
Mika Siikarla
Applying the DReAMT Model Transformation
Approach in Two Studies

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 11
Tampere University of Technology. Department of Software Systems. Report 11



Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 11
Tampere University of Technology. Department of Software Systems. Report 11

Mika Siikarla

Applying the DReAMT Model Transformation Approach in Two 
Studies 

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos 
Tampere 2010



ISBN 978-952-15-2381-6 
ISSN 1797-836X



Abstract

Decision Reusing Approach for Model Transformations (DReAMT) is a light-
weight approach for developing interactive model transformations. The approach
consists of an iterative model transformation development process and the use
of decision modeling. There is also a proof-of-concept tool set to support the
approach.

In this technical report we describe two studies where the DReAMT approach
and tool were used. In the first study we developed a model transformation to be
used as a component in a process modeling tool. In the second study we began to
develop a model transformation to support the creation of model checking rules
for a flexible modeling tool. The first study was carried out with Solita Oy and
the second with Trinity research team from Tampere University of Technology.

Evaluation of the studies shows that (i) the DReAMT approach can be used
to develop model transformations; (ii) interactive model transformations are flex-
ible; (iii) decision modeling makes automatic decision reuse possible; and (iv) the
DReAMT tool can be used by people other than its author.





Mika Siikarla 1

1 Introduction

Decision Reusing Approach for Model Transformations (DReAMT) [1] is a light-
weight approach for developing interactive model transformations. There is also
a proof-of-concept tool to support using the approach. The main principle of the
approach is that a model transformation is developed in iterations, starting with
an incomplete transformation that contains a lot of human interaction. The
model transformation is gradually refined and the human interaction is made
more structured in each iteration and finally possibly even automated fully.

In the beginning of the development of a model transformation–or any software–
there is typically very little known with certainty about the requirements. The
understanding and certainty grows during the development when new situations
are encountered and good and bad solutions are tried. Iterative development
makes it possible to start with a model transformation that helps the software
designer with just a few of the best understood tasks and grow the transforma-
tion as the understanding of the requirements grows.

In the first iterations the model transformation may be little more than a
pile of model editing scripts, some of which are launched automatically and some
manually. The transformation may have to also allow unrestricted editing of the
model so that the designer can complete all of their design tasks. With improved
understand in the next stage of iterations the transformation may resemble a
wizard. Most of the unrestricted model editing is replaced by a few chosen,
tool guided questions using the domain terms. In the later stages the model
transformation may be automatic or contain just a couple of human decision
points.

In this technical report we describe two research studies where we applied
DReAMT and evaluated the approach and the tool. In the first study the
DReAMT tool was used as a component in a business process modeling tool.
A DReAMT model transformation was used to transform a business process
that was expressed as an activity diagram into an XML-form understood by a
process and task engine. In the second study the DReAMT process was used to
develop a model transformation that assists in creating model (in)consistency
rules based on two metamodels. The first study was carried out with Solita Oy
and the second with Trinity research team from Tampere University of Technol-
ogy.

2 DReAMT

The DReAMT approach includes an iterative model transformation development
process, a model transformation language and a model for expressing human de-
cisions. The process defines the roles of Design Phase Expert, Transformation
Architect and Transformation Programmer as well as the responsibilities and
skill requirements for the roles. The process is centered around artefacts, which
are used in communication between the roles. The requirements specification is
captured in transformational patterns, the architecture and design in a model



2 Applying DReAMT in Two Studies

transformation definition and the final result in the model transformation im-

plementation.
The cyclical model transformation development process is illustrated in Fig. 1.

The artefacts created and refined in the process are shown as wide boxes in the
middle of the picture. A shaded area connects an artefact to the role that is
primarily responsible for it. Application development consists of several design
phases and there is a separate instance of the DReAMT process for each design
phase.

Fig. 1: Transformation development process and its roles [1, Fig. 1]

The model transformation language is based on patterns and graph gram-
mars. Each pattern implementation in the model transformation implementation
roughly corresponds to one transformational pattern in the requirements speci-
fication. So, the specification and the implementation have the same basic unit
of modularity, which helps contain the effects of incremental changes to the
specifications.

The human decision modeling gives the Transformation Architect and the
Transformation Programmer a way to define the context of a decision. A decision
context is the set of model elements and previously made decisions that affects
this decision. The decision context can be used to automatically reason about
the decision’s validity when the source model has been updated.

The DReAMT tool, which supports the DReAMT approach, is actually two
tools, the interactive model transformation execution environment (DIMTEE)
and the model transformation compiler (DMTC). The execution environment is
built on top of a task-based role modeling tool MADE [2]. The compiler is a
stand-alone program.

MADE is a versatile tool that was originally developed for framework spe-
cialization. DReAMT uses MADE to handle the user interface and to manage
and perform model editing tasks, which is only a small part of the functionality



Mika Siikarla 3

Fig. 2: DIMTEE and DMTC technology stacks

available. MADE itself is integrated with a UML modeling tool. The current
version is integrated with UML2Tools [3], which is built on top of Eclipse [4]
and uses the EMF-based (Eclipse Modeling Framework) UML2 component.

DIMTEE is integrated with MADE and the Eclipse UML2 component. The
UML2 component is based on the Eclipse Modeling Framework (EMF). MADE
is integrated with UML2Tools, which provides diagram editors on top of UML2.
DMTC uses only common Python libraries. The components DIMTEE and
DMTC consist of (light boxes at the top) and depend on (dark boxes at the
bottom) are shown in Fig. 2.

When the user launches a model transformation he gets a list of tasks. Per-
forming one task may bring new tasks to the list. When all the tasks have been
performed, the transformation is finished.

It is not within the scope of this report to explain the DReAMT approach or
tool in more detail. However, the reader does need some knowledge of how the
approach and the tool are used in order to understand the application sections.
We suggest that a reader who wants to know more about the model transforma-
tion development process [1], the model transformation language [5] [6], modeling
human decisions [6] or the tool [7] reads the author’s other publications.

3 Solita Process Language Modeling Tool

3.1 Solita Process Language

This study was conducted in cooperation with Solita Oy. They were developing
a business process management system for an external client company. The goal
of the study was to explore how process modeling could be used at Solita Oy by
developing a process modeling tool prototype. The DReAMT tool was used to
transform a process model into a proprietary XML-based process language used
by the business process management system.

The business process management system runs small business processes, such
as handling a product order. Despite the small size, a process may run for several



4 Applying DReAMT in Two Studies

days or even months. The system contains a process engine, which starts and
stops instances of processes manages them when they are running. The system
receives events from business systems and directs the running process instances,
if necessary.

A process description contains declarations of tasks, which are performed by
humans. A TaskBuilder service within the process engine creates and initializes
tasks and assigns active tasks to users. An external task management system
handles the user responses and updates the state of the tasks accordingly. The
process engine monitors the active tasks and reacts to changes in their states.
Task types are extensions to the TaskBuilder service.

A process description is essentially a state machine. It contains states, which
are called nodes, and transitions between the states. A transition can have a
condition (a predicate) that depends on, for example, external events and time-
outs. Exactly one of the states is active at any given time during the execution
of a process instance. When a predicate on any of the outgoing transitions is ful-
filled, the target of the transition becomes the active state. Even if more than one
condition becomes true at the same time, only one of the transitions is followed.

There are several types of nodes. A so called workphase node has tasks associ-
ated with it. When the state becomes active, the tasks are activated and the task
management system allows users to perform them. A fork node contains descrip-
tions of subprocesses, which are executed in parallel. When all the subprocesses
have finished, the outgoing transitions from the fork node may be triggered. The
execution in the main process does not fork. There is only one active state in
the main process (the fork node) and one in each of the subprocesses.

The process instance also has data that can be used during the execution,
for example the identifier of the product order being processed. The transition
predicates can refer to the process instance’s data.

The process description is given in a proprietary XML format. The majority
of the elements in the XML language are straight-forward, such as node, tran-

sition and predicate. However, the semantics of some XML elements and XML
attributes, for example scheduler and class, are not immediately clear from their
name.

A process description in the XML form is passed to the business process
management system, which creates a Java code component. When a process
instance is started, the Java objects required to hold the process instance’s state
are created. In the beginning the new process instance’s active state is its start
node.

3.2 Setup for the Study

The core of the study was carried out by a researcher (the author of DReAMT)
and a research assistant from Tampere University of Technology (TUT) and a
process designer and the author of the process engine from Solita Oy. Several
other people from both organizations participated in smaller roles. Most of the
work was carried out in about a year’s time in 2009–2010.



Mika Siikarla 5

The process designer had participated in the requirements capture for some
of the business processes, so he knew them very well. He knew the basics of
the process language and its XML format, but had not written any process
descriptions in XML. The author of the process engine had not been involved in
the requirements capture and had only seen a few examples of the real business
process specifications. As the lead designer, he knew the process language and
its XML format thoroughly. Both the process designer and the author of the
process engine had used Eclipse before, but not for modeling. Neither of them
was familiar with the UML activity diagram notation.

The process modeling tool was built by customizing UML2Tools and MADE
and by writing a DReAMT model transformation. The research assistant acted
as the main tool developer and did most of the customization and wrote the
model transformation. He had no prior experience of model transformations or
DReAMT. The researcher supervised the study and did some modifications to
MADE and DReAMT. The process designer and the process engine’s author pro-
vided information about the process language and assessed the process modeling
tool.

The process modeling tool was meant to be used by the people who write the
XML process descriptions based on business process specifications. The process
modeling language was defined as a profile for a UML activity diagram. The
profile defined stereotypes and attributes for the stereotypes. The stereotypes
were used to distinguished between the various node and transition types. Node
type specific details, for example the name of a Java class used for callbacks,
were stored in the extended attributes of the stereotypes. The syntax and visual
appearance of activity diagrams was used, but the semantics were different.

In the process modeling too, the user would first draw the process model
using the UML editor and then launch a model transformation to generate the
XML format. The process model is mostly just a visualization of the process,
so the model transformation from an activity diagram to the XML format is a
syntactic translation. The process modeling tool developer used the DReAMT
model transformation language and tool to create the model transformation.

Because the primary goal was to learn more about the suitability of process
modeling for Solita Oy and not just to create a tool, the plan was to create an
initial tool version early and improve it in cycles. The first version would be
used just for gathering experiences and feedback to find better requirements.
Also, collecting the process patterns can be started when some version of the
tool is available.

3.3 Building the Process Modeling Tool

The process modeling tool developer started by customizing the tool platform.
He added support for profiles and stereotypes to MADE, fixed some bugs in the
interaction with activity diagrams and so on. He also studied about graph-rewrite
systems and model transformations.

The researcher added the ability to process activity diagrams to the UML2
Import component in the DReAMT tool. This was easy, because it only involved



6 Applying DReAMT in Two Studies

modifying the translation model, which is used to generate the import code.
The researcher also helped the process modeling tool developer learn about the
DReAMT model transformation language and about using the DReAMT tool.

After the training for using the model transformation language, the tool de-
veloper wrote the model transformation independently. The DReAMT model
transformation development process was not used, because the model transfor-
mation was merely a mapping. The activity diagram and the process language
had nearly identical structure by design, so the model transformation mostly
just recreated the structure using different node types.

The initial version of the process modeling tool was based on many guesses
about the process language. Technical documentation about the business process
management system and especially the process language had been sent to TUT
and it had been studied there. The documentation was quite technical and had
been cleaned of references to Solita’s client. It was difficult to understand some
aspects of the process language, because the documentation was on a low level
and lacked a real context. The syntax was clear from the XML schema, but the
semantics of, e.g. the different kinds of nodes were not clear.

In principle it would have been possible to design a visual language based on
the syntax alone. However, the aim was for humans to read and write processes
in the language and it was important to know the meaning of concepts and not
just their form. In order to be suitable, a visual language needs to emphasize the
important and hide the less important features.

At this point the process designer and process engine’s author were not yet
directly involved. They were working on other projects, but questions were fre-
quently directed to them, because they knew the most about the business process
management system. Communication was done via email, which is always chal-
lenging. We do not mention these obstacles to chronicle the rare and exotic
misfortunes that befell us. We mention them, because such events are common
in real projects in real environments.

The modeling tool was demonstrated to the process designer and the author
of the process engine. They quickly discovered mistakes in the representation of
the processes. The errors were caused by the initial misunderstandings and lack
of knowledge about the semantics of the process language. When the participants
were in the same location, communication was, of course, much more efficient
than by email. Many of the misunderstandings were corrected in the same session.
Despite its shortcomings the first tool version served its purpose of generating a
lot of feedback.

For the second version of the process modeling tool, the tool developer made
modifications to the process modeling language, i.e. the activity diagram profile,
and to the XML generation. He also made some bug fixes and general improve-
ments to the code. A process model now contained all the same information as a
process description in the XML form. The workflow was visible as activities and
flows, that were stereotyped to mark the various node and transition types. All
the details, such as Java class names for callbacks, were stored in attributes of



Mika Siikarla 7

the stereotypes. In UML2Tools these extended attributes of the elements were
only visible when viewing an element’s properties.

Note that this is not a model marking [8, p. 3-6] approach. The stereotypes
and details are part of the process description and they are used by a process
writer. They are not additional markings used only in the model transformation.

At the same time, the writing of processes had started at Solita Oy. Because
these were the first real processes written in the process language, new require-
ments for were naturally discovered. As a consequence, changes were made to
the process engine’s capabilities and the process language to accommodate to
the new needs.

The process modeling tool still produced process descriptions in the old XML
format. It was presented and delivered to Solita Oy with a user manual. Unfor-
tunately the tool was too difficult to be used without the presence of the tool
developers, despite the manual and a training session. There were also some in-
stability issues with the integration of UML2Tools and the rest of the process
modeling tool. The poor usability and technical problems prevented independent
use of the tool at Solita Oy.

The third version of the process modeling tool produced process descriptions
in the new XML format. A lot of effort was spent to improve the usability and
the stability, but the problems never were satisfactorily solved in the scope of
the project. Even with additional training, the tool was not mature enough to be
used independently. It was therefore decided that the researcher, being familiar
with the process modeling tool and the workarounds to its problems, would use
the tool to model two real business processes. The process designer chose two
processes he considered to be among the most complicated ones.

The two business processes were described in process specification documents
that contained a textual description of a business process and a picture in an
ad hoc workflow notation. It showed the structure of the process, conditions
on transitions and the tasks. The specifications had been written by different
people, but the pictures were similar and closely resembled the activity diagram
notation used in the process modeling tool.

The notation used in the pictures was not formalized. The pictures were
meant only to augment the text. They contained small inconsistencies in the
notation, for example the difference of branching and forking was not clearly
marked and some transitions had been accidentally left out.

The researcher modeled the two processes. The activity diagram representa-
tions closely resembled the pictures in the process specification documents. The
two process models, the produced XML and the tool itself were presented at
Solita Oy and they were discussed.

A modified activity diagram for one of the processes is shown in Fig. 3. The
names of the process, the nodes and the tasks have been changed for confidential-
ity reasons. The structure in the diagram is not changed. The rounded boxes are
nodes and the connecting arrows are transitions. The texts on the transitions
are predicates. The rectangles are tasks and the arrows with the text “using”
connect a workphase node to the tasks it activates.



8 Applying DReAMT in Two Studies

Fig. 3: Process model for creating a new product

The modified process handles the creation of a new product type for a whole-
sale company who sells and delivers products to other companies or franchises.
The process starts at the top and the normal workflow proceeds down. The top
part of the process handles the creation of the product type into the wholesaler’s
information system. The bottom part consists of three parallel paths. The left-
most path deals with instructing regional salesmen to which companies they
should try to sell the new product. The middle path processes delivery contracts
and logistics with the supplier. The rightmost path is for entering the product’s
information into a product databank shared by the wholesaler and its clients.

3.4 Feedback from Solita

The study proceeded in iterations and throughout the study the process designer
and the author of the process engine gave feedback on process modeling and its
suitability for Solita Oy in this context. During the study they gave feedback
in discussions and in email correspondence and after the study they gave a free
form summary. The process designer and the author of the process engine were
given a short list of topics to cover in the summary and they were encouraged
to include any other comments they wished.

Because the model transformation is only a small part in the process modeling
tool, the feedback is not directly about the DReAMT tool. However, the process



Mika Siikarla 9

designer and the author of the process engine make interesting observations,
which we find relevant from the point of view of developing model transfor-
mations, modeling language design and application of modeling (and thus also
applying MDE). For completeness, we provide most of the generic feedback as
well, although in an abridged form.

According to the feedback, the visual notation for the process model makes
the structure of the business process easy to understand. Examining details, how-
ever, is difficult. The visual notation did not contain or highlight non-essential
aspect, but some relevant features, for example attributes of nodes, were hidden.
Making all the details visible would clutter the process and obscure the process
structure. Some parts of the UML activity diagram notation were considered
difficult to understand.

Understanding of the uses of process modeling grew during the study and
many initial assumptions were discovered to be wrong. The process modeling
tool produced and delivered did not abstract from the XML, that is, it did
not remove the need to manipulate and understand the details present in the
XML. Either the details need to be added into the visual process model or they
have to be added to the XML after it has been generated. Modifications to the
XML would be lost if the XML was generated again. For these reasons, the
process modeling tool is not very useful for a process writer, even if the technical
problems were fixed.

The model transformation is not very visible to the process modeling tool
user, so there is not much feedback about it. It correctly translated the infor-
mation in the extended activity diagram form into the XML form. Optional
attributes for nodes could be set and default values changed during the XML
generation. However, changing the values requires detailed understanding of the
XML format.

The process modeling tool served its purpose in helping explore process mod-
eling in Solita’s context, but it turned out that the need for a modeling tool are
different from the initial guesses. Therefore the process designer and the author
of the process engine did not consider a process modeling tool with these features
to be suitable for use at Solita Oy.

With the experience and increased understanding of the potential and uses
of process modeling in Solita’s context, the author of the process engine and the
process designer described what kind of a process modeling tool would be most
useful. The most important purpose for a process modeling tool from Solita’s
perspective is to make creating business processes easier, so that the user does
not need to know the details of the process language.

A process modeling tool should be well aware of the process language, so it
could help and guide the user with difficult actions. The tool could guide the
user, e.g. by requiring mandatory attributes to be given and suggesting default
values for optional ones. This information is already in the XML schema, and
could perhaps be used in the process modeling tool to adjust its behaviour.

Such a tool would complement direct XML editing instead of replacing it.
The graphical notation and the UML2Tools editor work well for creating and



10 Applying DReAMT in Two Studies

modifying the structure of the process, but the details need to be modifiable as
well. The structure of the process could be viewed and modified in visual form
and details added into the XML. A round-trip engineering functionality would
allow propagating changes between the process model and the XML without
losing information. It should also be possible to start with either format and
generate the other.

A process modeling tool should support incremental process development, so
that a sketch of a process could be gradually refined and augmented with the
necessary details. The tool could maybe be used in the requirements capture
phase to draw an initial sketch with the bare amount of details. The sketch
would then be passed on to a process writer more as a specification than as
an incomplete process description. It is not certain that such use of the tool
would reduce the total effort, but it would help people with different skill sets
to participate in implementing a business process.

The appearance of various visual elements should be customizable. This
would help visually distinguish between nodes whose type is the same, but that
have some specific values for its attributes. For example, a node that triggers an
asynchronous external operation could look different from normal nodes.

3.5 Observations and Conclusions

Because the model transformation was such a clear translation from one format
to another, and especially since the business process model was shaped following
the XML-format, the DReAMT process was not used. So, this study evaluates
only the use of the DReAMT model transformation language and the DReAMT
tool for developing model transformations.

The process modeling tool developer designed and wrote the first version of
the model transformation and each update on his own. The author of DReAMT
participated in designing the process model and visualizations for several of the
process language concepts and provided a little assistance in bug hunting, but
did not write any pattern implementations or application rules.

This was the first time the process modeling tool developer used DReAMT.
He had no problems with writing the implementation in the model transforma-
tion language nor with using the model transformation compiler DMTC. There is
no real debugging support, which would be vital in a finished production quality
tool set. So, there were a few bug hunt sessions, where he needed help.

The researcher added support for UML activity diagram elements into the
DReAMT tool. This was very easy due to the translation model that is used for
generating the model import component.

We conclude that the DReAMT model transformation language and tool can
be used with little initial training and that extending it to work with new types
of UML diagram notations is easy.

The goal of the study was not to apply MDE to business process implemen-
tation at Solita Oy. However, exploring the possibilities for modeling and code
generation are close to what could be a first stage in applying MDE. We there-



Mika Siikarla 11

fore think that some observations made in this study could be generalized for
many MDE attempts.

In this case, there was no particular process of how a business process speci-
fication becomes a business process implementation. The natural language spec-
ification is just handed to a process writer who somehow writes an XML file.
No one knew initially what would be the best place for modeling, what should
be modeled or how. The understanding of these issues slowly grew during the
development of the process modeling tool. One of the modeling languages—the
XML format for the business processes—evolved during the development. Many
initial guesses were wrong, including such fundamental issues as the best target
group for the modeling and tooling.

Such challenges are typical to software development and we have argued that
they are typical for its small subset, model transformation development, too. If
models and high quality model transformations had been developed based on
only these bad guesses, it would have been a disaster. A thorough analysis prior
to developing the model transformations would have delayed the start of imple-
menting the business processes and would not have helped in the end, because
some problems were discovered only while the real business processes were being
implemented. We see this as support to our claim that model transformation
development should happen iteratively and in parallel to development of the
application (in this case business process implementations).

We also take this opportunity to examine the reasons the process modeling
tool was not found useful. The tool should have allowed crafting business pro-
cesses easier than with XML. However, the business process model contained
all the same information as the XML format. Nothing was abstracted away. Al-
though the overall structure of the process was easier to see, the details still
needed to be added.

The modeling language was just a different syntax for the same content.
That does not raise the abstraction level. Just adding a proper “model” or a
visualization does not help on its own. The abstraction level must be raised
by leaving out details, in order to gain much benefits. The process description
already had a structured well-defined form, so having a (UML) model did not
add anything new.

Another reason for the unsuitability of the process modeling tool was that the
values of some properties were much more important than expected. The pro-
cess engine has many extension points and some properties of nodes determine
the extension to use. Two nodes with different values in such a field could be
semantically very different and hiding this distinction in the visual notation ac-
tually makes the process more difficult to understand. This is the reason why the
process designer and the author of the process engine mentioned customizable
appearance for subtypes of elements.

We think a better use for the process modeling tool would have been in the
requirements capture, where a process model and its visualization could replace
the sketches made with a regular drawing program. In that way, it might have
even been possible to use the first process not only to visualize the process struc-



12 Applying DReAMT in Two Studies

ture but also to simulate some usage scenarios. The business experts involved in
crafting the business process specification would have been able to run previously
defined or ad hoc usage scenarios to look for any obvious logical mistakes.

4 A Flexible Modeling Tool System

4.1 Trinity

This study was conducted at Tampere University of Technology. The Trinity
project had developed flexible modeling tool system called Trinity, which allows
manipulating incomplete and even inconsistent models. The Trinity project was
going to build a component that informs a modeling tool user how the model is
inconsistent with its metamodel. The goal of the study was to develop a process
and tool support for creating inconsistency rule sets based on the differences
between the metamodel and what actually is allowed in the tool. The DReAMT
approach was going to be used to develop a model transformation to assist in
creating such rule sets.

For the purposes of this study, the Trinity system consists of a model reposi-
tory and integrations to various modeling and reporting tools. The model reposi-
tory is a relational database and the tool integrations communicate with it using
an object-relational mapping component. The integrated tools themselves can
vary from modeling environments like Eclipse UML2 to drawing tools with some
diagram support, e.g. Microsoft Visio, and reporting tools such as Microsoft
Excel or Word.

In reality Trinity contains much more. The model repository is distributed,
not local and centralized; tool integrations can communicate with each other
using an agent architecture; models can be annotated, reviewed and linked to
each other; and models can be versioned. For the purposes here, however, the
simplified view of Trinity suffices.

The tool user does not directly edit the model with the tool, instead he edits
a view of the model. A view is a tool specific representation of a full or a partial
model and can contain graphical and textual elements and information such
their size, position and colour. The elements in the view are also linked to the
elements in the model. Both the view and the model are stored in the model
repository. The model repository also contains a metamodel both for the model
and for the view. There can be more than one view to a model and the views
can be for different tools.

Trinity is integrated to a modeling or reporting tool by building a component
specifically for that tool. The component observes the tool user’s actions, e.g.
drawing an element or connecting elements, and interprets their effects on the
view and the model. The changes are reported to the object-relational mapping
component, which stores them in the repository.

4.2 Incomplete and Inconsistent Models

Trinity allows incomplete and inconsistent models because of the view that mod-
eling is more than just entering the finished model into a tool. Modeling is pri-



Mika Siikarla 13

marily a creative design activity and the role of the model changes during it.
Especially in the early stages the model may be used for communicating and vi-
sualising ideas and thoughts. Such sketching should not be restricted by demands
of completeness and full compliance with the modeling language. A modeling tool
should assist in the modeling work and not just in recording its result.

Also a method or an ad hoc way of working can benefit from the flexibility.
For example, a method might state that the properties and classes of a subsystem
are identified independently and they are combined in a separate step. Without
any tool support the designer could first list the properties and the classes, group
related properties together and then assign the groups to classes. The properties
in a group become class properties of the class. With flexible modeling tool
support, the designer could draw class properties without a class, visually group
them and then move them into classes. If the tool is inflexible, the actual design
work has to be done outside the tool, e.g. on pen and paper, and only the end
result is entered into the tool.

At some point in the modeling, when the sketching is over, it is important that
the model is and stays consistent with the modeling language. For instance, when
the model has already gone through several iterations and only small incremental
changes are being made, the changes must not break the model. To make full use
of the model it should be complete and consistent when it is used, for example
for generating code, simulating or testing. The usage dictates where in between
permitting “everything”and full consistency the model consistency requirements
should be set at a given time.

In addition to the modeling language itself, guidelines and profiles for the
domain, organization or project may place restrictions on the model. Restrictions
may affect the content, i.e. the model, and the appearance, i.e. the view data.
For example, it may be required that classes have unique names within their
namespace, or that in a workflow diagram the default path is laid out from left
to right.

It is not possible or feasible to remove all restrictions on the models. A
modeling tool can not help the user much if it can not make any assumptions
about the model. The modeling tool interprets the user’s actions in a certain
way and thus excludes some options.

For example, when the user is drawing a line that represents an association
and moves the end of the line over a class, the modeling tool assumes that
the user intends to attach the association’s end to the class. The modeling tool
follows the UML class diagram metamodel and creates a link with the label type

from the association’s end to the class. However, no user action can connect
these model elements with a link that is used between a class method and its
parameter.

The interpretations that are coded into the integration component for a mod-
eling tool impose restrictions, which in fact define a modeling language. This
implied modeling language is a superset of the actual modeling language, i.e. it
is more permissive. In Trinity it is considered, that there is an abstract meta-
model, so called relaxed metamodel for the implied modeling language. The re-



14 Applying DReAMT in Two Studies

Fig. 4: The model repository’s view of relaxed metamodel

laxed metamodel is specific to a modeling language, but also to a modeling tool
and its integration component.

Each model of that language must comply with the restrictions defined by the
relaxed metamodel. No collection of restrictions, including the actual metamodel
of the language, can be looser than the relaxed metamodel.

From a purely implementation point of view, the model repository only re-
quires that models consist of elements and links, both of which are typed. Links
can have one or more ends, each of which is connected to an element. There
are no restrictions on the types, so a class diagram may contain elements from
a mind map and a link that should be between a state and a transition may
be placed between two classes. These loose restrictions form a very permissive
metamodel (Fig. 4), which is used for all the models regardless of the modeling
language.

4.3 Setup for the Study

The study was carried out by the main researcher from the Trinity project and
the author of DReAMT, who worked in the MoDES project. At the time of this
writing, the study is still continuing and the work reported here was carried out
in about a month’s time in the beginning of 2010.

The goal was to build a model transformation to support the process of pro-
ducing a model consistency rule set based on the metamodel and the relaxed
metamodel of a language. The rule set creation process was at this stage re-
stricted to UML class diagrams viewed and modified in Microsoft Visio. It was
planned, that later the process would be generalized to apply to a wider context.

There was no rule checker component and no rule checking language yet at
this point. So, there was no suitable intermediate language, which could capture
the rules. It was therefore decided that the model transformation would produce
the rule set in a simple XML format that lists the conflicting conditions. It was
understood, that this format would not be the final modeling language and that
once the rule checker component was developed, the target modeling language
for the model transformation would change radically.

The Trinity researcher acted as the Design Phase Expert and the author
of DReAMT acted as the Transformation Architect and as the Transformation
Programmer. The Trinity researcher knew in detail how the Visio integration
component worked and what limitations there were to editing the class diagrams.
He also had ideas of specific consistency rules that should be enforced. However,
he could not immediately craft an explicit relaxed metamodel nor could he list



Mika Siikarla 15

detailed reasoning based on the differences in the relaxed and normal metamod-
els. The Trinity researcher had basic knowledge of model transformations and
very little knowledge of DReAMT.

The author of DReAMT knew DReAMT thoroughly and as a model trans-
formation researcher had good knowledge of model transformations. He had very
little knowledge about the Visio integration, the relaxed metamodel or required
consistency rules. Both participants had good knowledge of modeling and specif-
ically modeling with UML.

4.4 Building the Model Transformation

First the participants met a couple of times to agree on the scope of the study, its
goals, etc. After that they met roughly once a week in a room with a whiteboard.
The whiteboard was used heavily to draw correspondence examples, metamodel
and model fragments and to write patterns and consistency rules. The white-
board was photographed when a session ended and when the whiteboard got
full. The Transformation Architect then translated the information in the pho-
tographs into the DReAMT process artefacts offline. One of the photographs is
shown in Fig. 5.

The Design Phase Expert and the Transformation Architect focused on craft-
ing the relaxed metamodel and listing correspondence examples, consistency
rules and reactions to the violations of the rules. A correspondence example rep-
resents a fragment of the source model(s) and a fragment of the target model(s).
In this case the source models are the normal and relaxed metamodel and the
target model is the consistency rule model. The source model fragments express
a class of conflicts between the metamodels. They were given as class diagram
fragments. The consistency rules and the reactions were just written as text.

For instance, the correspondence example in Fig. 6 shows a case where the
metamodel requires an instance of a type (Y in the figure) to be always be
contained within an instance of another type (X), but the relaxed metamodel
permits stand-alone instances. A concrete example is the metamodel requiring
class properties to be placed within classes.

When a designer is creating the consistency rules, they need to consider
many things. Although a conflict between the actual metamodel and the relaxed
metamodel always means that a model can be inconsistent, it does not necessarily
mean that a rule should be generated.

The rule checker component will need to react to the modeling tool user’s ac-
tions very fast and without slowing down the computer. The designer may deem
that checking for some particular conflict would likely happen too frequently or
be too slow to be suitable for an interactive application. Other conflicts might
be unimportant or so frequent that notifying the tool user would be annoying
instead of being helpful. It could also be, that checking for one conflict can be
combined with checks for other conflicts or in general needs to be handled in
an exceptional way. For these reasons, the model transformation can not be
automatic.



16 Applying DReAMT in Two Studies

Fig. 5: Whiteboard full of correspondence examples, rules and fragments

The Design Phase Expert already knew before the transformation develop-
ment process even started that some consistency rules were going to be needed.
They were collected and they acted as a rough measure of how complete the
transformational pattern system is, because all the rules should be found during
the consistency rule creation process. If they are not found with the help of the
patterns, then they need to be manually discovered by the designer.

Some correspondence examples were found by analyzing concrete conflicts
between the normal and relaxed metamodel. Because there was no concrete
relaxed metamodel, this step was not systematic. Correspondence examples were
also found by looking at the list of consistency rules that should be found and
trying to find a reasoning for them in the differences between the metamodels.



Mika Siikarla 17

Fig. 6: Correspondence example for mandatory/optional container

In total about a dozen correspondence examples were found and refined into
transformational patterns and implementation.

Because there was no explicit relaxed metamodel, there was nothing to exe-
cute the model transformation against. For this reason, the model transformation
implementation step was skipped for the first few iterations. Instead, the trans-
formational patterns were applied manually to selected parts of the metamodels
by drawing the result on the whiteboard.

4.5 Observations and Conclusions

The iterations took roughly a week each, and both participants were busy with
many other things at the same time. Having concrete artefacts in the form of cor-
respondence examples and transformational patterns helped continue the work
where it had been stopped the last time.

A fully automatic model transformation could not have been used in this
case, because the designer’s decision in two identical looking situations can be
different. In fact, the designer needs to make quite many decisions. If the relaxed
metamodel is changed, the validity of these decisions needs to be checked some-
how. Decision context provided a convenient way to express validity conditions
for decisions.

Because the transformational patterns were based on clearly specified con-
flicts between two metamodels, the decision contexts were easy to define and
they were very small. For example, in the case of mandatory/optional contain-
ment, the conflict is the multiplicity of 1..1 in the metamodel and 0..1 in the
relaxed metamodel. If the multiplicity on either metamodel changes, the asso-
ciation is no longer a containment association or the association is not between
the same metaclasses, the decision becomes invalid, otherwise it is valid. This
can be captured in a decision context.

5 Conclusions

In this report we discussed the application of DReAMT approach to model
transformation development and the supporting tool. The tool was applied in
two studies, one with Solita Oy and the other with a research project at TUT.
The DReAMT approach was applied in the TUT research project.



18 Applying DReAMT in Two Studies

The two studies reinforced our opinions that (i) the DReAMT approach can
be used to develop model transformations; (ii) interactive model transformations
are flexible; (iii) decision modeling makes automatic decision reuse possible; and
(iv) the DReAMT tool can be used by people other than its author.

Acknowledgements

We would like to thank Solita Oy for the process modeling tool study and espe-
cially Antti Tirilä and Markus Kauko for their important roles in it. We would
also like to thank Jari Peltonen for the flexible modeling tool study and for his
effort as the Design Phase Expert. We owe thanks also to Mikko Hartikainen for
developing the process modeling tool and the contained model transformation
for the process modeling tool study.

References

1. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations have to be
developed, ReST assured. In Vallecillo, A., Gray, J., Pierantonio, A., eds.: The-
ory and Practise of Model Transformations, First International Conference, ICMT
2008, Zürich, Switzerland, July 2008, Proceedings. Volume 5063 of Lecture Notes
in Computer Science., Springer (July 2008) 1–15

2. Hammouda, I., Koskinen, J., Pussinen, M., Katara, M., Mikkonen, T.: Adaptable
concern-based framework specialization in UML. In: Proceedings of ASE 2004, IEEE
Computer Society (September 2004) 78–87

3. Eclipse: Model Development Tools (MDT). (2009) On-line at
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

4. Eclipse: Eclipse - an open development platform. (2007) On-line at
http://www.eclipse.org/.

5. Siikarla, M., Systä, T.: Transformational pattern system - some assembly required.
In Bruni, R., Varró, D., eds.: Proceedings of GT-VMT 2006. (April 2006) 57–68

6. Siikarla, M., Systä, T.: Decision reuse in an interactive model transformation. In:
12th European Conference on Software Maintenance and Reengineering, CSMR
2008, April 1-4, 2008, Athens, Greece, IEEE (April 2008) 123–132 On-line at
http://dx.doi.org/10.1109/CSMR.2008.4493307.

7. Siikarla, M.: DReAMT: A tool set for interactive model transformations. In: Pro-
ceedings of the Nordic Workshop on Model Driven Engineering, NW-MoDE’08,
Reykjavik, Iceland (August 2008) 1–15

8. OMG: MDA guide version 1.0.1 (2003) On-line at
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf .

http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/
http://dx.doi.org/10.1109/CSMR.2008.4493307
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf


Tampereen teknillinen yliopisto 
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FIN-33101 Tampere, Finland


