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Abstract—This paper studies the mobile tracking problem in
mixed line-of-sight (LOS) and non-line-of-sight (NLOS) condi-
tions, where the statistics of NLOS error are assumed unknown.
Three different models are used to describe the NLOS errors.
A Rao-Blackwellized particle filtering with parameter learning
(RBPF-PL) is presented, in which the posterior of sight conditions
is estimated by particle filtering while the mobile state and
NLOS parameters are analytically computed. Simulation results
are provided to evaluate the performance of RBPF-PL variants
in different situations. Simulation show that unless it is known
that NLOS noise has the same bias and variance in all the
observations, the more complicated models should be employed
as they work correctly even in NLOS model mismatch, with only
slightly more computational complexity.

Index Terms—mobile tracking, non-line-of-sight, particle fil-
tering, Rao-Blackwellized, parameter learning

I. I NTRODUCTION

Precise positioning in non-line-of-sight (NLOS) conditions
is a challenge for many wireless positioning systems. In typical
NLOS circumstances, such as dense urban areas, the direct
path between the transmitter and receiver is blocked and
the electromagnetic wave undergoes reflection, refractionand
scattering before arriving to the receiver. Because of signal
path lengthening, localization errors will be introduced.

In the literature, a number of methods have been proposed
to mitigate NLOS errors in mobile tracking, including two-
step Kalman filtering techniques for smoothing range measure-
ments [1], a Kalman based interacting multiple model (IMM)
smoother [2], grid based Bayesian estimation [3], particle
filtering (PF) [4], a modified extended Kalman filter (EKF)
bank [5], the improved Rao-Blackwellized particle filtering
(RBPF) [6], joint particle filter and unscented Kalman filtering
(UKF) method [7], etc. A posterior Cramér-Rao lower bound
is further investigated in [8].

In contrast to the above-listed studies, which assumes a
complete knowledge of statistics of NLOS errors, the study
in [9] only assumes that the NLOS error is Gaussian while
its mean and variance are fixed (static) but unknown. This
assumption seems more plausible in practical situations, where
the exact error statistics are unknown. In [9], the NLOS signals
observed from different base stations (BSs) are assumed to all
come from the same biased Gaussian distribution. In practical
mobile tracking scenarios, however, these signals may travel
through different environments. In this work, we therefore

consider the problem of mobile tracking with unknown NLOS
errors that can be different in different channels. Three models
are used to describe the NLOS errors: a common mean and
common variance parameter for each channel; different mean
and common variance; different mean and different variance.
Conventional particle filtering methods are ineffective for
computing the resulting high-dimensional problem. A Rao-
Blackwellized particle filtering method with parameter learn-
ing (RBPF-PL) is presented to track mobile station (MS) in
the different NLOS conditions. Simulation results are provided
to evaluate the performance of RBPF-PL variants in different
situations.

The paper is organized as follows: Section II presents
the system model and formulates the problem of mobile
tracking in unknown NLOS conditions. Section III presents the
RBPF-PL method in detail. Numerical results and performance
comparison are presented and discussed in Section IV. Section
V draws some conclusions.

II. SYSTEM MODELS

The mobile state at timetk is defined as the length-4 vector
xk, location[xk, yk]

T and velocity[ẋk, ẏk]
T . The mobile state

with random acceleration can be modeled as [10]:

xk+1 = Φkxk + wk, (1)

where the transition matrixΦk models the state kinematics.
The random processwk is a white zero mean Gaussian noise,
with covariance matrixQ.

Let hi(xk) denotes the true range between the mobile
position [xk, yk]T and the location of theith BS [xbsi , ybsi ]

T ,
wherei ∈ {1, 2, · · · , M} andM is the number of BSs. Then
the range measurement equations are

zi,k = hi(xk) + v(si,k), (2)

The Boolean variablesi,k ∈ {0, 1} is introduced to rep-
resent LOS/NLOS condition between the MS and BSi, with
si,k = 0 for LOS andsi,k = 1 for NLOS. In mobile tracking,
the sight conditions undergo dynamical transitions, whichcan
be modeled as a time-homogeneous first-order Markov chain
si,k ∼ MC(πi,Ai) with initial probability vectorπi and the
transition probability matrix

Ai =

[

p0 1 − p0

1 − p1 p1

]

,



where p0 = P(si,k = 0|si,k−1 = 0) and p1 = P(si,k =
1|si,k−1 = 1).

The LOS error (usually treated as the measurement noise)
conforms to zero mean Gaussian distribution:nLOS ∼
N(0, σ2

n), while the NLOS errors from different BSs are
modeled as a biased Gaussian distribution:ni,NLOS ∼
N(µi,NLOS, σ

2
i,NLOS).

In this work, three different models are assumed for
{µi,NLOS, σi,NLOS}:

• Model 1: all BSs have the same mean and the same
variance

• Model 2:different mean for every BS but all BS have the
same variance

• Model 3: different mean anddifferent variance for every
BS

Thus, the overall model of mobile tracking in the mixed
LOS/NLOS conditions can be represented as







xk = Φk−1xk−1 + wk−1

zk = h(xk) + vk(sk)
si,k ∼ MC(πi,Ai)

, (3)

wherev(sk) = [v(si,k), · · · , v(sM,k)]T ∼ N(m(sk),R(sk)).
The values of{m(sk),R(sk)} depend on the different NLOS
error model, which can be explicitly expressed as:

• Model 1:

m(sk) = µNLOSsk

R(sk) = σ2
nIM + σ2

NLOSdiag(sk).
(4)

• Model 2

m(sk) = diag(sk)µNLOS

R(sk) = σ2
nIM + σ2

NLOSdiag(sk).
(5)

• Model 3

m(sk) = diag(sk)µNLOS

R(sk) = σ2
nIM + ΣNLOSdiag(sk)

ΣNLOS = diag(σ2
NLOS).

(6)

In this work, it is assumed thatσn is known, while NLOS
parameters{µNLOS, σ

2
NLOS} or {µNLOS,ΣNLOS} are all static

but unknown.

III. RBPF-PL

Denote the total observation sequence up to timetk as

z1:k, where zk
△
= [z1,k, z2,k, . . . , zM,k]T . For brevity, let

ηi
△
= σ2

n + σ2
i,NLOS , θi = {µi,NLOS, ηi} andθ = [θ1, · · · , θM ].

The problem of mobile tracking in the unknown NLOS
conditions is to simultaneously infer the mobile statexk, the
sight conditionsk and NLOS noiseθ from the observation
sequencez1:k, which corresponds to computing the joint
posteriorp(xk, sk, θ|z1:k).

The solution requires high-dimensional integrals. Here, we
resort to sequential Monte Carlo techniques [11]. To numer-
ically compute the joint posteriorp(xk, sk, θ|z1:k), standard
particle filtering is not effective in such a high dimensional
space constituted by{xk, sk, θ}. We present a RBPF-PL

method. Basically, RBPF-PL method uses particle filtering to
estimate the posterior of sight conditionsk while applying an
analytical method to estimate the mobile statexk and update
the NLOS parametersθ. The method is described as follows.

Factorizep(xk, sk, θ|z1:k) according to:

p(xk, sk, θ|z1:k) = p(xk|sk, θ, z1:k)p(sk, θ|z1:k). (7)

If p(sk, θ|z1:k) is represented by a set of weighted samples
{sj

k, θj , w
j
k}

N
j=1, then

p(xk|z1:k) ≈

N
∑

j=1

w
j
kp(xk|s

j
k, θj , z1:k) (8)

where the componentp(xk|s
j
k, θj , z1:k) approximately con-

forms to Gaussian distributionN(x̂j
k, P̂

j
k), which can be

computed by standard extended Kalman filter (EKF):

• Prediction:

x̂
j

k|k−1
= Φk−1x̂

j
k−1

P̂
j

k|k−1
= Φk−1P̂

j
k−1

ΦT
k−1 + Q

(9)

• Update:

ẑ
j

k|k−1
= h(x̂j

k|k−1
) + m(sj

k)

K
j
k = P̂

j

k|k−1
(Hj

k)T
[

H
j
kP

j

k|k−1
(Hj

k)T + R(sj
k)

]−1

H
j
k =

∂hT (x)

∂x
|
x=x̂

j

k|k−1

x̂
j
k = x̂

j

k|k−1
+ K

j
k(zk − ẑ

j

k|k−1
)

P̂
j
k = (I − K

j
kH

j
k)P̂j

k|k−1

(10)

Conditioned upon{sj
k−1

,x
j
k−1

, zk}, to sample{sj
k, θj}, we

choose the following trial distribution:

q(sk, θ|sj
k−1

,x
j
k−1

, z1:k)

= P(sk|s
j
k−1

,x
j
k−1

, θ, zk)p(θ|sj
k−1

,x
j
k−1

, zk−1)
(11)

The corresponding importance weight can be calculated as

w
j
k ∝ w

j
k−1

p(zk|s
j
k−1

,x
j
k−1

, θ) (12)

The trial distribution forsk in (11) can be expressed as

P(sk|s
j
k−1

,x
j
k−1

, θ, zk) =
p(zk|sk,x

j
k−1

, θ)P(sk|s
j
k−1

)

p(zk|s
j
k−1

,x
j
k−1

, θ)
(13)

where the likelihood

p(zk|sk,x
j
k−1

, θ) ≈ N(ẑj
k, Σ̂

j

k|k−1), (14)

and

ẑ
j
k = h(x̂j

k|k−1
) + m(sk)

Σ̂
j

k|k−1 = H
j
kP̂

j

k|k−1
(Hj

k)T + R(sk).
(15)



To infer the parameterθi, we first specify the Gaussian
inverse chi-square prior [12]. Suppose at timetk−1,

p(θi|s
j
k−1

,x
j
k−1

, z1:k−1) = p(θi|s
j
i,k−1

,x
j
k−1

, z1:k−1)

= N−Inv − χ2(µ̆j
i,k−1

, κ̆
j
i,k−1

, ν̆
j
i,k−1

, η̆
j
i,k−1

)
(16)

at the end oftk, the sampling density forθi is updated as:

p(θi|x
j
k, s

j
k, z1:k) ∝ p(zi,k|θi,x

j
k, s

j
i,k)p(θi|s

j
i,k−1

,x
j
k−1

, z1:k−1)

= N−Inv − χ2(µ̆j
i,k, κ̆

j
i,k, ν̆

j
i,k, η̆

j
i,k)

(17)

where{µ̆j
i,k, κ̆

j
i,k, ν̆

j
i,k, η̆

j
i,k} can be explicitly derived in terms

of the prior parameters and the sufficient statistics of the data:

µ̆
j
i,k =

κ̆
j
i,k−1

κ̆
j
i,k−1

+ n
j
i,k

µ̆
j
i,k−1

+
1

κ̆
j
i,k−1

+ n
j
i,k

ϕ
j
i,k

κ̆
j
i,k = κ̆

j
i,k−1

+ n
j
i,k

ν̆
j
i,k = ν̆

j
i,k−1

+ l
j
i,k

η̆
j
i,k =

1

ν̆
j
i,k

[

ν̆
j
i,k−1

η̆
j
i,k−1

+ φ
j
i,k

]

(18)

The computation of{nj
i,k, l

j
i,k, ϕ

j
i,k, φ

j
i,k} depends on dif-

ferent NLOS error models:

• Model 1 (the same mean and the same variance):

n
j
i,k = l

j
i,k =

M
∑

i=1

δ(sj
i,k − 1)

ǫ
j
i,k = zi,k − hi(x

j
k), ϕ

j
i,k =

M
∑

i=1

ǫ
j
i,k · δ(sj

i,k − 1)

ǭ
j
i,k =

1

n
j
i,k

ǫ
j
i,k, (nj

i,k 6= 0) or ǭ
j
i,k = 0, (nj

i,k = 0)

φ
j
i,k =

M
∑

i=1

(ǫj
i,k − ǭ

j
i,k)2 · δ(sj

i,k − 1)+

κ̆
j
k−1

n
j
i,k

κ̆
j
k−1

+ n
j
i,k

(ǭj
i,k − µ̆

j
i,k−1

)2

• Model 2 (different mean and the same variance):

n
j
i,k = δ(sj

i,k − 1), l
j
i,k =

M
∑

i=1

δ(sj
i,k − 1)

ϕ
j
i,k = (zi,k − hi(x

j
k)) · δ(sj

i,k − 1)

φ
j
i,k =

M
∑

i=1

κ̆
j
k−1

n
j
i,k

κ̆
j
k−1

+ n
j
i,k

(ϕj
i,k − µ̆

j
i,k−1

)2

• Model 3 (different mean and different variance):

n
j
i,k = l

j
i,k = δ(sj

i,k − 1)

ϕ
j
i,k = (zi,k − hi(x

j
k)) · δ(sj

i,k − 1)

φ
j
i,k =

κ̆
j
k−1

n
j
i,k

κ̆
j
k−1

+ n
j
i,k

(ϕj
i,k − µ̆

j
i,k−1

)2

IV. SIMULATION RESULTS

We simulate1600 epoch trajectories of mobile station (MS)
using random acceleration motion model. At each epoch there
are range measurements from5 BSs with σ2

n = 1502m2.
The three different models described in Section II are used
to simulate NLOS data. In each of the models the transition
probabilities between LOS and NLOS modes are set for each
of the signalsp0 = p1 = 0.8, with initial modes having
equal probability of LOS or NLOS. However, the simulated
transitions can occur only at every10th epoch.

Our three test scenarios correspond to the Models 1, 2 and
3 described in II. The NLOS biases are randomly sampled
from uniform distribution Uni[0, 1000](m) and the standard
deviation of NLOS is sampled from Uni[10, 600](m).

We simulatenMC = 100 tracks and sets of measurements
in each of the scenarios. We do cross-testing of the different
models of Section II applied to the scenarios defined above.
The initial values for the hyperparameters are chosen as
{µ̆0,i = 1000, κ̆0,i = 1, ν̆0,i = 1, µ̆0,i = 7502}, which are
chosen to represent vague a priori information about the NLOS
parameterθ. The RBPF-PL filters based on the three different
models are denoted RBPF1, RBPF2 and RBPF3 corresponding
to different models and they use10 particles.

We use root square error RSEk
∆
=

√

(x̂k − xk)2 + (ŷk + yk)2 to compare the performance.
The results are reported in Figures 1−3 using empirical
cumulative distribution functions. In the first scenario, the
performance of the method based on the simplest model
performs the best but only by a very small margin. The
degraded performance of the more complicated models is due
to estimation of higher number of parameters from the same
amount of data, so the data is not used as efficiently as with
the simpler model.

In the second scenario where different observations can have
different biases, the methods that have modeled this perform
the same as in the first scenario, but the method based on a
common bias in all of the observations has its performance
degraded clearly.

In the third test scenario, the observations are affected by
biases with their individual mean and variance. As expected,
the method based on the correct model has very similar perfor-
mance as in the simpler cases. The simplest model performs
similarly as in the Scenario 2, implying that the estimation
of individual biases has a larger influence on the performance
than estimation of variances. This notion is backed up by the
fact that the method estimating individual biases but single
variance has its performance degraded but not by much.

V. CONCLUSIONS

A RBPF method with parameter learning is proposed to
track MS in the mixed LOS/NLOS conditions, where the
NLOS condition induces noise with unknown mean and vari-
ance. Three variations were studied which were based on the
knowledge of the type of the observation and the surroundings.
In the most versatile case, all the signals observed can be
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Fig. 1. Scenario 1.

0 50 100 150 200 250 300 350 400 450 500
0

0.25

0.5

0.75

1

RSE (m)

ECDF

 

 

RBPF1
RBPF2
RBPF3

Fig. 2. Scenario 2.

from different type of BSs and travel through different envi-
ronments. In this case we model all the NLOS noises to have
their individual mean and variance. The tests show that unless
being certain that NLOS noise is of the same type in all the
observations, more complicated models should be employed
as they work as supposed in all the different scenarios, with
only little more computational complexity.
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