. Thereby, all characteristics and demands 

regarding the products complete life-cycle can be taken into 

account early. In particular, the lack of standardized tools and 

interfaces between processes require several changes in the 

production process or even the development of new tools and 

processes. The application of Simultaneous Engineering 

techniques enables an early determination of problems, which 

could occur during later stages of the production planning [12]. 

As a consequence, the overall costs of the product 

development are reduced, since changes in the product 

structure or in the production process can be communicated 

and applied at early stages. The use of process chains for the 

description of a production process enables the involved 

designers to itemize the complex correlations in a production 

process into a temporal and logical sequence of necessary 

production steps.  

 The planning of micro production processes can be 

divided into two major phases: First, the definition of the 

process chain. Second, the determination and configuration of 

relevant processes parameters [14]. On the one hand, both 

phases depend on the product to manufacture. On the other 

hand, available production, handling and quality measurement 

technologies can require specific properties from the product. 

The first phase describes the modeling of required 

processes and operations. Thereby, production, handling and 

quality-management processes are defined with reference to 

the necessary manufacturing steps. Each process has specific 

requirements and characteristics, based on technological and 

logistic parameters. Examples for logistic parameters are the 

number of parts processed per minute or the costs that occur 

during processing. Technological parameters depend on the 

type of the process and highly depend on the resources 

involved. For example, handling devices can require specific 

shapes, while they apply a certain amount of pressure on the 

product. Quality-management processes usually require a very 

precise positioning of the micro products, which has to be 

provided by the according handling devices. 

During the second phase, technologies and resources are 

assigned to each process and operation. The parameters are 

aligned according to the resources available. As a consequence 

the modeled process chain is configured by adjusting 

parameters and resources with respect to the product’s and the 

processes’ mutual requirements. Thereby, inconsistencies, e.g. 

unrealizable operations or inadequate tools, can be determined 

early in the planning stage.  

 
4.2 Quality-Management Process 

In general, the automated surface inspection uses visual 

image recognition to determine errors on the provided micro 

product. The corresponding quality-management process starts 

with the reception of the micro product at the surface-

inspection-workstation. First, the product has to be positioned, 

in order to guarantee the required quality of the image. The 

second operation is the actual surface inspection. Thereby, the 

images of the micro product are taken. Subsequently, the 

image is evaluated using specific algorithms described 

previously. The surface inspection algorithm provides detailed 

information on the existence and type of errors detected on the 

product. If the product passed the surface inspection, it is 

forwarded to succeeding production processes. If it fails the 

quality test, the product is rejected. In addition, a validation of 

the used tools and materials in the preceding production 

process can be triggered if necessary. Fig. 7 provides an 

overview of the complete process. 

 
4.3 Parameters of the Quality-Management Process  

Due to the high number of manufactured parts and the 

relatively long time it takes to obtain and analyze the images, 

only a small set of samples can be analyzed using the 

automated surface inspection. Actually, the sample size is 

determined using a fuzzy-controller, based on the results of 

past quality-measurements [16]. As a result, the automated 

surface inspection process receives charges of products as 

input. The positioning-operation is required to separate single 

samples from the charge and to place it accurately with respect 

to the position, required by the image-taking device, e.g. the 

Fig. 7 Process: Automated Surface Inspection 
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confocal laser microscope. To achieve a high accuracy of error 

detection, the images have to provide a predetermined 

resolution. In addition, the processing time of the handling 

operation may not be longer than the processing time of the 

automated surface inspection operation. Fig. 8 depicts a 

simplified example of relevant parameters and their relations.  

During the configuration of this process, each parameter is 

selected according to available technologies (e.g. the confocal 

laser microscope as image-taking device or vacuum-pipettes 

for the separation). The other way around, by referring to in- 

or output parameters, devices can be obtained or developed 

according to the processes demands. 

 

5. Conclusion and Outlook 
In general, the development and application of micro 

production processes requires the consideration of a variety of 

technical and logistic parameters. In particular, size-effects and 

high requirements on accuracy and processing times 

contribute important impact factors for the quality of micro 

products. The automated surface inspection presented in this 

article provides a non-tactile technology, which satisfies these 

requirements. Nevertheless, the integration of such 

technologies into the general process design of micro process 

chains requires the consideration of additional parameters, 

implied by preceding and succeeding processes, as well as 

implied by the work piece itself.  

In future work, the Simultaneous Engineering approach 

will be applied on more complex micro products. Currently, 

the CRC 747 is working on a micro valve, which consists of 

four micro parts manufactured using specifically developed 

micro cold forming processes. Due to the unknown 

correlations between the individually production processes, 

current work on the Simultaneous Engineering approach 

focuses on the cause-effect-relationships among the whole 

process chain. Due to the high number of interacting factors, 

slight parameter changes in early production steps may cause 

unpredictable parameter changes in later steps. In order to 

detect crucial product deviations in early production steps, the 

embedding of quality inspection is an important task for 

process chain design. Currently, the SIF will be developed for 

the inspection of basic metallic micro components. In future 

research, the framework will be extended for more complex 

micro structures too. 
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1. Introduction  
 

Laser micro-machining is one of the fastest growing areas 

in laser processing technology [1]. The accurate and fast 

motion components and sensors required are expensive 

compared even to lasers. Laser pulse frequency and average 

power have increased substantially in recent years, this 

generally means higher processing efficiency [2, 3]. Beam 

manipulation has become a bottleneck in micro-machining.  

Development of galvonometer scanners, acousto-optic 

deflector, rotating mirrors and combinations of the afore-

mentioned devices can respond to the laser properties, which 

are capable of over hundred meter per second process speed [4, 

5]. The situation changes when the beam diameter should be 

some micrometers on the target. In this case microscope optics 

are still used. Use of microscope optics means that the beam 

needs to be manipulated using traditional mechanical solutions. 

Different materials and processes (e.g. ablation, engraving, 

drilling, welding) require  slightly different types of lasers. 

The wavelength, frequency, pulse energy and pulse duration 

are examples of varied parameters. Well-equipped research 

laboratories have good movement equipment, and lasers 

available. They can combine equipment in the best possible 

way. Unfortunately this is not the case in most of the research 

laboratories. Many research laboratories are trying to respond 

to the needs of the industry and research partners with limited 

resources. 

When resources are limited, equipment flexibility is 

important. Tampere University of Technology has been 

developing a laser micro-machining platform which enables 

fast replacement of laser sources and additional equipment. 

The platform includes a system which enables corrections of 

some errors caused by the fixtures and topology of the 

material surface. The laser processing results can also be 

analyzed without removing pieces from the fixtures. The basis 

of the TUT Microlaser Platform is accurate axes, with well 

known behavior. The whole system is accurately measured 

and all of the error sources are defined (e.g. temperature, 

vibration).  

The behavior of the laser equipment (e.g. beam pointing 

accuracy, thermal lens effects) has to be taken into account to 

estimate the accuracy of the whole system. Quality 

assessments of the laser process are more important when 

using flexible platforms than when using fixed setups. This is 

due to the larger number of variable parameters in flexible 

platforms.  

This paper presents the system architecture and 

components used in the platform, some results of application 

tests are also presented. The structure of this paper is as 

follows: Chapter 2 introduces the basic devices. Chapter 3 

defines the system architecture which was developed and used 

in this application. Chapter 4 describes the implementation. 

Chapter 5 represents the results and the final chapter 6 lists 

some future improvements and concludes this paper. 
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Micro-machining is one of the fastest growing areas in laser processing technology. Laser pulse 
frequency and average power have increased substantially in recent years, this generally means 
higher processing efficiency. In many cases beam manipulation has become a bottleneck in laser 
micro-machining. The accurate and fast motion components and sensors required are expensive 
compared even to lasers. Tampere University of Technology has been developing a laser micro-
machining platform which enables fast replacement of laser sources and additional equipment.  The 
platform includes a system which enables corrections of some errors caused by the fixtures and 
topology of the material surface. The laser processing results can be analyzed without removing 
pieces from the fixtures. This paper presents the components used, the system architecture and some 
results of tested applications. 
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2. Environment  
 

A three-axis micro-machining station made by Singulase 

Ltd (Figure 1) was purchased in 2005. The processing 

equipment was a picosecond laser made by Corelase Ltd 

(Figure 2). The workstation is located in a temperature and 

humidity controlled cleanroom. The original workstation was 

equipped also with a microscope and triangular distance sensor. 

The main features of the devices are described in table 1.  

Figure 1.  LD-10 laser micro-machining station. 

 

Figure 2.  X-Lase, picosecond pulsed fibre laser, laser head 

inside the workstation. 

 

Table 1.  Specification of the workstation and picosecond pulsed 

fibre laser 

 

Workstation: LD10 

Speed 2000 mm/s 

Accuracy x/y directions +/- 5µm 

Accuracy z direction +/-10µm  

Laser: Xlase 

Wave length ~ 1060nm 

Pulse length <30ps 

Repetition rates 0.25...10MHz 

Laser beam quality <1.5M2 

 

The micro-machining workstation was designed to be used 

only with the Xlase laser. The features of new lasers and 

demands on the processes required the development of new 

solutions to face the challenges. Many lasers, especially 

femtosecond lasers require more space than the originally used 

laser. The only solution for new lasers was to locate the laser 

outside the cabin and guide the beam to the optics inside the 

cabin (direct optics or galvo scanner). This is a very traditional 

way to solve the situation (figure 3). 

Figure 3.  Laser outside the micro-machining station. 

 

Another challenge came from the process side. There was 

increasing needs for measuring the sample surface more 

precisely and also to follow the surface in a controlled way. 

One solution was to use a precise height sensor, because 

compensations are related in many cases to the height of the 

track.  

The sensor requirements were manifold. It needed to 

measure the distance between the laser and the working plane 

exactly. The thickness of thin transparent materials should be 

possible to measure. The sampling frequency of the sensor 

should be in a reasonable range etc. To meet these 

requirements a Keyence LT-9010M confocal sensor (Figure 4, 

Table 2) was chosen because of its usability.  

Figure 4. LT-9010M confocal sensor and LT-9501 controller. 

 

Table 2. Specification of the confocal sensor 

Manufacturer and model Keyence LT-9010M 

Measurement range ±0.3mm 

Light source 670 nm semiconductor laser 

Spot diameter Ø 2 µm 

Resolution 0.01µm 

Scan width/interval 0 to 1100 µm 

Microscope field of view 1.3 x 1.05 mm 
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3. System Architecture 
 

The general rule in designing system architecture is to 

keep things as simple as possible. Previously tested programs 

are used as much as possible. Applications integrative program 

is an independent program that can be deployed when needed. 

Almost all of the functions can be done without the plug-in 

software. The Etel NC-terminal software can take care of the 

linear drives. The independent Keyence controller can be used 

for height measurements. IDS software can be used for 

analyzing the microscope pictures. MountainsMap 

measurement data analysis software is also a separate software, 

which can be utilized when needed.  

The main target for the custom made software is to connect 

different data sources. In the Z-axis correction function, the 

software communicates with the Keyence sensor and the Etel 

EDI-library. The software transfers the measured points to the 

Etel Dsmax controller via EDI –library using API when the 

NC controller requires them. The measured points are stored 

to the variables used in the NC code. A block diagram of the 

software and the hardware modules can be seen in figure 5. 

 

 

 

 

 

 

Figure 5. Block diagram of software and hardware modules 

 

Etel EDI-library 

TUT Keyence reader 
custom made software 

IDS camera software 
microscope image capture  

Keyence LT-9501 
displacement meter 

Keyence LT-9010M 
confocal sensor 

Etel tools software 
NC terminal & editor 

Etel Dsmax controller 

Etel DSC amplifiers 

Etel DynX linear drives 

DigitalSurf MountainsMap  
measurement analysis software 

IDS uEye 1480 
5Mpix camera 

measurement files,  

scaled microscope picture,  

template name 

RS-232 USB2.0 

API 

picture file 

Etel-Ethernet 

API 

PC 
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4. Implementation  
 

Safety related issues and overall reliabilty were the most 

important things in the implementation. The system was 

divided into several communication parts: linear drives, 

confocal sensor, microscope, and measurement analysis 

software. 

The main aim was to integrate the confocal sensor 

measurements with the tool path height variations. This is used 

when the samples are quite planar. The requirements for the 

system in tool path heigth measurement are as follows: 

 Z-axis correction before laser processing 

 Measurement request signaled by NC-variable 

 Displacement type measurements (one point at a time) 

 Results are stored into the NC-variables 

 The NC-program follows measured points 

 

An additional objective was to use the measurement data 

for surface topography analysis. A measurement report with 

microscope pictures should also be generated automatically. 

The used report software is DigitalSurf MountainsMap. The 

requirement for the sensor and the system is as follows: 

 Quality assurance measurement  

 Profile type measurements (one line at a time) 

 Reader program sends commands to numerical control 

to reach a new position (for surfaces) 

 Stores the measurement data in a data file 

 

The TUT Keyence Reader is a custom software for reading 

the data from the sensor and from the NC controller. The 

normal procedure is as follows: 

1. Move the axes to the start point (using the control  

window (figure 6) or the terminal of the controller) 

2. Adjust the setting parameters for the sensor (figure 7) 

3. Start the measurement 

4. The results can be followed visually from the graph 

window or numerically from the log window (figure 8) 

5. Save the data 

6. Analyse the data with the MountainsMap software  

Figure 6. The control view 

 

Figure 7. The sensor setting view. 

 

Figure 8. The graph view, b. the log view 

The analysis software can use different templates which 

are defined in the settings window. As a result a report is 

automatically generated(Figure 9). 

Figure 9. A report from the Keyence sensor 



IWMF2012, 8th INTERNATIONAL WORKSHOP ON MICROFACTORIES JUN 18-20, 2012,TAMPERE, FINLAND  /  5 
 

 

5. Results 
 

The improvements achieved are evaluated through 

examples. Major changes in the platform setup were the 

changing of the laser and the changing of optics from direct 

optics to a galvo scanner and vice versa (figure 10). Laser 

changes from beam to beam are done in less than 8 hours. This 

means that an old laser is changed to a new one. This time 

includes also all optical changes. Also, the laser focal plane is 

calibrated to a known level in relation to the  microscope and 

confocal sensor. 

Figure 10.  Picosecond laser setup change to a femtosecond laser 

setup at the workstation. 

One major target of the new platform was the surface 

tracking system. Surface following with the confocal sensor is 

done offline. The path is measured first and then the measured 

heights are moved (automatically) to the NC program. The 

LD-10 work station can follow a measured surface up to a 600 

mm/s feedrate on the X-axis when the measured points have 2 

mm interval (figure 11). The real position differs from the 

measured curve by about 1 µm at the end of a 20 mm long 

path. The stage can follow a measured path up to 600 mm/s 

with ±1 µm accuracy.  

Figure 11.  Measured profile and real axis position 600mm/s  

The beginning of the profile follows the measured curve 

nicely. During the last 4 mm, the real curve differs from the 

measured z-profile by about 1 µm. Figure 12 shows a groove 

manufactured with the Xlase laser using microscope optics 

(depth of focus around 1 μm) in sapphire. The quality of the 

groove (width around 3 µm) is quite even, though the sample 

was curved can been seen in figure 13. 

Figure 12.  Groove at beginning, 20 mm, 40 mm, speed 100mm/s. 

Figure 13. Measured profile and Real axis position 100mm/s. 

 

Basic laser processing tests are dramatically accelerated 

through the use of the confocal sensor. In the old system the 

specimen had to be taken out of the fixture and go to a 

separate measuring device to see the results. Based on these 

results, the processing parameters were changed as needed. 

This was an iterative procedure which normally took several 

days. With the new setup it is possiple to machine, measure 

and machine the samples again if needed. After each 

measurement the data analysis is possible (figure 14). 

 

Figure 14.  Measurement data is moved to MountainsMap-

program and the height of the grooves are analysed. 
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6. Discussion and Conclusion 

 

The paper presents a method for diversifying a laser micro-

machining platform. High speed and accuracy in the process is 

a challenge to achieve in laser micro-machining. This requires 

a good knowledge of the properties of the movement 

equipment, therefore it is often appropriate to use expensive 

and precise movement equipment as efficiently as possible. 

Process equipment such as lasers can easily be changed if the 

platform is well designed. Sensor data can be used e.g. for 

controlling, quality assurance and reporting. With simple plug-

in software the workstation availability can be improved 

considerably. 

Future actions for improving the laser micro-

manufacturing platform are: impromevent of surface tracking 

system; development of reporting system. The surface tracking 

system will be developed towards online control. A confocal 

or triangular sensor measures the surface before the 

microscope lens and the piezo actuator adjusts the focus height 

according to the sensor information. Further research will be 

published during the autumn in ICALEO and LANE 

conferences. The reporting system based on DigitalSurf 

MountainsMap software will be diversified.  
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