
Tampere University of Technology    
 
   
  
 
 
 
 
 
 
 
 
 
 
 
Author(s) Viitanen, Timo; Jääskeläinen, Pekka; Takala, Jarmo 

Title Inexpensive correctly rounded floating-point division and square root with input scaling 
 
Citation Viitanen, Timo; Jääskeläinen, Pekka; Takala, Jarmo 2013. Inexpensive Correctly Rounded 
 Floating-Point Division and Square Root with Input Scaling. In: Proceedings of the 2013 
 IEEE Workshop on Signal Processing Systems, SiPS 2013, Taipei, October 16-18, 2013. 
 5p. 
 
Year 2013 
 
DOI  
 
Version Post-print 
 
URN http://URN.fi/URN:NBN:fi:tty-201311251473  
 
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
 obtained for all other uses, in any current or future media, including reprinting/republishing 
 this material for advertising or promotional purposes, creating new collective works, for 
 resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
 work in other works. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication 
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by 
you for your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an 
authorized user.  



INEXPENSIVE CORRECTLY ROUNDED FLOATING-POINT DIVISION AND SQUARE
ROOT WITH INPUT SCALING

Timo Viitanen Pekka Jääskeläinen Jarmo Takala

Tampere University of Technology
PO.Box 553

FIN-33101 Tampere
Finland

{timo.2.viitanen, pekka.jaaskelainen, jarmo.takala}@tut.fi

ABSTRACT

Recent embedded DSPs are incorporating IEEE-compliant
floating point arithmetic to ease the development of, e.g.,
multiple antenna MIMO in software-defined radio. An obvi-
ous choice of FPU architecture in DSP is to include a fused
multiply-add (FMA) operation, which accelerates most DSP
applications. Another advantage of FMA is that it enables
fast software algorithms for, e.g., division and square root
without much additional hardware. However, these algo-
rithms are nontrivial to perform at the target accuracy to get
the correctly rounded result without danger of overflow.

Previous FMA-based systems either rely on a power-
hungry wide intermediate format or forego correct rounding.
A wide format is unattractive in a power-sensitive embedded
environment since it requires enlarged register files, wider
data buses and possibly a larger multiplier. We present prov-
ably correct algorithms for efficient IEEE-compliant division
and square root with only a 32-bit format using hardware
prescaling and postscaling steps. The required hardware has
approximately 8% of area and power footprint of a single
FMA unit.

Index Terms— DSP, FPU, Fused multiply-add, division,
square root

1. INTRODUCTION

IEEE-754 compliant floating-point arithmetic is becoming
widespread in embedded Digital Signal Processors (DSP).
For instance, Texas Instruments has a floating-point core in
all their recent DSPs, citing programmer convenience and
the demands of Software Defined Radio (SDR), whose fre-
quent matrix inversions are inefficient to implement in fixed-
point [1]. DSP algorithms have typically been designed first
in floating-point and then converted for fixed-point operation,
so having equivalent arithmetic on the DSP promises to speed

The work has been financially supported by the Academy of Finland
(funding decision 253087).

up the development cycle and reduce errors. However, DSPs
typically have limited support for division and square root.
In particular, IEEE-754 compliant operations are rare, and
would be desirable for reasons of programmer convenience.
Moreover, if only a fast approximation is avalable, as in the
TI C67 floating-point core [2], some algorithms exhibiting
numerical instability may work correctly on a compliant de-
velopment PC and fail on the DSP. A simple example is
Gaussian elimination with certain classes of matrices. These
arguments may not justify adding a large dedicated hardware
unit, as the operations are infrequent. Therefore, it is inter-
esting whether there is some minimal supporting hardware
that can be integrated into DSPs at a low cost and still enable
reasonably fast IEEE-754 compliant division and square root.
This paper attempts to present such minimal hardware.

There are two main approaches to floating-point division
and square root: digit recurrence and functional iteration.
Digit recurrence methods such as SRT division resemble el-
ementary school long-form arithmetic and produce a fixed
number of digits in a cycle. They are usually implemented in
a dedicated hardware unit, and represent a significant hard-
ware investment. Functional iteration refines an initial guess
into a correct result with, e.g., the Newton-Raphson method.
Each iteration typically doubles the number of accurate bits.
These methods tend to reuse existing floating-point multi-
plier hardware through microcode or software, but require
minimal extra hardware, often a look-up table, to obtain the
initial approximation. The difficulty in functional iteration is
in obtaining a correctly rounded result: a straightforward iter-
ation fails to compute the last few significant bits of accuracy
due to rounding errors, and so careful design is necessary.
Almost every implementation in the literature either relies on
an intermediate format with more significand and exponent
bits than the target format, or gives up correct rounding. [3]

A wide intermediate format requires invasive changes to
the processor including enlarged registers and data buses and,
therefore, is unsuitable for minimal supporting hardware. The
mathematics library designed for the Intel Itanium proces-



sor [4] has, to the authors’ best knowledge, the only imple-
mentation in the literature that uses a target-width significand.
The algorithms rely on a Fused Multiply-Add (FMA) instruc-
tion, which is fortunately a natural fit for DSP, benefitting
many common DSP tasks such as FIR filtering, FFT, DCT and
matrix arithmetic. However, the implementation still relies
on additional exponent bits to avoid some overflow-related
errors. Moreover, some corner cases are handled using soft-
ware traps, which may result in slowdowns by factors of up
to several hundred when hit. On statically scheduled VLIW
architectures used in DSP, branches and context switches are
even more expensive.

We extend our previous work, which produces close quo-
tient and square root approximations on streamlined FPUs
[5], to provide correct rounding on an IEEE-754 compliant
single-precision FPU based on the Itanium algorithms. This is
done using hardware prescaling and postscaling steps which
can be implemented with lightweight additional hardware. A
caveat is that we do not yet synthesize hardware with subnor-
mal number support. We also propose and verify a division
algorithm based on the proofs in [4], which requires a smaller
hardware LUT by a factor of five than the original Itanium
algorithm, at the cost of a worse latency.

This paper is structured as follows. Section 2 is a brief
overview of related work. Section 3 describes the scaling
procedures and their hardware implementation. Section 4
presents examples of IEEE-compliant division and square
root algorithms using the scaling approach. In Section 5, the
proposed hardware units are synthesized on 110nm ASIC.
Section 6 is a summary of the work.

2. RELATED WORK

There is a large literature on implementations and correctness
proofs of functional iteration, both from the academia and the
industry, for example the IBM Power3, the IBM Cell and the
AMD K7 [6]. However, in each case, either a wide format is
used for computation or the results are not IEEE-compliant.

The TI C67 series of DSPs gives functional iteration rou-
tines for approximate division and square root, based on 8-
bit hardware lookup tables [2]. Our work allows IEEE-754
compliant operation with roughly the same area, due to our
smaller LUTs, but retains the option of computing fast ap-
proximations. However, we require an FMA operation which
the TI DSP does not have.

Fractured Floating Point Units (FFPU) [7] is an effort
similar to this work in that they use inexpensive special in-
structions to accelerate floating-point operations. However,
they start from integer-based emulation with the SoftFloat li-
brary [12] whereas we assume an IEEE-compliant FMA unit
and accelerate the missing operations.

According to Liu [8], SRT dividers are faster and more
power-efficient than FMA-based functional iteration, but iter-
ation is justified when divisions are sufficiently infrequent.

In [5], scaling is proposed for division and square root
approximations with strict error bounds, in the context of
streamlined custom-precision FPUs. This paper describes in
detail and synthesizes the required hardware, and shows that
the system is general enough to support correctly rounded
operations, which may have wider applicability.

3. SCALING STEPS

The algorithms in [4] rely on the inputs not being too close
to the edges of the dynamic range of the floating-point for-
mat. We illustrate the point with the well-known algorithm
for computing the correctly rounded quotient Q = a/b given
the correctly rounded reciprocal y = 1/b,

q ←− a× y

r ←− a− b · y
Q←− y + r · y.

There are three issues with the algorithm if naively imple-
mented at target precision:

• If b is very large, more than 2126, y falls outside the
single-precision normal dynamic range of [2−126..2128)
and underflows, losing precision.

• If a is small, the remainder r, which may be up to 245

times smaller than a in single-precision, may underflow
with a wider range of inputs than y.

• Special case inputs are not handled correctly. For in-
stance, a division of 1 by 0 should output ∞, but pro-
ceeds as: q =∞, r = 1− 0×∞ = NaN, Q = NaN.

The complete division and square root algorithms in [4]
have similar issues. These errors rarely affect computations
of interest, but they prevent IEEE compliance. In the original
work, they are handled through using a register float format
with a wide exponent, and branching to handle special cases.
We propose to instead scale the input operands so that they lie
well within the dynamic range. A scaling exponent is saved
and used to postscale the result to the correct magnitude.

The technique also generalizes to handling the special
case inputs of 0, −0, ∞, −∞ and NaN. These always pro-
duce a special case output. For zero and infinite inputs it
suffices to generate a sufficiently small or large postscaling
exponent to ensure underflow or overflow, respectively. NaN
special cases require an additional signal bit in the postscaling
exponent. The scaling exponent manipulation turns special
case inputs into meaningless small numbers with the correct
sign. We use a 10-bit postscaling exponent including the
signal bit.

The scaling steps are also useful for meeting other stan-
dard requirements. For instance, OpenCL requires a ±2ulp
division error across the entire dynamic range, easily leading
to the issues discussed earlier, which scaling can circumvent.



3.1. Division

A scaling division procedure is shown in Algorithm 1. a30..24

denotes the bits 30 down to 24 of a, in this case the expo-
nent, interpreted as an unsigned integer. a′ and b′ are the
scaled inputs, y0 the scaled reciprocal approximation, and k
the postscaling exponent which represents the exponents and
possible special cases of the inputs. k9 is the NaN signal bit.
Divide is any software division algorithm that would compute
the significand at the desired accuracy with a wide exponent.
Since significand computation is independent of exponents in
floating-point division, each input can be simply scaled to the
range [1..2) by setting the exponent to 127, which represents
0 in the biased format.

Algorithm 1: DivideWithScaling
Data: Single-precision float dividend a and divisor b;

n-bit reciprocal LUT
Result: The quotient a/b
begin

a′ ←− a
a′30..23 ←− 127
b′ ←− b
b′30..23 ←− 127
y30..230 ←− 126

y22..22−n0 ←− LUT [b22..22−n]
k ←− a31..24 − b30..23

if b22..0 = ”11..1” then
y00 ←− 1

if a30..23 = 0 ∨ b30..23 = 255 then
k ←− −256

else if a30..23 = 255 ∨ b30..23 = 0 then
k ←− 255

if (a30..23 = 255 ∧ a22..0 6= 0)
∨(b30..23 = 255 ∧ b22..0 6= 0)
∨(a30..23 = 255 ∧ b30..23 = 255) then

k9 ←− 1
Q′ ←− Divide(a′, b′, y0)

Q←− Q′ · 2k
if k9 = 1 then

Q←− NaN

return Q

3.2. Square root

A scaling square root procedure is shown in Algorithm 2. b′

is the scaled input, y0 the scaled reciprocal square root ap-
proximation, k the postscaling exponent, and SquareRoot the
underlying square root algorithm. The square root significand
depends on the LSB of the input exponent, which must be left
intact, therefore, the input is scaled to the range [1, 4). The
computations of k and the exponent y30..230 ensure a correct
result exponent.

Algorithm 2: SquareRootWithScaling
Data: Single-precision number b; n-bit reciprocal

square root LUT
Result: The square root

√
b

begin
b′ ←− b
b′30..24 ←− 63
y30..240 ←− 63
y230 ←− not b23

y22..22−n0 ←− LUT [b23..23−n]
k ←− (b30..23 − 1)/2− 63
if b30..23 = 0 then

k ←− −256
else if b30..23 = 255 then

k ←− 255
if (b30..23 = 255 ∧ b23..0 6= 0)
∨(b31 = 1 ∧ b23..0 6= 0) then

k9 ←− 1
g′ ←− SquareRoot(b′, y0)

g ←− g′ · 2k
if k9 = 1 then

g ←− NaN
return g

3.3. Gradual underflow

Gradual underflow is a feature of IEEE-754 in which very
small numbers can be represented as subnormal numbers with
progressively fewer significant bits of accuracy. Subnormal
support is expensive in terms of hardware. Most commodity
hardware either flushes subnormal inputs and results to zero
in violation of the standard, or raises a software trap. The
analysis up to now assumes one of these approaches.

However, a DSP might opt to provide hardware support,
as branches and context switches are expensive to imple-
ment in statically scheduled VLIW processors. The shown
algorithms work correctly with subnormal inputs and outputs
as long as the FMA unit supports them, with one caveat:
postscaling needs to be performed before the rounding stage
in the final FMA operation. Otherwise the operation incurs
two rounding errors and the result may be off by one. More-
over, the prescaling instructions require normalization and
become expensive to implement. An efficient design would
share the normalization hardware of the FMA unit.

3.4. Hardware implementation

As visible in Algorithms 1 and 2, the prescaling stages mostly
contain wiring and small-integer arithmetic, making them
suitable for hardware implementation. A straightforward de-
sign which produces all initial values for both division and
square root is shown in Figure 1. Note that a non-scaling ap-
proximation unit would require an additional multiplexer in



the LUT datapath to output, e.g., zero or infinity. The scaling
design handles special cases in the shorter, parallel k datapath
for a shorter overall delay. The design appears feasible to
implement as two single-cycle special instructions.

Our research platform TCE [9] handles multi-output in-
structions and function units well, but in another architec-
ture a four-output instruction might be unreasonable, and the
hardware unit might need to provide the values one at a time
through different instructions. k and a′ (for division) are only
required late in the algorithm, so there is no major effect on
latency. To further simplify the unit, a′ and b′ could be exe-
cuted as two integer ALU operations each.

We integrate the postscaling operation into the FMA unit
in order to reuse its special case handling logic, reduce la-
tency and instruction count, and prepare for future subnormal
number support. It might also be implemented in a separate
multiply-by-power-of-two instruction as in [5].

Fig. 1. Block diagram of the prescaling operation. SCD de-
tects special cases in a and b. Scale12 scales the input be-
tween [1..2) by wiring, and Scale14 between [1..4).

4. ALGORITHMS

The scaling steps presented in the previous section can wrap
any division or square root algorithm that computes the sig-
nificand at the desired accuracy, but to verify the approach,
we show one example of each. The square root algorithm
is paraphrased from the double-precision algorithm in [10]
by removing iterations. The division algorithm is based on
proofs in [4], but has the advantage of requiring a smaller
LUT. Performance characteristics are summarized in Table 1.

4.1. Division

Algorithm 3 computes correctly-rounded floating-point quo-
tient of scaled inputs a′ and b′. Operations that can be exe-
cuted in parallel are shown on the same line.

The algorithm start from a reciprocal approximation y0
fetched from a 6× 6-bit LUT, refines it into a closer recipro-
cal approximation y2 with two Goldschmidt iterations, com-
putes the correctly rounded scaled reciprocal y3, and finally
computes the correctly rounded scaled quotient Q′.

Algorithm 3: Divide
Data: Scaled single-precision dividend a′ and divisor

b′, reciprocal approximation y0
Result: The quotient a′/b′

begin
e←− 1− b′ · y0
y1 ←− y0 · e+ y0; e1 ←− e · e
y2 ←− y1 · e1 + y1
r ←− 1− b′ · y2
y3 ←− r · y1 + y1
q ←− a′ · y3
r1 ←− b′ · q + a′

Q′ ←− r1 · y2 + q
return Q′

As shown in [4], given b and a close reciprocal approx-
imation y0 ≈ 1

b , the correctly rounded reciprocal y1 can be
computed as

r ←− 1− b · y
y1 ←− y0 + r · y0,

except possibly when the significand of b is all-ones. This
case is handled by having the approximation unit output the
correct reciprocal 1.00...1 at cost of an and tree and a one-bit
multiplexer. The correctly rounded quotient is computed with
the algorithm discussed in Section 2.

In many cases, the algorithm presented in [4] may be more
useful if modified to use our scaling steps. It achieves a better
latency at the cost of requiring more parallel operations and
an approximately 5 times larger LUT.

4.2. Square root

Algorithm 4 [10] computes the correctly rounded square root
of b′ starting from a reciprocal square root approximation
y0 ≈ 1

b′ fetched from a 6 × 6-bit lookup table. The algo-
rithm uses three Goldschmidt iterations and a final Newton-
Raphson iteration.

4.3. Large look-up table

Given 12-bit LUT for initial approximation, some steps can
be omitted in each algorithm. Namely, e1 and y2 can be
skipped for division and r1, g2 and h2 for square root. A
straightforward implementation would be expensive in terms
of area. However, the cost can be reduced by using a piece-
wise linear approximation. We found that the piecewise linear
approximation produced an equal precision to the 12-bit LUT
with only two 6×12-bit LUTs and a 12×15-bit multiplier. If
the multiplier hardware of an FMA unit were reused, the LUT
itself would be four times larger than in the 6-bit case, and
could be further halved using the optimized approach in [11].



Table 1. Performance characteristics for each algorithm. Throughput is expressed as operations per cycle.
LUT size 6× 6 8× 8 12× 12

Operation a/b 1/b
√
b a/b [4] a/b 1/b

√
b

FP operation count 9 7 10 10 7 4 7
Latency (FMA latencies) 8 6 7 5 7 4 5

Latency (Cycles, 6-cycle FMA) 49 37 43 31 43 25 31
Throughput per FMA unit 0.11 0.14 0.1 0.1 0.14 0.25 0.14

Algorithm 4: SquareRoot
Data: Scaled single-precision float b′, reciprocal

square root approximation y0
Result: The square root of b′

begin
g ←− b′ · y0; h←− 1/2 · y0
r ←− 1/2− h · g
g1 ←− g · r + g; h1 ←− h · r + h
r1 ←− 1/2− h1 · g1
g2 ←− g1 · r1 + g1; h2 ←− h1 · r1 + h1

d←− g2 · g2 + b′

g3 ←− h2 · d+ g2
return g3

4.4. Performance

Performance characteristics of the algorithms are shown in
Table 1. Performance is low compared to, e.g., the AMD
K-7 divider [6] which computes a single-precision division
or square root in four multiplications and 16 cycles using a
very wide format. A more accurate initial guess improves
performance somewhat, but many of the operations go into
ensuring correct rounding, and are unaffected. However, the
performance of 8 FP operation latencies for division and 6
for square root should be sufficient for applications where the
operations are infrequent, and represent a large improvement
over integer-based emulation with, e.g., SoftFloat [12], which
may require hundreds of integer operations.

For instance, a straightforward implementation of the
Cholesky decomposition takes N3/6 multiply-subtractions
and N square roots [13]. With N = 16, using the proposed
system, square roots would account for 20% of the executed
FP operations. If all operations were executed sequentially,
FP operations took six times as many cycles as integer oper-
ations, and a softfloat square root took 316 cycles [7], then
switching to softfloat would increase the runtime by 81%.
These are generous assumptions since the algorithm allows
for FP operations to be pipelined, and DSP processors are
inefficient for branch-heavy code.

An advantage of the software approach is that precision
can be traded off for speed at compile time. If the program-
mer allows unsafe optimizations, or uses a framework such
as OpenCL, CUDA or OpenGL ES with loose error bounds,

performance can be improved by eliminating the rounding
computations. For instance, an OpenCL compliant division
(within error bounds of±2.5ulp) can be obtained in five FMA
operations with a small LUT [5], a speedup of 44%. Also, a
reciprocal is faster to compute than full division.

4.5. Verification

Floating point division is difficult to verify since it is a two-
output operation, and there are too many combinations of
inputs for exhaustive search. Due to the mathematical identi-
ties used to construct Algorithm 3, if the reciprocal y3 is cor-
rectly rounded, so is the quotient. Accordingly, the algorithm
was verified by testing all 223 possible divisor significands.
Algorithm 4 was similarly verified by testing 224 combi-
nations of input significand and exponent LSB in software
simulation. Double-precision algorithms would require more
sophisticated verification. Tests were carried out with both
the 6×6-bit and 12×12-bit LUT versions of each algorithm.
Moreover, correct operation with subnormal numbers was
tested in software simulation with 107 random inputs. The
algorithms produced the correctly rounded-to-nearest-even
result in each case.

5. SYNTHESIS

In order to evalute the hardware cost of the proposed method,
the 6 × 6 prescaler-LUT unit and the FMA-postscaler de-
scribed in Section 3.2 were synthesized on 110nm ASIC at
300MHz. For the FMA-postscaler, we modified the multiply-
adder function in [14] for six pipeline stages and fused oper-
ation. The FMA lacks special-case handling and subnormal
support, but the LUT unit includes all logic necessary for spe-
cial cases. The implemented units verified in RTL simulation
with a small testbench of division and square root operations.
We synthesized as reference a simple 8-bit LUT approxima-
tion unit similar to [2].

Synthesis results are shown in Table 2. A combinational
LUT unit has 4% the area and maximum power of a multiply-
adder. Inserting input registers in the style of our research
platform [9] doubles the area and power footprint. A sequen-
tial SRT implementation would be expected to take up more
area and power, since it requires registers for at least the par-
tial quotient, partial remainder and divisor.



Table 2. Synthesis results on 110nm ASIC, 300MHz, 1.5V.

Unit Latency Area (NAND) Power (mW)
Comb. NC Total ratio Switch Int Total ratio

6× 6 LUT+ prescaler 1 504 538 1042 0.09 0.188 0.349 0.537 0.09
8× 8 LUT 1 889 184 1073 0.09 0.094 0.133 0.227 0.03

FMA 6 8627 3200 11827 1.00 2.33 3.73 6.06 1.00
FMA + postscaler 6 8845 3516 12362 1.04 2.37 3.99 6.36 1.05

The postscaling FMA instruction increases the footprint
of the FMA unit by approximately 4%, mainly due to addi-
tional registers which propagate the postscaling exponent to
the rounding stage of the pipeline. It may be more econom-
ical to have a separate multiply-by-power-of-two instruction,
though this increases the latency of each operation by one
cycle, and is not extensible to subnormal numbers. Alterna-
tively, the postscaler could be written later than other inputs,
removing most of the overhead. Both additions combined
take up approx. 150% as much area as the reference 8-bit
LUT, which is incapable of IEEE-compliant results.

6. CONCLUSIONS

We presented and verified a system for IEEE-compliant
single-precision division and square root based on hard-
ware scaling operations. The system has a hardware footprint
slightly larger than LUT instructions similar to [2], which
computes only approximate results. The iteration is done
without software traps or wide intermediate formats which
are prevalent in the literature, making the system inexpen-
sive to integrate into a FMA-based DSP. Performance is
low compared to larger units, but a major improvement over
integer-based emulation. Future work will include imple-
menting subnormals and benchmarking the system against
sequential SRT units and extended-format datapaths, which
are the main alternatives for a lightweight implementation.

7. REFERENCES

[1] G. Maur, “Efficient fixed- and floating-point code exe-
cution on the TMS320C674x core delivers faster code
development and reduces system cost with improved
performance,” Texas Instruments, 2009. [Online]. Avail-
able: http://www.ti.com/lit/wp/spry127/spry127.pdf

[2] S. Poland, “TMS320C67xx divide and
square root floating-point functions,” Texas
Instruments, 1999. [Online]. Available:
http://www.ti.com/lit/an/spra516/spra516.pdf

[3] S. F. Obermann and M. J. Flynn, “Division algorithms
and implementations,” IEEE Trans. Computers, vol. 46,
no. 8, pp. 833–854, 1997.

[4] J. Harrison, “Formal verification of IA-64 division al-
gorithms,” in Theorem Proving in Higher Order Logics.
Springer, 2000, pp. 233–251.

[5] T. Viitanen, P. Jääskeläinen, O. Esko, and J. Takala,
“Simplified floating-point division and square root,”
Proc. IEEE Int. Conf. Acoustics Speech and Signal Pro-
cess., pp. 2707–2711, May 26–31 2013.

[6] S. F. Oberman, “Floating point division and square root
algorithms and implementation in the AMD-K7 micro-
processor,” in Proc. IEEE Symp. on Comput. Arithmetic.
IEEE, 1999, pp. 106–115.

[7] N. Hockert and K. Compton, “FFPU: fractured floating
point unit for fpga soft processors,” in Int. Conf. Field-
Programmable Technology. IEEE, 2009, pp. 143–150.

[8] W. Liu and A. Nannarelli, “Power dissipation challenges
in multicore floating-point units,” in IEEE Int. Conf.
Application-specific Systems Architectures and Proces-
sors. IEEE, 2010, pp. 257–264.

[9] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala,
“Codesign toolset for application-specific instruction-
set processors,” in Proc. SPIE Multimedia on Mobile
Devices, San Jose, CA, January 2007, pp. 65 070X–1
– 65 070X–11.

[10] P. Markstein, “Software division and square root us-
ing Goldschmidt’s algorithms,” in Conf. Real Numbers
and Computers, Schloß Dagstuhl, Germany, Nov. 15–17
2004, pp. 146–157.

[11] S. Yajima, “Efficient initial approximation for multi-
plicative division and square root by a multiplication
with operand modification,” IEEE Trans. Computers,
vol. 46, no. 4, p. 495, 1997.

[12] J. Hauser, “SoftFloat,” 2007. [Online]. Available:
http://www.jhauser.us/arithmetic/SoftFloat.html

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical recipes 3rd edition: The art of sci-
entific computing. Cambridge university press, 2007.

[14] D. W. Bishop, “VHDL-2008 support library,” 2011.
[Online]. Available: http://www.eda.org/fphdl/


