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Abstract—A condition monitoring system of mechatronic 

design using an easy-to-install micro-electromechanical system-

based (MEMS) motion sensor is developed in this paper, since 

the joint encoders and resolvers that require mechanical joint 

modifications are not often a realistic option for mobile 

machines. This paper presents an unscented Kalman filter-based 

(UKF) condition monitoring scheme for leakage detection in 

hydraulic actuator systems using the joint sensor feedback. By 

comparing the UKF residuals of the developed MEMS sensor to 

the residuals of a highly accurate reference encoder, we show 

that the developed easy-to-install and low-cost MEMS sensor is 

suitable for this condition monitoring task. 

I. INTRODUCTION 

Hydraulically driven heavy-duty manipulators and cranes 
are widely used e.g. in material and cargo handling, 
construction and mining industries. These systems are still 
predominantly open-loop controlled by human operators and 
thus do not have any joint sensor instrumentation. However, 
the manufacturers of these machines have great interest to 
increase their after-sales market offering in particular in 
condition monitoring and machine operation optimization. 
Introducing advanced software-based functionality such as 
condition monitoring still requires motion sensors that would 
to be easily retrofitted into these machines. The traditional 
option for retrofitting would be joint angle encoders or 
resolvers, but these sensors are often of high-cost (> 300 €), 
not suitable for rugged environments and their installation 
requires modifications prone to mechanical failures. 
Therefore, we foresee that easy to retrofit, low-cost (~ 100€ 
mass-produced) MEMS sensor technology embedded with 
advanced signal processing is required to enable the 
conditions monitoring applications. 

 Previous work in the development of MEMS sensor 
technology includes e.g. [1], [2], [3] where measurements 
from multiple accelerometers were combined, and [4] where 
low-cost tilt sensor, rate gyro and accelerometer 
measurements were fused. In terms of condition monitoring, 
the use of similar MEMS sensor measurements has been 
limited to vibration analysis, see e.g. [5], [6]. In this paper, a 
different approach to condition monitoring is taken by 
considering the utilization of the developed MEMS motion 
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sensor in a model-based load-independent condition 
monitoring algorithm for a hydraulic manipulator where from 
the two-fold mechatronic perspective, firstly the algorithm 
development for the robust, low-cost and easy-to-install 
embedded motion sensor prototype is presented, and 
secondly its application to condition monitoring is 
demonstrated. The algorithm is founded on the principle of 
complementary filtering to improve the quality of position 
and velocity measurements. The condition monitoring 
capability is demonstrated by comparison with a high 
accuracy reference sensor (joint angle encoder) in a generic 
and easily parametrisable scheme for a hydraulic application 
where for example a joint angle encoder is not a realistic 
design option to satisfy the requirements of easy installation 
and retrofitting to existing machines. The MEMS sensor on 
the other hand satisfies these requirements and is thus a 
suitable candidate to enable advanced functionality such as 
condition monitoring. 

In reference to prior work by the authors, contrary to [7], 
the easily applicable MEMS-based sensor is here used in 
place of the unrealistic option, the joint angle encoder in 
unscented Kalman filter-based (UKF) fault detection. The 
UKF fault detection is based on the residual between the 
system model and measurement. Implementation of the load-
independent UKF condition monitoring system with the 
MEMS sensor is novel in reference to prior work. 
Additionally, previously in [8] the successful application of 
the MEMS sensor to hydraulic manipulator state feedback 
control was shown, and so this paper expands the possible 
application range of the MEMS sensor to make it more 
attractive to mobile machine manufacturers looking to 
compete in the global market with novel functionalities and 
services. 

This paper is organized as follows. In Section II, sensors 
in hydraulic manipulator control are discussed with a focus 
on the developed MEMS sensor prototype and its algorithms. 
The UKF and the reduced-order model of a servo valve-
controlled hydraulic cylinder are introduced in Section III. In 
Section IV, the performance of the MEMS sensor is 
experimentally assessed and compared against encoder 
measurements. Section V discusses the obtained results. 
Finally, the conclusions are drawn in Section VI. The paper 
concludes with an appendix containing the UKF algorithm. 

II. SENSORS IN HYDRAULIC CONTROL 

In hydraulic control applications, the design of a high-
quality controller is of great importance in achieving 
desirable properties, such as accurate tracking and 
minimization of positioning errors. Regardless of controller 
design, these properties cannot be achieved without a high-
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quality measurement of the joint angle. Most often the joint 
angle is measured with a rotary resolver or encoder due to 
their accuracy. However, they are usually expensive and 
cannot be easily retrofitted to existing machines because of 
the requirement of contact to the joint axle or a shaft between 
adjacent links if the axle is non-rotary (Fig. 1). The 
installation of the encoder also requires high co-axial 
precision and if the installation is done poorly, the accuracy 
and mechanical durability of the sensor could be 
compromised. 

 

Figure 1.  Installation of an angle encoder to the joint of a manipulator. 

To overcome these limitations of the resolvers and 
encoders, the Department of Intelligent Hydraulics and 
Automation of Tampere University of Technology has 
developed a MEMS sensor module suitable for the harsh 
working conditions of mobile working machines where the 
MEMS chip integrates micromechanical structures and some 
signal conditioning electronics onto a single silicon chip. The 
mechanism sizes are minute and hence well-suited to 
cramped spaces with requirements of high chip-level 
integration. The module is encased in an epoxy-filled dust- 
and waterproof aluminium enclosure as shown in Fig. 2. The 
MEMS chip is the model SCC1300-D02 by Murata 
Electronics, which combines a three-axis accelerometer with 
a one-axis rate gyroscope. 

 

Figure 2.  The developed MEMS sensor prototype (without epoxy filling). 

The accelerometer measures linear acceleration along the 
three axes and can also measure inclination angles with the 
application of inverse trigonometric functions to observed 
vector components of gravitational acceleration. The digital 
output of the accelerometer has a resolution of 0.56 mg per 
least significant bit (LSB) which translates into a best-case 
inclination resolution of 0.032 deg when the accelerometer 
axis is parallel to ground. However, if the accelerometer is 

placed far away from the axis of rotation, the gravity sensing 
can be impaired. The digital signal of the gyro has a 
resolution of 0.02 deg/s per LSB. The MEMS chip has been 
combined with a 16-bit hybrid signal microcontroller unit 
(MCU) and a line driver chip for implementing low-level 
data operations and CANopen communication. This makes 
the sensor module well suited for retrofit-type integration into 
existing platforms. 
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Figure 3.  Complementary filter structure. 

 

Figure 4.  Example complementary filter output (solid black line) versus 

encoder position (solid grey line) when given a step input. 

As stated previously, a recently developed approach to 
measure inclination angles with MEMS sensors has been the 
use of more than one accelerometer to measure the same joint 
angle [1], [2], [3]. Kalman filtering has also been applied 
when fusing accelerometer and gyroscope measurements [9], 
[10]. The developed MEMS sensor prototype, on the other 
hand, uses complementary filtering [8], [11] to produce 
angular values by fusing the advantageous static performance 
of the accelerometer with the favourable dynamic 
performance of the gyroscope. The accelerometer inclination 
angle and gyro rate output are governed by 

 ya = z + a 

 yg = dz/dt + g + b (2) 

where z is the actual inclination angle, a is the accelerometer 

output noise, g is the gyro output noise which is 
predominantly of high frequency like the accelerometer noise 
term but typically has less variance, and b is a bias term 
which is predominantly low frequency disturbance. 

The complementary filter is implemented with a linear 
feedback system as shown in Fig. 3 where the combined 
output of the accelerometer inclination angle ya and the gyro 
angular velocity output yg has the Laplace representation 

 zest = [C(s)ya]/[s + C(s)] + [ygs]/[s
 2
 + C(s)s] 

where C(s) can be chosen as the PI-controller, i.e. C(s) = KP 
+ KI/s so that G(s) = C(s)/[s+C(s)] is a low-pass filter, and its 
complement 1 – G(s) = s/[s+C(s)] is a high-pass filter. In the 



  

PI-controller case, the time domain dynamics are governed 
by 

 dzest/dt = yg – bi + KP(ya – zest) (4) 

 dbi/dt = –KI(ya – zest) 

where KP defines the crossover frequency chosen as a trade-
off based on the low-pass characteristics of the 
accelerometer-based inclination and the low frequency bias 
characteristics of the gyroscope rate measurements. A non-
zero KI rejects a load disturbance bi from the output. 

The time domain operation of the complementary filter is 
illustrated in Fig. 4, where the initial dominance of the gyro 
followed by its slowly decaying effect, and conversely, the 
minor initial effect of the accelerometer followed by steady-
state dominance show clearly. The resultant output has a 
typical steady-state error within ±0.05 degrees whereas the 
dynamic error is directly proportional to movement velocity. 
The high accuracy reference sensor output shown in solid 
grey color was from a Heidenhain incremental encoder with a 
resolution of 0.00075 degrees per pulse. 

III. CONDITION MONITORING WITH UNSCENTED KALMAN 

FILTER USING MEMS SENSOR 

Model-based fault detection and isolation (FDI) with 
UKF was shown in [7], [12] by the authors in a proportional 
valve controlled 1-DOF hydraulic application in which 
leakages were emulated and valve faults were simulated 
under varying load. Now we consider using the developed 
robust, low-cost MEMS sensor in place of the high accuracy 
reference sensor in the same application for measuring joint 
angle and angular velocity. In this section, the procedure for 
applying the UKF to FDI is described, but it is to be noted 
that the paper focuses mainly on comparing fault detection 
capabilities of the different sensors by residual analysis. 

A.  Principle of unscented Kalman filter-based condition 

monitoring 

Condition monitoring with the UKF is an observer-based 
method belonging to the class of model-based methods. The 
model-based condition monitoring is established around the 
concept of analytical redundancy which originates from 
running the plant model in parallel to the real physical 
system, see Fig. 5. The scheme is to subtract plant model 
output ŷ(k) (in this case an UKF estimate) from actual 
measurement y(k) to create a residual r(k) that reveals the 
system condition [13]. The residual should be close to zero in 
faultless operation, assuming that measurement noise is 
minor and the plant model is accurate. After the appearance 
of a fault, if the residual is sensitive to the fault, the residual 
differs from zero thus enabling fault detection. Following 
fault detection, the cause of the fault is isolated by examining 
the residual for known patterns. For example in hydraulic 
systems, external leakages are known to mainly affect the 
pressure residual of cylinder chamber A or B depending on 
whether the leakage is on the A or B side, whereas internal 
leakages affect both the A and B pressure residuals. 

The benefits of using UKF in the FDI of hydraulic 
systems are increased robustness towards process and 
measurement noise, and the suitability for nonlinear systems 
if compared with linear FDI filters. It is suitable for general 
problems with nonlinear process and measurement models 

 xk+1 = f(xk,uk) + wk 

 yk+1 = h(xk+1) + vk+1 (7) 

where xk+1 is a state vector,  f(…) is the process model, uk is 
a control vector, wk is a process noise vector, yk+1 is a 
measurement vector, h(…) is the measurement model, vk+1 is 
a measurement noise vector, and k is a discrete time step. 
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Figure 5.  Principle of model-based condition monitoring [13]. 

The increased robustness of the UKF leads to a non-
drifting state estimate in case of bounded short term 
modeling errors or measurement noise. The nonlinearity 
property of the UKF allows the modeling of the inherent 
nonlinearities of hydraulic systems, such as actuator friction, 
and valve properties including turbulent flow, dead zone, 
hysteresis, saturation and nonlinear opening. When 
estimating the states of the above system, the UKF is also 
typically more efficient than for example a particle filter, 
which requires the re-sampling of numerous particles at the 
cost of computational complexity. 

To gain efficiency, the UKF carries out an unscented 
transformation (UT), a technique using deterministic 
sampling for estimating the mean and covariance of states 
after they have been transformed through nonlinear 
equations. The UKF thus avoids the linearization which is 
partly responsible for estimation errors for example in many 
extended Kalman filter (EKF) applications. The use of UKF 
over EKF is further justified by its usually increased accuracy 
in estimating the true mean and covariance of states [14], 
[15]. The UKF algorithm is summarized in the Appendix. 

B. Reduced-order model of a proportional valve controlled 

hydraulic cylinder 

The reduced state vector of the hydraulic system 
consisting of a fast proportional valve controlling a hydraulic 
cylinder is 

 x = [pA, pB, xs, dxs/dt]
T
 (8) 

where pA is the pressure in cylinder chamber A (piston-side), 
pB is the pressure in cylinder chamber B (rod-side), xs is the 
spool position of the valve, and dxs/dt is the spool velocity. 

The control vector of the system is: 

 u = [x, dx/dt, uv, ps]
T
 (9) 



  

where x and dx/dt are the piston position and velocity, uv is 
valve control signal, and ps is the supply pressure. Note that 
the piston position and velocity can be obtained via 
geometrical transformations from the joint angle and angular 
velocity measurements. 

The continuous-time dynamics for the system are 
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where BeffX is the effective bulk modulus in chamber X, V0X is 
the chamber volume X, AX is the cross-sectional cylinder area 
in chamber X, QX is the flow to and from chamber X, for X = 
{A, B}, xmax is the cylinder stroke, K is the gain from valve 
control signal to spool position, ωn is the natural frequency of 
the spool, and dr is the damping ratio. Note that the piston 
position and velocity are treated as inputs as described by (9). 
Thus the piston dynamics can be excluded from the system 
model described by (10), which guarantees independence 
from load force and mass. 

The flow rates QA and QB from (10) are as follows 
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where pT is the tank pressure, KvX and KvX,leak are the flow 
coefficient and leakage flow coefficient, respectively, of 
notch X, for X = {PA, AT, BT, PB}. 

By discretizing (10) with Euler‟s forward method, the 
states are transferred a time step forward with 

 xn,k+1 = xn,k + fn(xk,uk)T (13) 

where n = 1,2,...,4, k is the time index, and T is the fixed 
time step. As explained in [7], there was a linear relation 
between states and measurements: 
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IV. EXPERIMENTS 

A. Test bed and measurements 

Using the model presented in Section III.B, the UKF is 
designed for a 1-DOF hydraulic test bed shown in Fig. 6. The 
load masses of the system are set to 494 kg on the left, zero 
on the right, and additionally, the boom weighs 297 kg. 

Shown in the hydraulic diagram in Fig. 7, the 
proportional 4/3-directional valve (24 L/min @ 3.5 MPa) 
controls the flow to the asymmetrical cylinder (∅80/45-545). 
The restrictor valves (labeled „Internal leakage‟, „External 
leakage A‟ and „External leakage B‟) are needle valves (30 
L/min @ 40 MPa) which emulate leakage faults that often in 
reality require halting system operation after FDI to minimize 
damage to the environment. The cylinder chamber and the 
supply pressures are measured with pressure transmitters 
having a 0-25 MPa operating range. The control signal of the 
valve is also measured, as are the boom joint angle θ and 
boom joint angular velocity dθ/dt that are measured with the 
reference sensor (Heidenhain encoder), and the discussed 
MEMS sensor prototype that is installed near the rotating 
joint of the test bed to avoid any perturbations in the 
accelerometer readings due to centrifugal forces. 

 

Figure 6.  Illustration of test bed setup. 
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Figure 7.  Hydraulic diagram of test bed. 



  

 

Figure 8.  Angle and angular velocity measurements from the angle 

encoder (solid), MEMS sensor (dashed), filtered encoder angular velocity 

(asterisk), and filtered MEMS sensor angular velocity (square). 

A comparison of the encoder and MEMS measurements 
in a 0.50-second-window (Fig. 8) shows the performance 
difference between the sensors. One can see a steady-state 
error in the MEMS angle measurement and noise in the 
differentiated angular velocity of the encoder. The angle and 
angular velocity measurements from both sensors were 
converted to piston position and velocity and were then used 
as inputs to the UKF. 

B. Experimental comparison of MEMS and high accuracy 

encoder in condition monitoring 

A random user-input to the proportional valve was used 
in all fault-free and fault experiments while the boom angle 
was measured with both the MEMS sensor and encoder to 
facilitate a direct comparison between the sensor 
performances in this condition monitoring task. The 
performances of the MEMS sensor and angle encoder were 
compared in terms of pressure residual behavior by using the 
both sensor outputs as control inputs to the UKF. The 
residuals were calculated with 

 rk = pk  pest,k (15) 

where pk is the measured and pest,k the UKF estimated 
cylinder chamber pressure at time instant k. Pressure 
residuals were chosen over velocity and position residuals on 
the basis of their high sensitivity to leakages in the so-called 
global sensitivity analysis and to enable the important 
property of load independence; see [12]. The residuals were 
averaged within a moving window of 5 seconds, and they 
were paired with adaptive, pressure-dependent thresholds that 
were required to be crossed to induce an alarm to increase 
robustness against false alarms; see also [7]. The positive 
thresholds for the encoder and MEMS sensor systems, 
respectively, were experimentally set as follows 

 tpos,E(µp,k) = 0.015 + 4*10
-4

µ
2

p,k 

 tpos,M(µp,k) = 0.023 + 4*10
-4

µ
2

p,k 

where µp is the cylinder chamber pressure averaged over a 5-
second window. On the basis of experimental verification and 

fault-free experiments conducted in the next section, the first 
term of the MEMS threshold was set 53 percent higher than 
the first term of the encoder threshold to minimize false 
alarms. The process noise variances of the UKF in the 
MEMS system could have also been increased but that was 
not considered to allow a fair comparison between the 
sensors. The negative thresholds were derived from (15) and 
(16) by simple multiplication with minus one. Note that while 
this monitoring strategy based on moving average is 
suboptimum from the viewpoint of minimizing the delay for 
detection for a fixed mean time between false alarms, see e.g. 
[16], it allows simple comparison of the different sensors. 

C. Fault-free experiments 

In fault-free experiments, the residuals should stay within 
the thresholds, and preferably near zero to enable reliable 
condition monitoring. The premise is that the residual of the 
MEMS sensor is larger than that of the encoder due to the 
limited accuracy of the MEMS sensor. To verify this, a total 
of six fault-free experiments were used, one of which is 
shown in Fig. 9. From the figure, it can be seen that absolute 
values of the MEMS residuals are larger than encoder 
residuals, which lead to the higher threshold requirement for 
the MEMS sensor system discussed previously. For a 
numerical comparison between the different sensors, Table I 
shows the mean of the RMS‟ of the residuals calculated over 
the six fault-free experiments of varying durations from 
approximately 20 to 70 seconds and weighed in proportion to 
these durations. The results show that on average the MEMS 
pressure A residuals were 6 % and the pressure B residuals 
59 % higher than encoder residuals. This implies poorer fault 
detection capability for the MEMS sensor system compared 
to the more accurate encoder system. 

 

Figure 9.  Pressure residuals with the encoder (red) and the MEMS sensor 

(blue) measurements in a fault-free experiment, the encoder thresholds in 

dashed red, MEMS thresholds in dashed blue. 

TABLE I.  RMS‟ CALCULATED FROM MEMS AND ENCODER 

MEASUREMENTS IN FAULT-FREE EXPERIMENTS 

Sensor Residual RMS [MPa] 

Encoder 
pA 0.0141 

pB 0.0051 

MEMS 
pA 0.0150 

pB 0.0081 



  

D. Fault case 1: External leakage in cylinder chamber B 

Differences in fault detection capability between the 
encoder and MEMS sensor systems were studied with 
external leakage fault cases. An external leakage in cylinder 
chamber B (rod-side) was added to the system at the 26th 
second, shown in Fig. 10 with the solid vertical line, by 
opening the corresponding needle valve. After the 
introduction, the leakage magnitude was time-variant, see 
Section IV.F. The fault detection took over ten seconds with 
both the MEMS sensor and encoder since the residuals were 
forced to zero when the cylinder was completely retracted 
due to significant estimation errors in this situation. Overall, 
the MEMS sensor system was 6 seconds slower than the 
encoder system in fault detection, and at the time of detection 
the external leakage was approximately 0.2 L/min and 1.05 
L/min with the encoder and the MEMS, respectively. The 
difference seems remarkable, but in reality the 0.2 L/min was 
5.5 % of the flow passing through the proportional valve and 
the 1.05 L/min was 11 %. 

 

Figure 10.  Pressure residuals with the encoder (red) and the MEMS sensor 

(blue) measurements when there is an external leakage in chamber B (rod-

side), the encoder thresholds in dashed red, MEMS thresholds in dashed 

blue. 

E. Fault case 2: Internal leakage in cylinder 

Differences in fault detection capability between the 
encoder and MEMS sensor systems were also studied with 
internal leakage fault cases. An emulated internal leakage 
between cylinder chambers that was added to the system 
around the 30th second is shown in Fig. 11. The fault was 
detected approximately only 0.3 seconds sooner with the 
encoder than with the MEMS sensor. At the time of detection 
the leakage was 1.6 L/min and 1.5 L/min with the encoder 
and MEMS sensor, respectively. Of the flow through the 
proportional valve, the leakages were 21 % with the encoder 
and 19.5 % with the MEMS. Although the MEMS sensor 
system recognized a lower leakage, it performed worse by 
failing to recognize the previous 1.6 L/min leakage that was 
recognized successfully by the encoder system. The 
recognition of the lower leakage by the MEMS system was 
due to the delayed fault detection caused by the higher 
thresholds of the MEMS system, and the time-varying 
leakage to be discussed in Section IV.F. 

 

Figure 11.  Pressure residuals with the encoder (red) and the MEMS sensor 

(blue) measurements when there is an internal leakage between cylinder 

chambers, the encoder thresholds in dashed red, MEMS thresholds in 

dashed blue. 

F. Summary of fault experiments 

In Sections IV.D and IV.E, the fault detection 
performance of the encoder and MEMS sensor were 
compared with the fault detection delay and with the 
proportion of the leakage flow rate to the total flow rate 
through the proportional valve at the time of detection. The 
MEMS sensor had generally higher fault detection delays 
than the encoder mainly due to its mandatory higher 
threshold selection based on the higher residual RMS‟ in 
fault-free experiments. The fault detection delay of the 
MEMS sensor was also greater in the external leakage 
experiment than in the internal leakage experiment because 
the internal leakage was generally of higher amplitude and 
thus resulted in higher absolute values of residuals with both 
sensor systems. Namely, the external leakage flow rate was 
0.38±0.33 L/min with a maximum value of 1.52 L/min and a 
minimum of 0.04 L/min, whereas the internal leakage flow 
rate was 0.91±0.44 L/min with a single maximum of 6.49 
L/min due to high-amplitude pressure oscillation and a 
minimum of 0.05 L/min. The proportions of the leak flow 
rates to the flow rates through the proportional valve at the 
fault detection instant were comparable between the two 
sensor systems. 

TABLE II.  RMS‟ CALCULATED FROM MEMS AND ENCODER 

MEASUREMENTS IN FAULT EXPERIMENTS. 

Sensor Fault Residual RMS [MPa] 

Encoder External leakage B 
pA 0.0119 

pB 0.0388 

Encoder Internal leakage 
pA 0.1392 

pB 0.0817 

MEMS External leakage B 
pA 0.0223 

pB 0.0365 

MEMS Internal leakage 
pA 0.1534 

pB 0.0868 

 
To further compare the different sensors, RMS‟ of the 

residuals were calculated in fault experiments in a similar 
fashion as for Table I. These RMS‟ in Table II show that the 
operation of the encoder and MEMS sensor systems are 



  

highly comparable in the internal leakage fault cases, but that 
the encoder performs better in the external leakage fault case 
by showing a smaller change in the pA residual than the 
MEMS sensor, whereas pB residual increases similarly with 
both sensor systems. Overall, the RMS‟ of the different 
sensors are reasonably well comparable and if compared with 
the Table I, they provide discriminability of sufficient degree. 
That is, the MEMS sensor system is capable of functioning in 
a condition monitoring system when the leakages are fairly 
minor, though the lowest detectable leakage was not sought 
here. If further considering the changes in the observed 
residuals and their signs in the Figs. 10 and 11 when a 
threshold is exceeded, monitoring the different combinations 
would allow one to conduct FDI for specifying the origin of 
the fault. 

V. DISCUSSION 

The experimental results in the condition monitoring task 
of detecting oil leakages reveal the limited accuracy of the 
MEMS-based sensor when compared with the high-accuracy 
reference, the encoder, but the differences between the two 
sensor systems are not as drastic as what might be expected 
based on for example steady-state characteristics. A 
comparison of steady-state accuracies namely suggests that 
the encoder is ideally almost 67 times more accurate than the 
MEMS-based sensor with their accuracies 0.00075 ° and 
about 0.05 ° empirically found in [8], respectively. But in the 
condition monitoring, we found that fault detection was 0.3 
to 6 seconds slower with the MEMS when the emulated oil 
leakages were between 0.2 to 1.6 L/min, RMS‟ of pressure 
residuals were 6 to 59 percent higher with MEMS sensor 
than with the encoder in fault-free experiments, and the 
RMS‟ in fault experiments were comparable to those. These 
figures do not resemble the remarkable difference in the 
estimated steady-state accuracies, which says that the limited 
accuracy of the MEMS sensor in the form of minor delay and 
bias does not cause modeling errors that would render it 
unsuitable for the condition monitoring task. In general, the 
MEMS measurement is corrupted by multiple error sources 
with complex mutual dependencies where, for example, scale 
factor and misalignment contributions depend on the boom 
dynamics. As the results show, the practical challenge related 
to the modeling of such error sources can be successfully 
overcome by the appropriate PI-type complementary filter, 
UKF covariance parameters, and the pressure residual 
threshold selection. Thus the MEMS may be considered as a 
cost-efficient, accurate enough tool for 1-DOF condition 
monitoring applications. 

VI. CONCLUSION 

In this paper, from the two-fold mechatronic perspective, 
firstly the accuracy and algorithms of the developed MEMS-
based motion sensor prototype were presented and discussed. 
Secondly, the MEMS sensor was applied to an UKF-based 
condition monitoring scenario of a joint driven by a hydraulic 
cylinder. In that scenario, angle and angular velocity 
measurements provided by the developed MEMS sensor 
prototype and a high-accuracy reference sensor (joint angle 
encoder) were fed to the UKF as control inputs. Pressure 

residuals were then generated using both sensors and 
compared against each other in terms of behavior in fault-free 
and external and internal leakage experiments to study their 
effect on fault detection capability. Overall, the performance 
of the MEMS sensor was suitable for the condition 
monitoring task in this open-loop system and cannot be 
considered to be a more limiting factor than modeling errors. 
Hence the MEMS sensor is able to replace the expensive 
reference sensor in the model-based condition monitoring of 
1-DOF open loop systems. In a closed-loop system though, 
where the effect of a fault must be compensated by 
reconfiguring the controller, the prolonged fault detection 
might have severe consequences. 

APPENDIX 

The equations of the unscented Kalman filter algorithm 
are [15]: 
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where E is the expectation operator, xk is the true state 

vector, 

kx̂  is the model prediction of the state vector, kx̂  is 

the state estimate vector, k is a discrete time instant variable, 
)(~ i

x  is the sigma point vector, Pk is the state error covariance 
matrix, f is a nonlinear function for transferring states to the 
next time instant, h is a nonlinear function for converting 
states to measurements, w is a weighting coefficient, N is the 
dimension of the state vector and λ is a scaling parameter, 
satisfying λ=α

2
 (L+κ) - N. The parameter α, with a typical 

value of 10
-3

, is a tuning factor determining the spread of the 
sigma points. The constant κ is a secondary tuning parameter, 
usually zero. The constant β affects the weight of the first 
error covariance term, and the choice β = 2 is optimal for 
normally distributed states. Cholesky decomposition should 
be used for the matrix square root in (16) for computational 
efficiency. 

An iteration of the UKF algorithm proceeds as follows: 

1. Initialize, (18)  

2. Estimate the a priori state vector 

1
ˆ

kx (prediction) 

a. Generate sigma points around the previous 
estimate, (19) 

b. Propagate the sigma points through the nonlinear 
functions, (20) 

c. Calculate the state mean, (21) 

3. Calculate the a priori error covariance 

1kP , (22) 

4. Estimate the a posteriori state vector 1
ˆ

kx  

a. Unscented transformation of predicted 
measurements for capturing the mean and 
covariance, (23) 

b. Calculate the cross-covariance between predicted 
states and measurements, (24) 

c. Calculate the Kalman gain, (25) 
d. Update state estimate, (26) 

5. Calculate the a posteriori error covariance 1kP , (27) 

6. Return to step 2 
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