

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 17
Tampere University of Technology. Department of Software Systems. Report 17

Veli-Pekka Eloranta & Kai Koskimies�
�

�����������	�����AB�CADE�F��
�

Tampere University of Technology. Department of Software Systems
Tampere 2011

ISBN 978-952-15-2660-2 (printed)
ISBN 978-952-15-2661-9 (PDF)
ISSN 1797-836X

SUMMARY

Sulava Scrum Survey Results

Report, 27 pages, 3 appendix pages

September 2011

This document presents the results of interview survey on Scrum practices and practices

of architecture work in agile development methods. Survey was carried out between

September and December in 2010 and 12 companies participated in the survey.

The survey was carried out by interviewing architects, designer and managers of the

companies. So called Nokia test was used as a part of interview questions to find out

how agile companies are. In addition, Nokia test reveals much about the Scrum practices

used in a company. Other questions of the interview concerned the architecture work in

Scrum.

The results do not present the practices or agility of the whole company. The results

are in many cases based on views of single design team or views of couple of teams.

The main results include research on which Scrum practices are widely adopted and

which are not. The results show that many companies are struggling with the Product

Owner role. Product Owner role is in many cases the bottleneck as there are so many

responsibilities for the Product Owner. Furthermore, sometimes the Product Owner role

is completely neglected and the Scrum team is working directly with the customer or

Product Owner is taken from the team and there is a long chain of managers between

Product Owner and the customer.

The results also show that there are at least three way to carry out architecture design

while using Scrum: Sprint 0, separated architecture process and creating the architecture

in sprints by the team. These approaches have their own pros and cons and there is no

one answer which of them should be used. One should inspect and adapt and choose

which approach suits the best the situation at hand.

Table of Contents

1 Introduction . 1

2 Scrum in a nutshell . 1

2.1 Scrum Roles . 2

2.2 Scrum meetings . 2

2.3 Burn-down charts . 3

2.4 Concept of "Done" and technical debt . 3

3 Scrum Survey Results . 4

3.1 Survey Overview . 4

3.2 Sprint length . 6

3.3 Testing in sprints . 7

3.4 Enabling specifications . 8

3.5 Product Owner . 9

3.6 Product Backlog . 12

3.7 Work estimates . 13

3.8 Sprint Burndown chart . 14

3.9 Team disruption . 16

3.10 Team self-organization . 17

4 Architecture and Scrum . 18

4.1 Architecture work in Scrum . 18

4.2 Architecture documentation . 22

4.3 Architecture tools . 23

4.4 Architect role . 23

5 Scrum Best Practices . 24

5.1 Daily Scrum . 24

5.2 Burn-down charts . 24

5.3 Estimating product backlog items . 25

5.4 Product Owner team . 25

5.5 Team Sprint . 25

5.6 Question Hour . 26

5.7 Distributed Scrum . 26

6 Conclusions . 26

References . 27

Appendices

Appendix 1: The interview questions

Appendix 2: The Nokia test scoresheets

Glossary

ADD Architecture Design Document is a document describing the software architec-

ture of the system.

CSM Certified Scrum Master.

CSPO Certified Scrum Product Owner.

HIL Hardware-in-the-loop simulation. A technique that is used in the development and

test of complex real-time embedded systems.

HW Abbreviation for hardware.

Nokia Test A simple way to determine if team has basic Scrum practices in place.

PB See Product Backlog.

Product Backlog The product backlog is the master list of all requirements (function-

ality and non-functional requirements) in the product. Items in this list are called

PBIs.

PBI Product Backlog Item (PBI) is a work item in product backlog which typically are

expressed as user stories, use cases and UI protos.

PO See Product Owner.

Product Owner Person who represents the stakeholders and the business in Scrum.

ROI Return on investment.

SW Abbreviation for software.

Scrum Master Person who maintains the Scrum process. Fights impediments in order

to enable the team to perform better.

1

1 Introduction

This document presents the results of interview survey on Scrum practices and practices

of architecture work in agile development methods. The survey was carried out between

September and December in 2010 and 12 Finnish companies participated in the survey.

Companies were mainly from the domain of embedded real-time control systems.

The survey was carried out by interviewing architects, designers and managers of

the companies. So called Nokia test [1] was used as a part of interview questions to find

out how agile companies are. Other questions of the interview concerned the architec-

ture work in Scrum.

Section 2 introduces Scrum and its main concepts and practices. Section 3 summa-

rizes the results of the Nokia test questions. Architecture work practices in Scrum are

presented and discussed in Section 4. Furthermore, Scrum process best practices were

also collected during the interviews. These best practices are presented in Section 5.

Section 6 finally concludes this paper.

2 Scrum in a nutshell

This section and subsections summarize Scrum framework and its most important con-

cepts. The scrum process is visualized in 1. Scrum uses two to four week iterations

called sprints. Every sprint produces potentially deployable product or increment to the

product. Product backlog is an ordered list of features containing every desired feature

or change to the product. Product backlog items (PBI) are usually described with a user

story or a use case. User interface sketches and other specifications are linked with the

user stories or use cases as necessary. All stakeholders of the product can add or remove

any PBIs whenever they want.

Fig. 1. Scrum process bases on sprints which have length of 2 to 4 weeks [2]

2

The team selects a subset of PBIs to the sprint and commits to finish those during the

sprint. Sprint backlog is formed from those selected PBIs. Sprint backlog contains tasks

that are required to complete the selected PBIs. Sprint backlog is owned by the team

and no one else can make changes to it. Every day during the sprint, a brief (15 minutes

or so) meeting called daily scrum is conducted. There each team member answers three

questions: "What have I done since last daily scrum?", "What will I do until the next

daily scrum" and "What kind of problems have I encountered?".

2.1 Scrum Roles

There are three different kind of roles in Scrum: Development team, product owner

and Scrum master. Development team typically has from five to nine members. The

team does not have traditional software engineering roles such as programmer, designer,

tester or architect. The team is self-organizing unit and its members choose by them-

selves the tasks that they will do. Team selects items from the top of ordered product

backlog which they will do during the next sprint. Team collectively commits to com-

plete the tasks which they have selected. At the end of a sprint, the team should be ready

with a potentially shippable product or increment to the product. It is also responsibility

of the team to create work estimates for the tasks. Each task should be split to so small

unit that it will take from two hours to two days to complete the task.

Product owners job is to optimize return on investment (ROI) for the enterprise. ROI

comes from progress towards a vision of products for the enterprise. ROI may mean

anything: customer satisfaction, monetary interests, environment values, etc. Product

owner is the point of contact from the team to the customer, however product owner

should never be representative of a customer. Product owner presents customers inter-

ests to the degree that is in line with the interests of the company. The most important

task of a product owner is to manage the product backlog (PB). PB should be prioritized

and up-to-date. In addition, product backlog items (PBIs) should be specified in detail,

so that items are enabling the team to implement them. Product owner also decides if

the outcome of a sprint is ready for shipping.

The Scrum master is responsible for making sure the team is as productive as pos-

sible. The Scrum master does this by sustaining and developing the Scrum process,

by removing impediments, by shielding the team from outside disturbances and so on.

Scrum master should keep list of encountered impediments that he/she should work

on. This list is only for the Scrum master. The Scrum master also organizes and runs

meetings: sprint planning, sprint reviews and daily scrum meetings. The Scrum master

should not give technical input to the team nor direct their decisions in any way.

2.2 Scrum meetings

In the following subsections, different kind of meetings that take place in the Scrum

process are described.

3

Product planning meeting

Product planning meeting is a meeting where all the stakeholders come together with

their input for the product backlog. This meeting typically takes place in between

sprints, or at the end of iteration n-1 in prepraration for sprint n.

Sprint planning meeting

In sprint planning meeting team, Scrum master and product owner are present. In this

meeting team selects PBI from the top of the product backlog that they will do in the

sprint. Team knows its velocity in story points. Velocity means the amount of story

points the team can do in a sprint. According to this number they can choose correct

amount of PBIs to take into the sprint. Team then splits PBIs in to tasks which are from

two hours to two days in size (not estimated in hours tough) and puts those tasks in to

sprint backlog. Planning poker should be used to create the relative work estimates for

PBIs. No hours for estimation should be used.

Sprint review meeting

Product owner, scrum team and the Scrum master should participate in sprint review

meeting along with management, customers and developers from other projects. The

purpose of this meeting is to assess the project against the sprint goal determined in the

sprint planning meeting. Team should not spend more than one hour preparing for the

meeting. If the clients (PO and customers) are not satisfied with the results, the project

will continue. It will be off by one sprint and people involved will inspect and adapt in

the next sprint: what to do to meet the expectations of PO and customers?

Typically after sprint review meeting team has its own retrospective. The purpose

of retrospective is to identify the things that the team is doing well that they should

continue doing; things they should start doing in order to improve; and things that are

keeping them from performing at the best and that they should stop doing. Typically

product owner does not participate in this meeting, but the Scrum master participates.

2.3 Burn-down charts

Scrum uses burn-down charts as a central project management tool. The idea is to ac-

count for the time spent in the future. Time already spent can not be recovered and

there is no point to track that. Burn-down chart helps the team to train they estimation

skills, it shows how precise the estimates are. Scrum master also uses burn-down charts

to see that the team is on track. If the team is not on track, the Scrum master can take

corrective action: support a change of assignments within the team, bring resources to

bear, etc. The burn-down chart should be updated daily. Team members should update

their estimates of time remaining per task. However, one should consider using TRACK

DONE [3] pattern with burn-down charts.

2.4 Concept of "Done" and technical debt

Defining when the task is done is important in Scrum. Usually a task is done when there

is no remaining work meaning usually that design, coding, refactoring, documentation

4

and everything else that adds business value is done. In the end, it is the responsibility

of the team to agree what "done" means. The reason for this concept is that the product

owner should be able to ship the sprint result immediately after the sprint is over.

Sometimes if the team falls behind near the end of the sprint, a bad Scrum master

may push the release through, insisting that the team delivers the functionality while

leaving re-factoring, code inspections, and documentation without attention. As refac-

toring is not a scheduled activity and because deployed code is rarely revisited, refac-

toring, code inspections and such rarely makes it onto the product backlog in future

sprints. Eventually this work-not-done will slow team down. This work-not-done is

called technical debt and it may accumulate from sprint to sprint.

3 Scrum Survey Results

In the following subsections, the results of the survey is presented. The results are

accompanied with discussion on how the things should be done according to Scrum.

However, one should take into account that company might have already inspected and

adapted and drifed further away from the Scrum framework described in the literature.

3.1 Survey Overview

In this subsection, the main results of Scrum survey are presented. The survey was

carried out by interviewing software architects, product managers, project managers

and software engineers in Finnish companies. Interview questions can be found from

Appendix 1. Interview questions included questions from so called Nokia test [1] (also

known as Scrumbut test).

Originally the idea of Nokia test was introduced in 2005, when Certified Scrum

Trainer Bas Vodde was coaching teams at Nokia Networks in Finland and developed

the first Nokia test focused on Agile practices. He had hundreds of teams and wanted a

simple way to determine if each team was doing the basics [4].

Nokia test cannot be taken as a scientifc method for evaluating how agile organiza-

tion is or how well they are implementing Scrum. Even so, it has some value as it gives

a rough estimate how Scrum is implemented. The results are comparable to each other

as the grading for each question is carried out by the same person and with the same

criteria. However, the results are not repeatable by other persons.

Nokia test consists of nine questions that investigates different aspects of Scrum:

sprint length, concept of done, enabling specifications, product owner, product backlog,

work estimates, sprint burndown charts, team disruption and team self-organization.

During the survey these questions also revealed best practices to the interviewers.

It should also be noticed that the results do not present the overall situation in a

company. It just reflects the practices of the teams that the interviewed person is in-

volved with. If a person(s) from another team(s) had been interviewed, the results could

be radically different.

Summarized results of the Nokia test are illustrated in Fig. 2. In Fig. 2 the results are

average values of all questions of each company. Darker color presents results of com-

panies that are participating in Sulava project. Lighter color present other companies.

5

Fig. 2. Final scores from the Nokia test. Companies participating in Sulava project are drawn in

red colour.
Table 1. Nokia test results in numbers

Company Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Average

A 10 7 10 0 6 5 0 3 5 5.1

B 10 4 4 2 4 1 2 2 1 3.3

C 10 5 8 1 4 5 7 1 8 5.4

D 10 7 7 6 6 9 8 5 9 7.4

E 10 3 8 3 7 8 7 1 5 5.7

F 10 1 5 4 4 5 3 1 7 4.4

G 2 5 6 0 4 7 3 3 0 3.3

H 10 5 5 0 0 1 2 0 0 2.5

I 10 1 4 5 3 8 6 10 5 5.7

J 10 7 4 4 6 8 0 6 8 5.8

K 10 9 7 6 4 8 4 6 7 6.7

According to Jeff Sutherland [1] typical Scrum Certification course average on Nokia

test is 4 out of 10. At the end of a course, on average, participants think they can get

their teams to score 6 out of 10 [1]. Table 1 presents the results to each question and

overall scores as numerical data.

Scoring of each question was carried out by both interviewers (Veli-Pekka Eloranta

and Jyri Vuorinen) separately. Afterwards scoring results were discussed and differ-

ences of two or more in scoring was discussed and resolved. In this way, misunder-

standings in answers was avoided.

For other results of the test one might want to take a look at [5]. There are results

from 778 (situation 19.11.2010) nokia tests. However, scoring from one to ten is not

used there, but tracing back scores from the table 1 and by using the Appendix 2 one

can have comparable results.

6

3.2 Sprint length

The first Nokia test question covers iteration length. The scores for this question are

illustrated in Fig 3. Only one company was not able to score ten points from this ques-

tion. Here ten points can be achieved by having fixed length iterations that last 4 weeks

or less. Fixed length of a sprint is important as the release plan is created according to

the sprint length. If the sprint length varies, no accurate release dates can be estimated

basing on velocities of the teams and sprint length. Variable sprint length also is a signal

that the team does not (or can not) really commit to the work they take into the sprint.

The team does not need to deliver on a certain date, they just can make the sprint longer.

Fig. 3. Nokia test scores for question on iteration length.

Interviewed companies can be divided into two categories: to ones that have their

own product (5 companies) and to those who do subcontracting and customer projects

(6 companies). However, almost all interviewed companies reported that the most suit-

able sprint length is two to three weeks, while many companies prefered two weeks.

Many of the companies started with four week iterations but found out that four weeks

is too long. In many cases, priorities of PBIs changed drastically during four weeks.

In addition, there were many disruptions, e.g. bug fixes, service requests, emerging re-

quirements and such, that the team could not respond to. When the sprint length is

shorter, these changes can be taken into the next sprint as the current sprint will end

in two weeks at maximum. In this way, the customer or another department or another

team requiring the changes can be kept satisfied with the response time.

Some companies reported that three week sprint is also too lengthy. However, none

of the interviewed companies said that shorter than two week sprint was good. Some of

the companies had tried sprints of one week or week and a half. The overhead caused

by sprint planning and review was too big in such sprints and the teams switched back

to two week sprints. In addition, some companies reported that the product owner or

customer was too busy to attend to sprint review meetings that often.

7

Even though sprint length of two weeks was recognized to be good, there were a

couple of problems with it. For example, if the team was working for multiple projects

it caused situations where the team got so many change requests that they did not get

anything done in a sprint. However, this problem is not related to sprint length but to

product owner failure as all change requests should go through product owner to product

backlog. Another reason why two week sprints were not used, was hour reporting. One

company reported hours to the client monthly, so they have decided to do one month

sprints even though they felt that the optimal length of a sprint is two weeks.

3.3 Testing in sprints

The second question of the Nokia test concerns the state of the software after each

sprint. How it is tested within a sprint and is it deployable at the end of the sprint.

Fig. 4 summarizes the results of this question. In this question there was a lot more

divergence in the answers than in question one. However, all interviewed teams carried

out unit testing within the sprint. This is more or less the result of automated tests.

One company could have deployed the software after each sprint, but they did not dare

to do so. This was due to two reasons: they did not trust the maturity of the software

enough and the customer had refused to have new updates every two weeks. That’s why

the team created releases every now and then and did not deploy the software every

two weeks. However, critical bug fixes were deployed immediately after a sprint when

necessary. In this particular company also all documentation related to new features

were ready at the end of the sprint.

Fig. 4. Nokia test scores for question on what is the state of the software after each sprint.

In this question the scoring is a quite problematic as it depends on how one defines

what the product is. If product is piece of code that some other team or company uses,

how can you deploy that? In this case delivering the code to the team or to the client can

be interpreted as deployment. However, this also makes a sprint review meeting hard as

the code might be hard to demonstrate.

8

A typical problem in mobile working machine domain related to this question is

that testing of the software takes very long. It might take over three months to test

the software so that it is ready for deployment. Maybe in this case, concept of "done"

should be redefined so that it is enough that the software is HIL tested (HW involved in

the implemented feature) or tested in a simulator (in case of pure SW feature).

In many of the interviewed companies the Hudson [6] continuous integration tool

was used to tackle this testing problem. Some companies also had added testers as

Scrum team members in order to be sure that the software is tested and "done" at the

end of the sprint. In many companies water fallish thinking still lived within sprints.

During the sprint, the implementation was done first and then a week before the sprint

review meeting the team started to test. Some companies even had separate sprints for

implementation and testing. However, that is far from the Agile ideology. The features

should be tested as you go - immediately after they are implemented. However, it might

be useful to have some kind of feature freeze when there is say one day left in the sprint.

In this way, there is time for the team to polish the code and fix possible bugs.

3.4 Enabling specifications

Third question of Nokia test is about enabling specifications. Accurate scoring of this

question is quite problematic as in the interview no examples of specifications were

seen. That created the problem how to distinct between poor and good user stories.

Highest scores (above 7) were given when the company had just in time specifications

that were ready just when they were needed. In addition, the specifications had links

to other more detailed specifications and UI protos when needed. Figure 5 shows the

results for this question.

Fig. 5. Nokia test scores for question on how the requirements are documented.

Many interviewed companies used user stories linked with UI protos on small ap-

plication projects. In larger projects or library projects feature-based product backlog

9

was used. In many cases this product backlog consisted of features which had a hier-

archy consisting of smaller features and functionalities underneath them. When these

PBIs were taken into the sprint they were converted to tasks. In some cases also more

detailed plans were attached to these features, these documents ranged from two to four

pages. Especially when company had distributed development, more detailed specifica-

tions (separate documents) were required.

The problem in having just features in the product backlog is that the contents of

the PBI may be unclear to the team. In some cases, if replacing old product with new

version, team can look there what is meant by the feature. However, Product Owner

should document PBIs in more detail. Having an architect in Product Owner team (see

5.4) may help in this. In the analysis phase the architect can create architecture and it

typically helps to specify features in more detail. In this way, the specification will also

be more accurate. However, one should be aware not to do too much specifications up

front as it might be changed and therefore be wasted work. The same applies to large

up front specification documents that some companies are still using.

Some companies used use cases instead of user stories as they saw that user stories

did not capture some essential parts of the specifications. Use cases can be used in agile

specification as well as user stories. In fact, in many cases there might be even a better

option than light weight user stories. In addition a couple of companies used wiki for

documenting specifications. In this way, any stakeholder can edit specifications when

needed.

3.5 Product Owner

The most important and the most challenging role in Scrum is Product Owner. Nokia

test question about the product owner is also a touchstone for how agile company really

is. If a company has really adopted agile principles and Scrum process organization

wide, there should be no problems playing the product owner role. However, the results

in Fig. reffig:productowner show that organization are really struggling with Product

Owner role.

Only a handful of companies had product owner which had product backlog ready

when the team needed new PBIs. Many companies reported that the team does not

know who the product owner is or they do not have this role at all. Some companies

even reported that they consciously have not sent people to CSPO course, because they

do not see any benefits that they can get out of it. However, it seems that the biggest

problem with Scrum that companies are dealing with is related to Product Owner.

One notable observation was that companies which worked mainly with customer

projects said that product owner does not work for them as they are doing customer

projects. In addition, the same companies reported that the product owner role would

work better if they were building their own products. However, companies that were

working with their own products reported that the product owner role does not work

well as they are building their own product and it would be easier if they worked with

customer projects. In many cases, where the company did customer projects, the cus-

tomer was communicating directly with the development team (Fig.7) or product owner

role was assigned to a person from the customer. This led to a situation where the Scrum

10

Fig. 6. Nokia test scores for question on product owner.

team is constantly disrupted by the customer. There is no buffer for emerging require-

ments and changes. Customer as Product owner forces the team to take changes within

a sprint. Or if there is no Product owner at all, the Scrum team does not have required

authority to say that the earliest moment that the request can be responded to is at the

start of the next sprint.

Fig. 7. Typical Product owner failure mode in companies working with customer projects.

On the other hand, in companies which work with their own products, it seems

that typically the command chain from product owner and the development team to

customers becomes very long (Fig. 8). In many cases there are existing roles such as

product manager, project manager, sales personnel, etc. who do no fit so well with the

Scrum organization. This results in the situation that Scrum is only implemented on

11

the lowest levels of organization. The team is run as a Scrum development team and

they may have Scrum master and product owner. However, Product owner does not

have direct connection to the customer and to the end users. In many cases product

owner also does not have enough authority to decide about the features of the product.

The problem in this case is that information flow from customers (and from end users)

to the development team becomes very slow or there is no communication at all. The

development team is building the product almost blindfolded as feedback loops are very

long and have a lot of indirection.

Fig. 8. Typical Product owner failure mode in companies that build their own products.

Fig. 9 shows how the development team and the customer should have only SINGLE

MEDIATOR [7]. If the product is too big for one person to handle one could consider

having PRODUCT OWNER TEAM [8]. The Product owner team has a chief product

owner which is a facade for the product owner team, so it looks to the customers and to

the development team like there is a single product owner.

Companies which work with customer projects should have their own product owner.

There is a big risk that the customer representative does not understand Scrum and can

not play along with the rest of the organization. If the customer insists to play the prod-

uct owner role, companies could have proxy product owner of their own. Company’s

own product owner could work with product owner of the customer and act like the

only product owner towards the development team. In this way, the Scrum team has lo-

cal product owner that is available and can be asked for clarifications for PBIs and tasks.

Additional wait states are eliminated and this kind of organization structure prevents the

customer from disrupting the team.

Other problems with the product owner role that was found out in the interview was

that product owner is too busy to write enabling specifications. However, this problem

might be solved by using PRODUCT OWNER TEAM pattern [8]. Product owner should

also use the development team to test if PBIs are splitted into small enough chunks.

This can be carried out by having extra estimation sessions now and then and when too

12

Fig. 9. Product owner role in Scrum.

big PBI is found, the Product Owner can also consult the team how to split the PBI into

smaller pieces.

3.6 Product Backlog

The fifth question of the Nokia test discusses the product backlog. The results of this

question are presented in Fig. 10. None of the interviewed teams based their roadmap

and release dates on the team velocities and product backlog items. However, some

teams faked the process by calculating internal release dates using velocities, but the

actual release dates were still given from the management.

Some of the interviewed teams said that they have product backlog ready and items

on it estimated for one or two sprints. However, in many cases there just was product

backlog with user stories and interviewed people reported that the user stories are more

or less ready to be taken into the sprint. So they may not satisfy "invest criteria" in many

cases.

Fig. 10. Nokia test scores for question on product backlog.

13

In some cases, the company used timeboxed sprints and assigned PBIs to the sprints

as they added new PBIs to the product backlog. The criteria to this was that the customer

wants to have a feature ready at a certain date. This kind of approach is not however

very agile as new requirements emerge, it may be hard to fit them into the sprints as

sprints are already allocated for other PBIs.

In many cases the priority is determined by dependencies of PBIs. Product owner

has to figure out the critical path and teams should start working on that. For example,

there is no point implementing a search feature, if there is no way to input items that are

searched for. In some cases also product owner set items that smelled like trouble higher

in product backlog. Teams started working with potentially problematic items first. This

hunch was based on experiences from previous projects. Calculating ROI is a hard job,

especially for small PBI. Larger entities are easier to manage. Some product owners

used theming and these themes were assigned a ROI value. Basically this means that

features have ROI value and smaller items under the feature have the same ROI value.

This makes valuing easier but there is no prioritization within a feature.

One problem with backlog approach that was found out during the interviews is that

there is no room for innovation or work that the team feels is important, e.g architectural

refactoring, etc. Some companies have solved this problem by having product owner

who prioritizes some tasks important to the team higher, so that they eventually get

done. Anpther practice that was found is to have TEAM SPRINT 5.5.

Almost all of the interviewed teams used Excel to admistrate product backlog.

Teams that were doing distributed development had taken some other tool in use, basi-

cally because they were forced to do so due to the distribution.

3.7 Work estimates

The sixth question of the Nokia test is about work estimates. This question divided

interviewed organizations into two categories: to those where the team produced work

estimates and to those which used more traditional methods and managers produced

work estimates. The results of this question can be seen in Fig. 11.

In most of the companies the Scrum team and developers are the ones who create

estimates for the tasks and PBIs. However, there still are teams whose estimates are

created by the project manager. The latter way of estimating may not lead to so accurate

results as estimates made by using planning poker. One common pitfall is that the items

are estimated just when they are taken into sprint. In this way, Product Owner can not

form a release plan based on team velocities as there are no estimates of PBIs available.

In addition, it might be noticed too late if some of the PBIs is too large for the sprint

and should require further analysis.

One common problem with estimates in Scrum is that teams use hours for estima-

tion instead of story points. This typically is result of hour-based billing. The customer

is charged according to hours and estimates (or realized hours) are used for that. The

basic problem is that the Scrum team is working for multiple projects (from multiple

backlogs) and used hours can not be calculated using calendar time, velocities and story

points. In some cases also story points do not feel right for the team, people are skeptical

about the new concept. However, teams that have used story points and poker planning

reported the experience solely as a positive one. Basicly this is a management problem

14

Fig. 11. Nokia test scores for question on work estimates.

- management are run by hours and story points do not fit in the organization. In some

cases, teams had to do two separate estimates - one with story points and one with hours

for billing. This kind of approach can be good during the transfer from hours to story

points but one should be careful not to get stuck with it as two estimates creates two

times as much work.

One good practice was that product owner arranges a separate estimation meet-

ing during week one of the sprint (so called backlog grooming meeting). This two to

three our meeting is for estimation only. The team estimates new and changed PBIs

using planning poker. In this way product owner gets information if the PBIs are too

large (takes more than 2 days). In addition, the product backlog gets estimated so it is

ready for the sprint planning. When the whole product backlog is estimated, the prod-

uct Owner can create the release plan according to the estimates and team velocities.

Some interviewed companies even reported that if their Product backlog had not been

estimated, due to special circumstances, their project faced some difficulties and unnec-

essary delays.

3.8 Sprint Burndown chart

Seventh question of the Nokia test addressed the usage of Burn-down charts. This ques-

tion divided interviewed teams into three categories: to those who had embraced this

new tool, to those who do not use charts and to those that used burn-down charts but

used hours or did partial task burn downs. The results of this question are visualized in

Fig. 12.

Burndown charts were quite widely adopted, only two companies did not use burn-

down charts. In one company there was also product burndown chart in use. Another

one reported that they will probably take product burndown in use as PO has asked for

it. Other companies reported that the burndown chart is most useful when used as a

sprint burndown chart. Most of the teams used Excel to draw burndown charts. Excel

was used as it made it easier to update the chart. Furthermore, in one case Excel was

15

Fig. 12. Nokia test scores for question on burndown chart usage.

used as there was no suitable place for the paper chart in the office. Companies that did

not use burndowns, reported that the benefits got out of the chart are not enough when

compared to the effort required. Distributed development was the main reason to use

other tools than Excel for burndowns.

Story points (that are used in burn down charts) are problematic according to many

companies. If there is an existing strong organization culture using hours, it might be

hard to transform that to using story points. However, using man-hours in burndown

charts leads easily to partial burndowns or developers burn hours without really finising

the story. This typically makes the burndown chart to look too optimistic and takes away

the advantage of using it. Furthermore, hours tend to be developer specific. From some

other developer, the task might require less or more hours. Story points support team

thinking as the team can do a certain number of story points in a sprint. In addition,

using hours may lead to situation where hours are always met, but this is achieved by

taking technical debt that may lead to problems later on. In the worst case, this kind of

behaviour can make the whole project delayed.

It seems that the main reason to go for using hours is to charge the customer on hours

spent on their project. However, charging the customer can also be handled differently.

As the developer works for a certain amount of hours in a month and the team can do

a certain amount of story points in a sprint, the cost can be calculated from these facts.

It can be calculated, how many hours are spent on a certain task proportionally. For

example, if the task was five story points and a five person team did 300 story points in

a two week sprint. This would mean that the cost of that user story is the cost of seven

hours.

One small trick that came up in the interviews, is to get a new team into using story

points is to say that a task that requires one day, is five story points. In this way, the

team has common baseline for their estimates. After the first work estimation session,

the team should forget that five story points were about a day of work and just estimate

based on their experiences from past.

16

As well as story points, also the concept of velocity divided teams into two cate-

gories: some knew it, and some did not (or did not use at all). However, teams that used

velocity reported some problems in using it. The biggest problem was that in many

cases projects are quite small and short, and velocity takes some time to level up. In the

beginning (with a new team), the velocity might go up and down before it stabilizes. In

small projects, the velocity does not have time to stabilize. However, if the team mem-

bers are the same from project to project and the domain is the same, old velocities can

be used.

Another problem with velocity is that it requires that the team size stays stable. Team

members might change, have vacations or sick leaves. This problem could be tackled

by putting vacations in the sprint backlog and reserving some room for surprises such

as sick leaves.

A good practice related to velocity that some companies used is that the velocity

graph is also drawn. In this way fluctuations in velocity can be seen easily. If velocity is

going down or leveling, it might be a sign that the team is in trouble and scrum master

should take action.

3.9 Team disruption

The eight question is about team distruption: is the team disrupted during the sprint and

if it is, by who. In almost all companies teams were disrupted during the sprint. Only

in one company, team was not disrupted at all and all request for features bug fixes and

such went through the Product Owner. The results of this question can be seen in Fig.

13.

Fig. 13. Nokia test scores for question on is team disrupted during the sprint.

The problem here is that very rarely team members can be 100% dedicated to do

only one thing. For example, members have worked in previous projects and they have

to do maintenance tasks and bug fixes for the previous projects. These disrupts could go

17

through Product Owner and from there to Product Backlog. However, it is hard to com-

municate to the customer that maintenance tasks and bug fixes take their time and the

earliest point they can get attention is the next sprint. In some cases, the problem is that

the customer does not understand agile methods and there is no SINGLE MEDIATOR

[7] between the team and customer.

Team members may also have other commitments within the company. For exam-

ple, one can be a member of the architecture team, process development group, etc.

These may create random disruption to the team. In many case though, these could be

added to the sprint backlog. In many companies, it had been learnt the hard way that

things have to go through Product Owner to the backlog. However, there is still a lot of

room for improvement.

Fortunately, there are a couple of things that came up in the interviews, that could

be done in order to prevent the consequences of disruptions. Of course, in the long run

impediment of disruption should be dealt with. However, in the mean time, the team

can reserve 15 % empty space in the sprint to tackle with this problem. In this way,

disruptions do not affect velocity and the sprint outcome. In addition, Scrum master

could arrange QUESTION HOUR [9] to make it visible that there is certain time in the

week when the team can be disrupted and they can fix bugs, etc. If it is Scrum Master

or Project manager, etc. who disrupts the team, then the Scrum team must take the

initiative to make this visible in the retrospective.

If the problem is that the maintenance tasks need to be done sooner, the team might

also want to experiment with the sprint length. If the sprint length is four weeks, team

could try to do two week sprints. In this way, emergent tasks get into the sprint with a

shorter cycle.

3.10 Team self-organization

The last question is about team self-organization: does the team collectively commit to

the sprint goals. Zero points in this question means that tasks are assigned to individuals

during sprint planning by someone or team members do not have overlapping in their

area of expertise. The goal with Scrum is to have emergent leadership within the team,

however, everyone in the team is equal. Ten points in this question means that the team

is in a hyperproductive state. That might be hard to detect during the interview, so that’s

why no team got ten points. Anyway, this does not mean that none of the interviewed

teams is in a hyperproductive state. It’s merely a limitation of the used survey technique.

Results of this question are shown in Fig. 14.

This question revealed that in a couple of companies, even if some team uses Scrum,

the tasks are given from project managers to the individuals. So there is no self-organization

within the team. On the other hand, some of the interviewed teams were self-organizing.

The benefits of this approach was that developers were not profiled as experts on a cer-

tain technology. This kept developers happy as tasks differed a lot. For example, they

got a chance to work on lower level embedded stuff and sometimes on user intefaces.

This approach kept the jobs interesting and meaningful and also developers wanted to

stay in the same company as tasks were always changing.

One team had a chance to take this to the extreme. They did not have to do Scrum if

they did not like it. They could use other methods as well, e.g Scrumban, Kanban, etc.

18

Fig. 14. Nokia test scores for question on is the scrum team self-organizing.

This kind of approach also provides the organization a chance to learn new methods.

Teams who had changed from the approach where the project manager names the tasks

to developers to the self-organization, reported that the change was only positive. In

addition, when everyone is able to carry out any tasks, it makes work load balancing

easier. Balacing can be carried out easily, even between the development teams. One

team that is idle can help another, if they have enough expertise.

According to interviews, one problem was that expertise tends to profile on certain

persons. For example, in one team, one developer was more experienced on the domain,

so all architecture related tasks were always assigned to him. If this is the case, it might

be a good idea to work on that task together as a team, so the expertise would be shared

to other members as well. In one company, the architect role in the team was assigned

by managers. This might damage the self-organization ability of the team. It would be

better to have emergent leadership within the team.

4 Architecture and Scrum

4.1 Architecture work in Scrum

In software engineering, agile approaches are often contrasted with plan-driven ap-

proaches. This is sometimes misinterpreted to imply that planning is not required in

agile software development. Obviously, careful planning is required in most industrial

software development projects involving tens, hundreds, or even thousands of persons.

However, instead of a rigid, detailed pre-existing work plan enforced during the entire

process, in agile development there is typically only a fairly loose up- front project plan,

and the plan is allowed to evolve and become more precise during the process. Software

architecture is traditionally defined as the high- level organization of a system (e.g. [10],

[11]). However, from the viewpoint of a soft- ware development project, software ar-

chitecture is a plan of a new software system, in the same sense as a blueprint is a plan

of a house. This creates certain tension between

19

Table 2. Number of teams using different approaches to do architecture work in Scrum

Sprint 0 Architecture in sprints Separated process

Number of Teams 7 5 2

software architecture and a non-plan- driven agile philosophy. Indeed, the role of

software architecture design was questioned by the early advocates of agile approaches,

claiming that software architecture emerges without up-front design efforts. Later, the

role of software architecture in agile projects has been studied [12], [13], [14], but there

is still considerable variation among practitioners concerning the ways architecture is

involved in agile development. This is particularly visible in Scrum, which itself does

not give any advice specifically regarding software related activities, like software ar-

chitecture work. Lack of up-front planning is one of the main concerns about adopting

agile and barriers for further adoption [15].

As stated in [12] architecture and Scrum does not go very well together. The prob-

lem is that there is no natural place for architecture work in Scrum. There is no sprint

0 in Scrum as every sprint must produce potentially shippable increment of the sys-

tem [16]. One can not ship the architecture to the customer as it does not provide any

value. So, if one does Scrum by the book, up-front architecture desing is not an op-

tion. What one could do is, do the architecture in the analysis phase before starting the

sprints. However, analysis phase is mainly intended to be requirements gathering phase

which is carried out by Product Owner. However, in many cases the Product Owner is a

business person, who probably does not have required skills to design the architecture.

In addition, in the domain of working machines, Scrum teams have a lot of depen-

dencies to teams that are not agile, e.g. to hydraulics engineering teams and to mechan-

ical design teams. Hardware more or less dictates the architecture of the control system

software as well. One has to take into account all requirements set by hardware before

starting to write the control system. It is one thing to do things well, but it is critical to do

the right things. Therefore, when a large complex system is being built, it is necessary

to gather all significant requirements.

The second part of our interview survey concerned how teams do the architecture

work while doing Scrum. Three different strategies were discovered: Sprint 0, designing

architecture in sprints just-in-time and separated architecture process. Table 2 shows the

number of teams that were using each approach. Note that the number of interviewed

teams was larger than interviewed companies.

Sprint 0

Many teams do up front design, especially in the domain of embedded control systems.

Some call it sprint zero, some call it architecture phase or analysis phase. The length of

this phase depends on the complexity of the system. Basically these could be separated

to two different approaches by their length. In the case of very complex control systems,

the phase might last for 6 months and in simple systems it might be less than a length of

typical sprints, i.e. less than two weeks. Just after this phase the actual implementation

starts in sprints.

20

Typically in sprint zero or analysis phase, the requirements are gathered from hard-

ware, electrical engineering, hydraulics engineering teams. During interviews teams re-

ported that if they did not do sprint 0 they would be in big trouble. For example, if there

is non-functional requirement that the software must be platform independent, it would

be very hard to refactor the system to support this, if the requirement is not known from

the day 1. In addition, control systems are so large and complex that it might be hard for

one developer to understand the whole. Therefore, the up front architecture is needed

to give context to the development work.

Almost all of the teams that used sprint zero reported that during the development

sprints the architecture will still change. The most critical parts are fixed in the start

and the rest of the design evolves. Typically in sprint zero system wide features are

prototyped and tried out. Once the design covers these most critical features, it is ready

for development sprints.

Architecture in Sprints

Four teams reported that they do not have separate analysis or architecture phase. They

just start doing sprints and developing the system. The architecture is built in this pro-

cess. In some cases, the design was guided by a single (or couple of) person(s) in the

team that had the most experience on the domain. Another team members then built

features on top of the design. One team reported that the designer is an emergent role

within the team and changes from sprint to sprint. The same team also stated that anyone

can do architecturally significant decisions.

The common nominator in this approach was that the teams were experienced in the

domain. One company reported that they have had bad experiences with this approach

when the team was new to the domain. They did not know what to do and as there

was no upfront design the result was a failure. The architecture just did not correspond

to the requirements and it had to be refactored all the time. This delayed the project

significantly. If the team is inexperienced or architecture is not clear, the only option

is to postpone the start of the project. In this case, the situation returns pretty much to

what was explained in the previous section (sprint zero).

This approach is also a natural choice for a company that gets initial architecture

plans from their customer. They just started developing and completing the architecture

as they go. However, rarely application development works that way. The project type,

where architecture is given by the customer is typically API development project or

such.

The goal with this approach is to produce the initial architecture during the first

sprint. It has details in those parts of the architecture that deal with the shippable features

of the sprint. The rest of the architecture is completed in other sprints accordingly.

Separated process

The third way to carry out architecture work in Scrum was to have it as a separate

process. In this approach architecture is created by a separate team that may have mem-

bers from development teams but is completely separated from the development team.

Members of this architecture team might do it part time, meaning that they are working

also in a development team. The architecture team has checkpoints or milestones when

21

certain part of the architecture must be ready. They may even make two or three differ-

ent versions of the same architecture, so that there are options from where to choose in

the checkpoint meeting.

In the checkpoint meeting, there are members of Scrum teams present. In addition,

there are other stakeholders and at least one person who understands the business case.

In minimum, there is the product owner, Scrum master, team lead and the architect

present in the meeting. The customer might be also present in this meeting. In the

checkpoint meeting the alternative architectures are presented and they are refined when

necessary. Then plans are made, concerning how the architecture should be integrated

to the system development (and when) or should it be implemented as its own branch.

Checkpoint meetings are kept when necessary.

The thing here is that companies had completely separated architecture process

from the Scrum process. In interviews, it was said that they don’t want to mess the

basic Scrum process in any way, and therefore kept the architecture process separated.

This separate process might then produce tasks to the product backlog and connecting

the separated architecture process to the development team. This approach might need

technically oriented product owner to work.

Discussion on different approaches

There is not one secret how to do architecture in Scrum. It once again comes back to

the basic Scrum principle: to inspect and adapt. If one is doing a relatively small project

with teams having domain expertise, you probably won’t need any upfront design of

architecture. On the other hand, it might not be wise to start developing a very com-

plex control system before doing rigorous analysis of requirements and without having

upfront architecture design.

Many interviewed companies stated that Scrum has not brought any new problems

to the architecture work. They said, it merely has surfaced existing problems and made

them visible. Furthermore some companies reported that Scrum actually have helped

them to create better architectures. In traditional waterfall model, one had to do big

upfront design and just after that start writing the code. The Scrum has helped since the

design does not have to be complete. Only large concepts should be fixed and details can

be left open. Once the team has done a couple of sprints, the open issues are naturally

solved as the experience grows.

One important thing that is easily forgotten is that architecture work should not

be neglected after the initial design. Architecture deteriorates over time and it has to

be refactored and updated. It is important while doing Scrum to be aware of this and

add items to Product backlog that does the architectural polishing. Otherwise problems

may emerge. Product owner should also know how to value these architectural PBIs

so that they are implemented right on time. One option is to do so called team sprints

(see Section 5.5). However, the interviewed teams said that Scrum has not increased the

amount of architectural erosion.

However, there is one agile secret that can be applied also to architecture work: lean

secret [17]. Lean secret is "Everybody, all together, from early on.". Agile often fails

to value upfront design, however it is significant part of the development. The problem

that has to be solved case by case, still is that how much upfront design is enough?

22

How to involve everybody, if the system is large, is another question to be answered.

Probably all relevant stakeholders could be brought together when the architecture is

designed.

4.2 Architecture documentation

Using Scrum has mostly affected specifications. User stories and use cases are used to

describe the features of the system. Only the most complex parts of the system may

have their own specification document. User stories might be accompanied with UI

screens or API descriptions whenever it is suitable. However, Scrum has not affected

architecture documentation so much. It just had made the role of architecture document

more important, as according to interviews, the main specification document that is

used. In many cases, there are several architecture documents as the systems are large

and complex. There might be an architecture documents dedicated to single components

of the system. More fine grained documentation is not typically used. Safety critical

components or parts of the system might still have very detailed design documents as

legislation requires them to be written.

The size of the architecture document varies. Typically it is 5 to 15 pages describ-

ing the high level architectural decisions. However, there are also companies that use

larger architecture documents (as their systems might be more complex). In this case,

the typical size of the architectural document is from 50 to 100 pages. According to

interviews, larger documents are created if the team implementing the architecture is

outsourced or inexperienced in the domain. All teams reported that Scrum has not af-

fected the amount of documentation created during projects. It was widely recognized

that it is typical misunderstanding of agile that one does not do any documentation. One

company that are building their own product, lets developers decide how much docu-

mentation they want to produce. This approach had not caused them any troubles so

far.

Many interviewed companies used Wiki such as Confluence to create the docu-

ments. It was preferred as it was self-organizing meaning that there are no ready-made

templates that need to be filled. The problem with templates is that in many cases devel-

opers end up writing something that is not useful from the system under development

point of view. In other words, companies that did not use templates felt that templates

guide too much the way documentation should be done. Second benefit of Wiki accord-

ing to interviews was that the newest version of documentation could easily be accessed

and it can be written collaborately.

On the other hand, there are companies that use MS Word for documenting the ar-

chitecture. In this case, typically document templates are used. Many companies that

used Wiki for documentation reported that at the end of the project or when ending

the analysis phase, they will make a Word document from Wiki pages. Some of the

companies used also Doxygen or Javadoc whenever suitable to complement the docu-

mentation.

In general, some companies reported that it is impossible to produce very com-

prehensive documentation that would include requirements, functional specifications,

technical specifications, testing plans, etc. If that kind of documentation was produced

23

it would take all the time that is reserved for the implementation. So light-weight docu-

mentation is required. The most imporant thing in the documentation is to identify the

potential readers of the document. Who is the target audience? The document should

be then written for this audience. General architecture document is also good to have to

give overview of the system. However, other stakeholder groups require different kind

of documentation. For example, platform users do not need detailed description of the

structure of the platform, but instructions on how the platform should be used and which

are the things that the platform user should not do.

One problem that came up during the interview is that even though companies are

using Scrum, the documents tend to be outdated. Architecture document is in many

cases created and updated outside Scrum cycles and as a result the document gets out-

dated. Especially it was mentioned that UML diagrams tend to get outdated as it is more

laborous to update them. Some companies reported that requirements and user stories

in backlog get outdated. The problem with user stories is that the system is so large

and new things come up in sprints, so user stories are not updated. Many companies

working on embedded control system domain also reported that gathering all signifi-

cant requirements is really hard as there are a lot of dependencies to other teams. In

typical case these teams (electrical engineering, hydraulics, etc) have not even heard

about Scrum.

One solution to this outdating problem might be to use really light-weight docu-

mentation that one company said that they use. They did documentation to Powerpoint

by taking pictures of white boards and writing short stories to support the pictures. In

this kind of approach, the document has to be polished (and maybe written with Word)

at some point.

4.3 Architecture tools

Interviewed teams did not have any special tools for architecture work in use. Almost

all teams used Microsoft Visio and Word to create architecture documents and designs.

Some teams also used Wikis for documentation. UML tools were used as well such as

Rhapsody UML or Dia. Powerpoint was also used to document the architecture.

4.4 Architect role

There is no role for an architect in Scrum, but many of the interviewed companies still

had that role. In large projects there typically was an architecture team where architects

designed the system before implementation in Sprints. Typically also, there was a sys-

tem architect that was responsible for the overall architecture, hardware and software.

However, this system architect was always a separate person from the architecture team

and from the Scrum team.

When the designed system was large, the architect did not have time to code. How-

ever, on smaller projects, the architect was typically one (or two) person(s) from the

team and participated also in the implementation. In these cases, the main designer was

typically the person that was called as an architect. Other approaches existed as well. If

there was a separate architecture team that gathered once in a while during sprints, the

24

architect typically was a part-time role. Furthermore, this person listened to the team

when selecting the technology that will be used.

A couple of teams also reported that the team is also allowed to make architec-

tural decisions and these are then checked and approved by the main designer or archi-

tect. In one team, the case was that the Product Owner was the architect. Even though

some teams were allowed to make architectural decisions, typically the design decisions

tended to personate to one person. Everybody knew who was the main designer even

though it was not officially communicated.

The common factor was that the architect was the person with the most experience

in the domain. The architect must have good understanding of the domain and the sys-

tem designed. Basically, the architect should be able to do any other persons job in

team. This kind of approach also supports the self-organization of the team. It was also

repeated in the interviews that the product owner should have some understanding on

the architecture and architecture work in general.

5 Scrum Best Practices

During the interviews companies also reported good Scrum practices that they have

adopted or invented. Some of them are generally known and used widely, while some

of them are previously undocumented. In this section practices, that were not presented

in the previous section, are introduced.

5.1 Daily Scrum

Daily Scrum should take place just before lunch. This has many advantages. In a com-

pany where people use flexible working hours, everybody should have arrived until the

lunch and nobody has not still left. Another benefit is that when the daily scrum is held

just before the lunch, everybody is hungry and rushing for the lunch. This keeps the

meeting short as it should be. Furthermore, if there are some matters that need atten-

tion, those can be discussed over lunch.

5.2 Burn-down charts

Usually, team members update the burn-down chart daily to reflect adjustments to the

amount of remaining work. These estimates are made in the middle of development

time and they will show the increases of work amount that arise from emergent require-

ments. However, given that one emergent requirement has been discovered in a task

doesn’t imply that no others remain. On the other hand the Product Owner is not cen-

trally interested in partially completed work, only in items that are done and potentially

shippable.

Therefore, the burndown chart should only be updated in two cases: reducing the

amount of remaining known work if the task is done and increasing the amount of

known work if the task grows due to emergent requirements or other insights gained

during the Sprint. The burndown should not burn-down on partial tasks, meaning that it

should not be updated if the task is not done, done done.

25

5.3 Estimating product backlog items

The product backlog items should be small enough in the sense of man-hours. The

optimal size of items is smaller than two days and still preferring to have smaller items.

If an item is two days, and the development team is new or inexperienced in the domain

the item might take even 16 days. So the item might take even longer than one sprint.

The smaller the items in the backlog are, the more accurate the estimates get. One

team reported in interviews that they had big problems with velocity and estimates

when starting Scrum. Size of the PBIs was then typically from 1 day to 5 days. Then

they made a rule that the item must be 2 days in size maximum or otherwise it has

to be divided into two items. After this change the estimates were accurate and they

could trust their velocity better. The secret here was that when the items were small,

the developers had to think architectural changes, testing, simulations, etc beforehand,

not just when taking the item under work. In addition, the dependencies between tasks

became clearer.

5.4 Product Owner team

The Product Owner is accountable for many functions, and therefore sometimes a single

Product Owner can’t handle it all. If this is the case, the solution is to create a Product

Owner Team that together formulates the Product Backlog. The Product Owner team

should have a Cheif Product Owner that has final authority over the sequencing of the

product backlog. The Product Owner team might also be a good option for a company

that is in transition from old school methods to Scrum. Many people may feel that they

are losing power and does not find their place in Scrum as there are only so few roles.

By putting former project managers, product managers, etc on Product Owner team,

they will find their place in Scrum.

5.5 Team Sprint

During interview one team reported that there is no room in Scrum for creativity and

writing software is quite creative activity. The problem is that if someone makes an

innovation or gets an idea for new feature during the sprint, they can not work on that.

The idea is given to the product owner who evaluates it and puts it on the product back-

log. However, if the business value of the item is rather low, the item might never get to

the sprint. This is quite frustrating on the developers point of view as (s)he would like

to work on his innovation. The same thing applies also for architectural work emerges

during the sprints. Something changes and it might require architectural refactoring. If

the product owner does not understand the value of architectural refactoring, it never

gets done.

One solution to this problem, that came up in the interviews, is to organize so called

Team Sprint [18]. This means that every fifth or tenth or so, the sprint is Team Sprint

where the team can choose whatever items to the sprint they want from the Product

backlog. Not only those items that are in the top of the PB. Team Sprint does not have

to be regular: if there are more important things that has to be taken care of, the team

sprint can be postponed. However, the Product Owner should not postpone it forever. It

should take place as soon as possible after the emergent issues are taken care of.

26

5.6 Question Hour

A typical problem in the organization taking Scrum in use is that the teams get dis-

rupted. It might be a support team, marketing, the customer, etc who disrupts the team.

But the problem is that, the disruption interrupts the flow and therefore takes a lot of

time that is reserved for development. One approach to tackle this problem is to or-

ganize so called Question Hour [9] once a week. This is the time that the team can

be disrupted and they have reserved it for answering questions, fixing bugs from old

projects, etc. This question hour is communicated to all stakeholders and it is made

clear that this is the only time when questions can be asked from the team. Otherwise

the team must not be interferred with. Over time, disruptions tend to decrease in number

and questions are addressed more to Scrum Master and Product Owner.

5.7 Distributed Scrum

The survey also asked if a company did distributed development and what kind of prob-

lems it raised. The answers showed that in distributed Scrum, many new problems arise,

for example, cultural differences, differences in organization culture, time zones, and

the fact that face-to-face communication can be hard or impossible. Therefore, much

more communication is needed. Furthermore, specifications must be really good, user

stories might not be enough. Burndown charts must be in some online tool, so every-

body has access to it. Also daily scrum might need to be held in a communication tool

instead of face to face conversation. However, all people who are in one location could

gather and have face-to-face communication locally and have people from remote loca-

tion to join them. According to interviews, giving up daily Scrum is not a good option

even when doing distributed development.

6 Conclusions

The adoption of Scrum practices varies a lot between different companies. Some have

adopted all practices very widely and got better benchmarks in so called Nokia test.

Some are still on their way of adopting the practices or have just taken few tools from

Scrum to their own processes. As a surprise, the adoption of Scrum practices is not

dependent on the company size. There are large companies that are very agile as well

as small companies.

The typical problem with Scrum in interviewed companies was the Product Owner

role. In some companies, there were no Product Owners at all. In some, the person who

was the Product Owner, was too busy to provide the Scrum team proper backlog and

enabling specifications. Creating a product owner team might help to the latter problem.

The most widely adopted Scrum practice was to have the work divided into sprints.

The length of the sprints varied from two to four weeks depending on the product the

company was building. The most of the companies used two to four week sprints.

Typical problems with Scrum in the domain of embedded control systems relates to

testing and requirements. Testing in sprints is troublesome as test hardware (the work

machine) might be ready after 6 months. The software should be ready in the same

27

time as the machine itself. So the problem is that there is no real hardware where to

test the software. Simulations can be used, but they do not correspond the real hardware

and therefore the software is not yet ready to be shipped. In addition, in many cases

the testing might take longer than a sprint as there are many safety features that has

to be tested when some other feature changes. Another problem is gathering of the

requirements. It is hard as there are a lot of dependencies to other non-software teams.

Their desing change overtime also and requirements easily get outdated.

Architecture work has not changed much when companies have adopted agile prac-

tices. Documents are still written and architectures are designed. However, Scrum does

not provide any role for the architect. Therefore, one has to think what kind of approach

suits the company and the project best. Should the architecture be designed up-front or

should there be a separated architecture team and process? Or maybe architecture can

be built in sprints by the team. In the latter case, the team should be experienced in the

domain or the results can be disastrous as some teams reported in the interviews.

A typical architecture document is rather small, 5-15 pages. However, some com-

panies still create larger documents up to 100 pages. The problem with the large docu-

ments in agile is that they easily get outdated. Even if the teams update the document,

there might be changes coming outside the team (e.g. from hydraulics team) and the

document gets outdated outside the sprints.

In general, there is still a lot to learn about Scrum for the companies. There are

also many topics of further research: How should the documentation be done in an

agile manner? When should the architecture be created and how much upfront design

is needed in the domain of embedded control systems? Which is the most efficient way

of carrying out the architecture work in Scrum? How should testing be done when there

are safety critical components included in the system design?

References

1. Sutherland, J.: Scrumbut test aka the nokia test (2010) Website, referenced 19.11.2010.

http://jeffsutherland.com/scrumbutttest.pdf.

2. Eloranta, V.P., Vuorinen, J., Tommi, M.: Scrum in real life: Survey on scrum practices in

small and medium sized companies. In: Submitted to SAC2012 conference. (October 2011)

3. Coplien, J.O.: Track done - published patterns (2011) Website, referenced 10.6.2011.

https://sites.google.com/a/scrumplop.org/published-patterns/

value-stream-pattern-language/product-backlog/track-done.

4. Sutherland, J.: Nokia test: Where did it come from? (2010) Website, ref-

erenced 19.11.2010. http://scrum.jeffsutherland.com/2008/08/

nokia-test-where-did-it-come-from.html.

5. Vernois, A.: The scrum but test (2010) Website, referenced 19.11.2010.

http://antoine.vernois.net/scrumbut/?page=graph2&lang=en.

6. Kawaguchi, K.: Hudson ci (2010) Website, referenced 26.11.2010.

http://hudson-ci.org/.

7. Eloranta, V.P.: Single mediator - published patterns (2011) Website, referenced 29.1.2011.

http://sites.google.com/a/scrumplop.org/published-patterns/

product-organization-pattern-language/single-mediator.

8. Coplien, J.: Product owner team - published patterns (2011) Website, ref-

erenced 10.6.2011. http://sites.google.com/a/scrumplop.org/

28

published-patterns/product-organization-pattern-language/

product-owner-team.

9. Eloranta, V.P.: Question hour - published patterns (2011) Website, refer-

enced 23.2.2011. https://sites.google.com/a/scrumplop.org/

published-patterns/team-pattern-language/question-hour.

10. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd ed. Addison

Wesley (2003)

11. : Systems and software engineering - architectural description, draft (2010) Website, ref-

erenced 30.8.2011. http://www.iso-architecture.org/ieee-1471/docs/

ISO-IEC-IEEE-latest-draft-42010.pdf.

12. Abrahamsson, P., Ali Babar, M., Kruchten, P.: Agility and architecture: Can they coexist?

IEEE Software 27(2) (2010) 16–22

13. Kruchten, P.: Software architecture and agile software development: a clash of two cultures?

In: Proceedings of ICSE 2010. (May 2010) 497–498

14. Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile development.

IEEE Software 23(2) (2006) 47–53

15. VersionOne: 4th annual state of agile survey, 2009. (2009) Web-

site, referenced 30.8.2011. http://www.versionone.com/pdf/

2009_State_of_Agile_Development_Survey_Results.pdf.

16. Sutherland, J., Schwaber, K.: The scrum guide - the definitive guide to scrum: The rules of

the game (2011) Website, referenced 5.9.2011.

17. Coplien, J.O., Bjornvig, G.: Lean Architecture for Agile Software Development. Wiley (2010)

18. Eloranta, V.P.: Team sprint - published patterns (2011) Website, referenced 10.6.2011.

https://sites.google.com/a/scrumplop.org/published-patterns/

team-pattern-language/team-sprint.

Appendix 1 - Interview questions

In this appendix the interview questions are listed. Of course, more focused not-planned

questions were asked during the interview session. In this way, we could extract more

specific information from the interviewed people.

1. Name and position of interviewed people

2. What is the size of the organization?

3. Which kind of agile methods you have used? Xp, Crystal, Scrum, Lean, etc

4. How long you have been using Agile methods?

5. What is the typical team size?

6. What kind of software development you are doing? (Web, database, distributed,

embdedded, etc)

7. Has your organization sent people to Scrum trainings such as CSM, CSPO?

8. Have you studied Scrum by yourself from books and other publications?

9. Has your organization document Scrum or agile methods in any way?

10. What is the length of Sprint?

11. Does your sprints end on a planned day?

12. Is the software fully tested and ready to be deployed at the end of sprint?

13. What kind of specifications you have? (How PBIs are documented)

14. Does the team know who is their Product Owner?

15. Do you have Product backlog that is prioritized according to the business value of

PBIs?

16. Who (and how) estimates Product backlog items?

17. Do you use burndown charts? If you do who updates the chart and what is the used

unit?

18. Does the team know its velocity?

19. Is the team disrupted during the sprint? If yes, who is disrupting the team

20. Is there any overlap in the expertise of team members?

21. Is the team self-organizing?

22. Who says how much work is taken into the sprint?

23. How do you take care of architectural desing in Scrum projects?

24. Do you use so called Sprint zero for architecture work?

25. Do you have architect role? If yes, is it a part-time role?

26. Do you have architect team?

27. Which tools do you use to support architecture work?

28. Has there been more problems with architecture in Scrum projects than in tradi-

tional (waterfallish) projects?

29. How do you document architecture and design?

30. Do you use architecture evaluations such as ATAM?

31. Do you do distributed development? If yes, experiences from that? What is the

influence on architecture?

32. Do you have subcontracting in your projects? Does it affect architecture work?

In addition, there might have been some additional question in every interview.

Appendix B - Nokia Test

In this appendix the scoring criteria of Nokia Test is presented

Question 1 - Iterations

– No iterations - 0

– Iterations > 6 weeks - 1

– Variable length < 6 weeks - 2

– Fixed iteration length 6 weeks - 3

– Fixed iteration length 5 weeks - 4

– Fixed iteration 4 weeks or less - 10

Question 2 - Testing

– No dedicated testers on team - 0

– Unit tested - 1

– Features tested - 5

– Features tested as soon as completed - 7

– Software passes acceptance testing - 8

– Software is deployed - 10

Question 3 - Enabling Specifications

– No requirements - 0

– Big requirements documents - 1

– Poor user stories - 4

– Good requirements - 5

– Good user stories - 7

– Just enough, just in time specifications - 8

– Good user stories tied to specifications as needed - 10

Question 4 - Product owner

– No Product Owner - 0

– Product Owner who doesn’t understand Scrum - 1

– Product Owner who disrupts team - 2

– Product Owner not involved with team - 2

– Product Owner has a clear product backlog estimated by team before Sprint Plan-

ning meeting - 5

– Product Owner with release roadmap with dates based on team velocity - 8

– Product Owner who motivates team - 10

Question 5 - Product backlog

– No Product Backlog - 0

– Multiple Product Backlogs - 1

– Single Product Backlog - 3

3

– Product Backlog has good user stories that satisfy the invest criteria - 5

– Two sprints of Product Backlog are in a ready state - 7

– Product roadmap is available and updated regularly based on team estimates of

Product backlog - 10

Question 6 - Estimates

– Product backlog not estimated - 0

– Estimates not produced by team - 1

– Estimates not produced by planning poker - 5

– Estimates produced by planning poker by team - 8

– Estimate error < 10 % - 10

Question 7 - Sprint Burndown Chart

– No burndown chart- 0

– Burndown chart not updated by team - 1

– Burndown chart in hours/days not accounting for work in progress (partial tasks

burn down) - 2

– Burndown chart only burns down when task is done (TrackDone pattern) - 4

– Burndown only burns down when story is done - 5

– Add 3 points if team knows velocity

– Add two point if Product Owner release plan is updated according to velocity

Question 8 - Team disruption

– Manager or project leader disrupts team- 0

– Product Owner disrupts team - 1

– Managers, project leaders or team leaders telling people what to do - 3

– Have project leader and Scrum roles - 5

– No one disrupting team, only Scrum roles - 10

Question 9 - Team

– Tasks assigned to individuals during Sprint Planning - 0

– Team members do not have any overlap in their area of expertise - 0

– No emergent leadership - one or more team members designated as a directive

authority - 1

– Team does not have the necessary compentency - 2

– Team commits collectively to Sprint goal and backlog - 7

– Team members collectively fight impediments during the sprint - 9

– Team is in hyperproductive state - 10

