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On the Convergence of
the Gaussian Mixture Filter

Simo Ali-Löytty

Abstract—This paper presents convergence results for the Box
Gaussian Mixture Filter (BGMF). BGMF is a Gaussian Mixture
Filter (GMF) that is based on a bank of Extended Kalman Filters.
The critical part of GMF is the approximation of probability
density function (pdf) as pdf of Gaussian mixture such that
its components have small enough covariance matrices. Because
GMF approximates prior and posterior as Gaussian mixture it is
enough if we have a method to approximate arbitrary Gaussian
(mixture) as a Gaussian mixture such that the components have
small enough covariance matrices. In this paper, we present the
Box Gaussian Mixture Approximation (BGMA) that partitions
the state space into specific boxes and matches weights, means
and covariances of the original Gaussian in each box to a GM
approximation. If the original distribution is Gaussian mixture,
BGMA does this approximation separately for each component
of the Gaussian mixture. We show that BGMA converges weakly
to the original Gaussian (mixture). When we apply BGMA in a
Gaussian mixture filtering framework we get BGMF. We show
that GMF, and also BGMF, converges weakly to the correct/exact
posterior distribution.

Index Terms—Extended Kalman Filter, Filter banks, Filtering
techniques, Filtering theory, Gaussian distribution

I. INTRODUCTION

THE problem of estimating the state of a stochastic system
from noisy measurement data is considered. We consider

the discrete-time nonlinear non-Gaussian system

xk = Fk−1xk−1 + wk−1, (1a)

yk = hk(xk) + vk, (1b)

where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the state
of the system and the measurement at time tk, k ∈ N\{0},
respectively. The state transition matrix Fk−1 is assumed to
be non-singular. We assume that errors wk and vk are white,
mutually independent and independent of the initial state x0.
The errors as well as the initial state are assumed to have
Gaussian mixture distributions. We assume that initial state
x0 and measurement errors vk have density functions px0 and
pvk

, respectively. We do not assume that state model errors
wk have density functions. These assumptions guarantee that
the prior (the conditional probability density function given

all past measurements y1:k−1
"
= {y1, . . . , yk−1}) and the

posterior (the conditional probability density function given

all current and past measurements y1:k
"
= {y1, . . . , yk}) have

density functions p(xk|y1:k−1) and p(xk|y1:k), respectively.
We use the notation x−

k,exact for a random variable whose
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density function is p(xk|y1:k−1) (prior) and x+
k,exact for a ran-

dom variable whose density function is p(xk|y1:k) (posterior).
The posterior can be determined recursively according to the
following relations [1], [2].
Prediction (prior):

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1; (2)

Update (posterior):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

∫

p(yk|xk)p(xk|y1:k−1)dxk
, (3)

where the transitional density

p(xk|xk−1) = pwk−1(xk − Fk−1xk−1)

and the likelihood

p(yk|xk) = pvk
(yk − hk(xk)).

The initial condition for the recursion is given by the pdf

of the initial state px0(x0)
"
= p(x0|y1:0). Knowledge of the

posterior distribution (3) enables one to compute an optimal
state estimate with respect to any criterion. For example,
the minimum mean-square error (MMSE) estimate is the
conditional mean of xk [2], [3]. Unfortunately, in general and
in our case, the conditional probability density function cannot
be determined analytically.

There are many different methods (filters) to compute the
approximation of the posterior. One popular approximation is
the so-called Extended Kalman Filter [2]–[10], that linearizes
the measurement function around the prior mean. EKF works
quite well in many applications, where the system model is
almost linear and the errors Gaussian but there are plenty of
examples where EKF does not work satisfactorily. For exam-
ple, in satellite positioning systems, EKF works quite well,
but in a positioning system based on the range measurements
of nearby base stations EKF may diverge [11].

There are also other Kalman Filter extensions to the nonlin-
ear problem, which try to compute the mean and covariance
of the posterior, for example Second Order Extended Kalman
Filter (EKF2) [3], [4], [11], Iterated Extended Kalman Filter
(IEKF) [3], [10] and Unscented Kalman Filters (UKF) [12],
[13]. These extensions usually (not always) give better perfor-
mance than the conventional EKF. However, if the true pos-
terior has multiple peaks, one-component filters that compute
only the mean and covariance do not achieve good perfor-
mance, and because of that we have to use more sophisticated
nonlinear filters. Here sophisticated nonlinear filter mean filter
that has some convergence results. Possible filters are e.g.
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a grid based method (e.g. Point Mass Filter) [2], [14]–[17],
Particle Filter [1], [2], [18], [19] and Gaussian Mixture Filter
(GMF) [6], [20], [21]. Some comparison of different filters
may be found for example in [22], [23].

In this paper we consider Gaussian Mixture Filter, also
called Gaussian Sum Filter, which is a filter whose approx-
imate prior and posterior densities are Gaussian Mixtures
(GMs), a convex combination of Gaussian densities. One
motivation to use GMF is that any continuous density function
px may be approximated as a density function of GM pgm as
closely as we wish in the Lissack-Fu distance sense, which is
also norm in L1(Rn)-space [21] [24, Chapter 18]:

∫

|px(x) − pgm(x)|dx. (4)

Because the set of all continuous functions, with compact
support is dense in L1(Rn) [25, Theorem 3.14], we can
approximate any density function px as a density function
of GM [26]. The outline of the conventional GMF algorithm
for the system (1) is given as Algorithm 1. In Algorithm 1

Algorithm 1 Gaussian mixture filter

Approximate initial state x0 as GM x+
0 .

for k = 1 to nmeas do
1) Prediction: Compute prior approximation x−

k .
2) Approximate x−

k as a new GM x̄−
k if necessary.

3) Update: Compute GM posterior approximation x̄+
k .

4) Reduce the number of components of x̄+
k and get x+

k .
end for

all random variables x+
0 , x−

k , x̄−
k , x̄+

k , and x+
k are GMs and

approximations of the exact random variables x0
"
= x+

0,exact,

x−
k,exact, x−

k,exact, x+
k,exact, and x+

k,exact, respectively. This algo-
rithm stops at time tnmeas .

The major contribution of this paper is a new method to
approximate a Gaussian mixture as a Gaussian mixture, such
that the components have arbitrary small covariance matrices.
We call this method the Box Gaussian Mixture Approximation
(BGMA) (Section V). We show that BGMA converges weakly
to the original GM. One big advantage of BGMA compared to
other GM approximations [6], [20], [21] is that BGMA does
not require that the norm of the covariance matrices approach
zero when the number of mixture components increases. It is
sufficient that only parts of the covariance matrices approaches
zero when the number of mixture components increases. Thus,
BGMA subdivides only those dimensions where we get non-
linear measurements. For example, in positioning applications,
nonlinear measurements often depend only on the position. So,
using BGMA, it is possible to split only position dimension
into boxes instead of the whole state space, which contains
usually at least the position vector and the velocity vector.
This means that significantly fewer mixture components are
needed than in the previous GM approximations.

Another major contribution of this paper is the proof that
the general version of the Gaussian Mixture Filter converges
weakly to the exact posterior distribution. Especially, the
Box Gaussian Mixture Filter (BGMF), which is GMF filter

(Algorithm 1) that uses BGMA in Step 2, converges weakly
to the exact posterior distribution. In this work BGMF is a
generalization of the filter having the same name (BGMF) in
our earlier work [27].

An outline of the paper is as follows. In Section II, we
study the basics of the GM. In Section III, we give the
general algorithm of GMF, which is also the algorithm of
BGMF. In Section IV, we present the convergence results
of GMF. In Section V, we present the BGMA, show some
of its properties and that it converges weakly to the original
Gaussian (mixture). In Section VI, we combine the previous
sections and present BGMF. Finally in Section VII, we present
a small one-step simulation where we compare BGMF and a
particle filter [18].

II. GAUSSIAN MIXTURE

In this section, we define the Gaussian Mixture (GM)
distribution and present some of its properties, such as the
mean, covariance, linear transformation and sum. Because GM
is a convex combination of Gaussians, we first define the
Gaussian distribution.

Definition 1 (Gaussian): An n-dimensional random vari-
able xj is Gaussian if its characteristic function has the form

ϕxj
(t) = exp

(

itT µj −
1

2
tTΣjt

)

, (5)

where µj ∈ Rn and Σj ∈ Rn×n is symmetric positive
semidefinite (Σj ≥ 0)1. We use the abbreviation

xj ∼ Nn(µj ,Σj) or xj ∼ N(µj ,Σj).

Gaussian random variable is well defined, that is the func-
tion (5) is a proper characteristic function [28, p.297].

Theorem 2 (Mean and Covariance of Gaussian): Assume
that xj ∼ N(µj ,Σj). Then E(xj) = µj and V(xj) = Σj

Proof: We use the properties of the characteristic func-
tion [29, p.34] to get

E(xj) =
1

i

(

ϕ′
xj

(t)|t=0

)T

=
1

i
exp

(

itT µj −
1

2
tTΣjt

)

(iµj − Σjt)
∣

∣

∣

t=0

= µj

and

V(xj) = E(xjx
T
j ) − E(xj) E(xj)

T

= −ϕ′′
xj

(t)|t=0−µjµ
T
j

= −
[

(

(iµj − Σjt)(iµj − Σjt)
T − Σj

)

· . . .

exp

(

itT µj −
1

2
tTΣjt

)]
∣

∣

∣

∣

t=0

− µjµ
T
j

= µjµ
T
j + Σj − µjµ

T
j

= Σj .

1If A ≥ B then both matrices A and B are symmetric and xT (A−B)x ≥ 0
for all x.
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Theorem 3 (Density function of non-singular Gaussian):

Assume that xj ∼ N(µj ,Σj), where Σj > 0 (positive definite
matrix)2. Then the density function of the random variable x
is

pxj
(ξ)

"
= N

µj

Σj
(ξ) =

exp

(

− 1
2‖ξ − µj‖2

Σ−1
j

)

(2π)
n
2

√

det(Σj)
,

where ‖ξ − µj‖2
Σ−1

j

= (ξ − µj)
T Σ−1

j (ξ − µj).

Proof: We know that the characteristic function ϕxj
(t)

is absolutely integrable. Thus using the properties of the
characteristic function [29, p.33] we get

pxj
(ξ) =

1

(2π)n

∫

exp
(

−itT ξ
)

ϕxj
(t)dt

=
1

(2π)n

∫

exp

(

itT (µj − ξ) −
1

2
tTΣjt

)

dt

=

√
det(Σj)

(2π)
n
2

∫

exp
(

itT (µj − ξ) − 1
2 tTΣjt

)

dt

(2π)
n
2

√

det (Σj)

"
=

exp
(

− 1
2 (ξ − µj)

T Σ−1
j (ξ − µj)

)

(2π)
n
2

√

det (Σj)

$ see [28, p.297].

Definition 4 (Gaussian Mixture): An n-dimensional ran-
dom variable x is an N -component Gaussian Mixture if its
characteristic function has the form

ϕx(t) =
N
∑

j=1

αj exp

(

itT µj −
1

2
tTΣjt

)

, (6)

where µj ∈ Rn, Σj ∈ Rn×n is symmetric positive semidefi-

nite, αj ≥ 0, and
∑N

j=1 αj = 1. We use the abbreviation

x ∼ M(αj , µj ,Σj)(j,N).

We show that GM is well defined, which means that func-
tion (6) is in fact a characteristic function. First, assume that
all matrices Σj are positive definite. We know that function

p(ξ) =
N
∑

j=1

αj N
µj

Σj
(ξ), (7)

is a density function, that is
∫

p(ξ)dξ = 1 and p(ξ) ≥ 0 for
all ξ. Because

∫

exp(itT ξ)p(ξ)dξ =

∫

exp(itT ξ)





N
∑

j=1

αj N
µj

Σj
(ξ)



 dξ

=
N
∑

j=1

αj

∫

exp(itT ξ)N
µj

Σj
(ξ)dξ

(5)
=

N
∑

j=1

αj exp

(

itT µj −
1

2
tTΣjt

)

,

2If A > B then both matrices A and B are symmetric and xT (A−B)x > 0
for all x #= 0.

function (6) is the characteristic function of a continuous n-
dimensional Gaussian Mixture. The density function of this
distribution is given in equation (7).

Now, let at least one of the covariance matrices Σj be
singular. Take ε > 0 and consider the positive definite
symmetric matrices Σεj = Σj + εI. Then by what has been
proved,

ϕxε
(t) =

N
∑

j=1

αj exp

(

itT µj −
1

2
tTΣεjt

)

is a characteristic function. Because function (6) is the limit
of characteristic functions

lim
ε→0

ϕxε
(t) =

N
∑

j=1

αj exp

(

itT µj −
1

2
tTΣjt

)

,

and it is continuous at t = 0, then this function (6) is a
characteristic function [28, p.298].

Theorem 5 (Mean and Covariance of mixture): Assume
that

ϕx(t) =
N
∑

j=1

αjϕxj
(t)

where E(xj) = µj ∈ Rn, V(xj) = Σj ∈ Rn×n, αj ≥ 0, and
∑N

j=1 αj = 1. Then

E(x) =
N
∑

j=1

αjµj
"
= µ and

V(x) =
N
∑

j=1

αj

(

Σj + (µj − µ)(µj − µ)T
)

.

Proof: We use the properties of the characteristic func-
tion [29, p.34] to get

E(x) =
1

i
(ϕ′

x(t)|t=0)
T

=
N
∑

j=1

αj
1

i

(

ϕ′
xj

(t)|t=0

)T

=
N
∑

j=1

αjµj
"
= µ

and

V(x) = −E(x) E(x)T − ϕ′′
x(t)|t=0

= −µµT +
N
∑

j=1

αj

(

−ϕ′′
xj

(t)|t=0

)

= −µµT +
N
∑

j=1

αj

(

Σj + µjµ
T
j

)

=
N
∑

j=1

αj

(

Σj + µjµ
T
j − µµT

)

=
N
∑

j=1

αj

(

Σj + (µj − µ)(µj − µ)T
)

.
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Note that Theorem 5 does not assume that the distribution is
a Gaussian mixture, these results are valid for all mixtures.

Theorem 6 (Linear transformation and sum of GM):

Assume that an n-dimensional random variable

x ∼ M(αj , µj ,Σj)(j,N)

and an m-dimensional random variable

v ∼ M(βk, rk, Rk)(k,M)

are independent. Define a random variable y = Hx+v, where
matrix H ∈ Rm×n. Then

y ∼ M(αj(l)βk(l), Hµj(l) + rk(l), HΣj(l)H
T + Rk(l))(l,NM),

where j(l) = [(l − 1) mod N ]+1 and k(l) = ' l
N
(.3 We also

use the abbreviation

y ∼ M(αjβk, Hµj + rk, HΣjH
T + Rk)(j∗k,NM).

Proof: Since x and v are independent, also Hx and v are
independent.

ϕHx+v(t)
ind.
= ϕHx(t)ϕv(t)

= E
(

exp
(

itT (Hx)
))

ϕv(t)

= E
(

exp
(

i
(

HT t
)T

x
))

ϕv(t)

= ϕx(HT t)ϕv(t)

=
N
∑

j=1

αj exp

(

itT Hµj −
1

2
tT HΣjH

T t

)

· . . .

M
∑

k=1

βk exp

(

itT rk −
1

2
tT Rkt

)

=
NM
∑

l=1

αj(l)βk(l) exp

(

itT
(

Hµj(l) + rk(l)

)

. . .

−
1

2
tT
(

HΣj(l)H
T + Rk(l)

)

t

)

.

Corollary 7: Assume that an n-dimensional random vari-
able

x ∼ M(αj , µj ,Σj)(j,N)

and
y = Ax + b,

where A ∈ Rm×n and b ∈ Rm. Then

y ∼ M(αj , Aµj + b, AΣjA
T )(j,N).

Proof: Now b ∼ M(1, b, 0)(k,1). Constant random vari-
able b and x are independent, so using Theorem 6 we get

y ∼ M(αj , Aµj + b, AΣjA
T )(j,N).

Note that if x ∼ N(µ1,Σ1) then x ∼ M(1, µj ,Σj)(j,1). So
Theorem 6 and Corollary 7 hold also for Gaussian distribu-
tions.

3Ceiling function $x% = min {n ∈ Z|n ≥ x} and modulo function (a
mod n) = a + n$− a

n
%.

III. ALGORITHM OF GAUSSIAN MIXTURE FILTER

In this section, we give the algorithm of Gaussian Mix-
ture Filter for the system (1) (Algorithm 2). The subsec-
tions III-A–III-D present the details of this algoritm. Algo-
rithm 2 uses the following assumptions:

1) Initial state

x0 ∼ M(α+
i,0, µ

+
i,0,Σ

+
i,0)(i,n0)

is a continuous Gaussian Mixture, that is, Σ+
i,0 > 0 for

all i.
2) Errors are GMs

wk ∼ M(γj,k, w̄j,k, Qj,k)(j,nwk
) and

vk ∼ M(βj,k, v̄j,k, Rj,k)(j,nvk
),

where all Rj,k > 0.
3) Measurement functions are of the form

hk(x) = h̄k(x1:d) + H̄kx. (8)

This means that the nonlinear part h̄k(x1:d) only de-
pends on the first d dimensions (d ≤ nx). We assume
that functions h̄k(x1:d) are twice continuously differen-
tiable in Rd \ {s1, . . . , sns}.4

Algorithm 2 Gaussian mixture filter

Initial state at time t0: x+
0 ∼ M(α+

i,0, µ
+
i,0,Σ

+
i,0)(i,n0)

for k = 1 to nmeas do
1) Prediction (see Sec. III-A):

x−
k ∼ M(α−

i∗j,k, µ−
i∗j,k,Σ−

i∗j,k)(i∗j,n−

k
)

2) Approximate x−
k as a new GM x̄−

k if necessary (see
Sec. III-B):

x̄−
k ∼ M(ᾱ−

i,k, µ̄−
i,k, Σ̄−

i,k)(i,n̄−

k
)

3) Update (see Sec. III-C):

x̄+
k ∼ M(ᾱ+

i∗j,k, µ̄+
i∗j,k, Σ̄+

i∗j,k)(i∗j,n̄+
k

)

4) Reduce the number of components (see Sec. III-D):

x+
k ∼ M(α+

i,k, µ+
i,k,Σ+

i,k)(i,nk)

end for

A. Prediction, Step (1)

Prediction is based on Eq. (1a) and Thm. 6 (see also Eq. (2)).

x−
k ∼ M(α−

i∗j,k, µ−
i∗j,k,Σ−

i∗j,k)(i∗j,n−

k
),

where

n−
k = nk−1nwk−1 ,

α−
i∗j,k = α+

i,k−1γj,k−1,

µ−
i∗j,k = Fk−1µ

+
i,k−1 + w̄j,k−1 and

Σ−
i∗j,k = Fk−1Σ

+
i,k−1Fk−1

T + Qj,k−1.

4For example, in positioning applications that are based on range measure-
ments and a constant velocity model nx = 6 (position+velocity), d = 3
(position) and si is position vector of the ith base station [11], [27]
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B. Approximate GM as a new GM, Step (2)

There are different methods to compute Step (2). Here we
present one conventional method. Another method, namely, the
Box Gaussian Mixture Approximation, is given in Section V.
The density function of a new GM approximation px̄−

k
is [20]

px̄−

k
(ξ) ∝

n̄−

k,g
∑

i=1

px−

k
(ξ(i)

g )N
ξ
(i)
g

cgI
(ξ), (9)

where the mean values ξ
(i)
g are used to establish a grid in the

region of the state space that contains the significant part of
the probability mass, n̄−

k,g is the number of grid points and
cg > 0 is determined such that the error in the approximation,
e.g. the Lissack-Fu distance (4), is minimized. So

x̄−
k ∼ M(ᾱ−

i,k, µ̄−
i,k, Σ̄−

i,k)(i,n̄−

k
),

where

n̄−
k = n̄−

k,g,

ᾱ−
i,k =

px−

k
(ξ(i)

g )

∑n̄−

k,g

i=1 px−

k
(ξ(i)

g )
,

µ̄−
i,k = ξ(i)

g and

Σ̄−
i,k = cgI.

It can be shown that px̄−

k
(x) converges almost everywhere

uniformly to the density function of x−
k as the number of

components n̄−
k increases and cg approaches zero [20], [21].

Moreover, the Lissack-Fu distance (4) of the approximation
converges to zero.

Step (2) is executed only when necessary. If it is not
necessary then x̄−

k = x−
k . A conventional criterion is to check

if some prior covariances do not satisfy inequality P−
i < εI,

for some predefined ε, where P−
i is the covariance of the ith

component [6, p.216]. Note that finding reasonable grid points

ξ
(i)
g and an optimal constant cg > 0 usually requires some

heavy computation.

C. Update, Step 3

The update Eq. (3) is usually computed approximately using
a bank of EKFs. In this paper we use that approximation. It
is possible to compute the update step using a bank of other
Kalman-type filters [30] or a bank of PFs [31]. Using the bank

of EKFs approximation we get

px̄+
k
(ξ) ∝ pvk

(yk − hk(ξ))px̄−

k
(ξ)

=

nvk
∑

j=1

n̄−

k
∑

i=1

βj,k N
v̄j,k

Rj,k
(yk − hk(ξ)) ᾱ−

i,k N
µ̄−

i,k

Σ̄−

i,k

(ξ)

≈
nvk
∑

j=1

n̄−

k
∑

i=1

ᾱ−
i,kβj,k N

µ̄−

i,k

Σ̄−

i,k

(ξ) · . . .

N
v̄j,k

Rj,k

(

yk − hk(µ̄−
i,k) − Hi,k(ξ − µ̄−

i,k)
)

=

nvk
∑

j=1

n̄−

k
∑

i=1

ᾱ−
i,kβj,k N

µ̄−

i,k

Σ̄−

i,k

(ξ) · . . .

N
Hi,kξ
Rj,k

(

yk − hk(µ̄−
i,k) + Hi,kµ̄−

i,k − v̄j,k

)

Thm. 25
=

nvk
∑

j=1

n̄−

k
∑

i=1

ᾱ−
i,kβj,k N

µ̄+
i∗j,k

Σ̄+
i∗j,k

(ξ) · . . .

N
Hi,kµ̄−

i,k

Hi,kΣ̄−

i,k
HT

i,k
+Rj,k

(

yk − hk(µ̄−
i,k) + Hi,kµ̄−

i,k − v̄j,k

)

,

(10)

where Hi,k = ∂hk(ξ)
∂ξ

∣

∣

ξ=µ̄−

i,k

. So

x̄+
k ∼ M(ᾱ+

i∗j,k, µ̄+
i∗j,k, Σ̄+

i∗j,k)(i∗j,n̄+
k

), (11)

where

n̄+
k = nvk

n̄−
k ,

ᾱ+
i∗j,k =

ᾱ−
i,kβj,k N

hk(µ̄−

i,k
)+v̄j,k

Hi,kΣ̄−

i,k
HT

i,k
+Rj,k

(yk)

∑nvk

j=1

∑n̄−

k

i=1 ᾱ−
i,kβj,k N

hk(µ̄−

i,k
)+v̄j,k

Hi,kΣ̄−

i,k
HT

i,k
+Rj,k

(yk)
,

µ̄+
i∗j,k = µ̄−

i,k + Ki∗j,k(yk − hk(µ̄−
i,k) − v̄j,k),

Σ̄+
i∗j,k = (I − Ki∗j,kHi,k) Σ̄−

i,k and

Ki∗j,k = Σ̄−
i,kHT

i,k

(

Hi,kΣ̄
−
i,kHT

i,k + Rj,k

)−1
.

D. Reduce the number of components, Step 4

One major challenge when using GMF efficiently is keeping
the number of components as small as possible without losing
significant information. There are many ways to do so. We use
two different types of mixture reduction algorithms: forgetting
and merging [21], [30], [32].

1) Forgetting components: We re-index the posterior ap-
proximation x̄+

k Eq. (11) such that

x̄+
k ∼ M(ᾱ+

i,k, µ̄+
i,k, Σ̄+

i,k)(i,n̄+
k

),

where ᾱ+
i,k ≥ ᾱ+

i+1,k. Let εf = 1
2N

be the threshold value. Let

n̄+
k,f be the index such that

n̄+
k,f
∑

i=1

ᾱ+
i,k ≥ 1 − εf

We forget all mixture components whose index i > n̄+
k,f and

after normalization we get x̄+
k,f. Now

x̄+
k,f ∼ M(ᾱ+

i,k,f, µ̄
+
i,k,f, Σ̄

+
i,k,f)(i,n̄+

k,f
), (12)
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where

ᾱ+
i,k,f =

ᾱ+
i,k

∑n̄+
k,f

j=1 ᾱ+
j,k

, µ̄+
i,k,f = µ̄+

i,k and Σ̄+
i,k,f = Σ̄+

i,k.

2) Merging components: Our merging procedure is iter-
ative. We merge two components, say the i1th component
and the i2th component, into one component using moment
matching method if they are sufficiently similar, that is if (for
simplicity we suppress indices k and f) both

‖µ̄+
i1
− µ̄+

i2
‖ ≤ εm1 and (13a)

‖Σ̄+
i1
− Σ̄+

i2
‖ ≤ εm2 (13b)

inequalities hold. Here we assume that the threshold values
εm1 −→

N→∞
0 and εm2 −→

N→∞
0. The new component, which re-

places components i1 and i2, is a component whose weight,
mean and covariance matrix are

ᾱ+
i1,m = ᾱ+

i1
+ ᾱ+

i2

µ̄+
i1,m =

ᾱ+
i1

ᾱ+
i1,m

µ̄+
i1

+
ᾱ+

i2

ᾱ+
i1,m

µ̄+
i2

and

Σ̄+
i1,m =

ᾱ+
i1

ᾱ+
i1,m

(

Σ̄+
i1

+
(

µ̄+
i1
− µ̄+

i1,m

) (

µ̄+
i1
− µ̄+

i1,m

)T
)

+ . . .

ᾱ+
i2

ᾱ+
i1,m

(

Σ̄+
i2

+
(

µ̄+
i2
− µ̄+

i1,m

) (

µ̄+
i2
− µ̄+

i1,m

)T
)

,

respectively. After re-indexing (forgetting component i2) we
merge iteratively more components until there are no suffi-
ciently similar components, components that statisfy inequal-
ities (13). Herewith, after re-indexing, we get

x+
k ∼ M(α+

i,k, µ+
i,k,Σ+

i,k)(i,nk).

IV. CONVERGENCE RESULTS OF GMF

In this section, we present the convergence results of GMF.
First we present some well know convergence results.

Definition 8 (Weak convergence): Let x and xN , where
N ∈ N, be n-dimensional random variables. We say that xN

converges (weakly) to x if

FxN
(ξ) −→

N→∞
Fx(ξ),

for all points ξ for which the cumulative density function
Fx(ξ) is continuous. We use the abbreviation

xN
w−→

N→∞
x.

Theorem 9: The following conditions are equivalent

1) xN
w−→

N→∞
x.

2) E(g(xN )) −→
N→∞

E(g(x)) for all continuous functions g

that vanish outside a compact set.
3) E(g(xN )) −→

N→∞
E(g(x)) for all continuous bounded

functions g.
4) E(g(xN )) −→

N→∞
E(g(x)) for all bounded measurable

functions g such that P(x ∈ C(g)) = 1, where C(g)
is the continuity set of g.

Proof: See, for example, the book [33, p.13].

Theorem 10 (Slutsky Theorems): 1) If

xN
w−→

N→∞
x,

and if f : Rn → Rk is such that P(x ∈ C(f)) = 1,
where C(f) is the continuity set of f , then

f(xN )
w−→

N→∞
f(x).

2) If {xN} and {yN} are independent, and if xN
w−→

N→∞
x

and yN
w−→

N→∞
y, then

[

xN

yN

]

w−→
N→∞

[

x
y

]

,

where x and y are taken to be independent.

Proof: See, for example, the book [33, p.39, p.42].

Now we show the convergence results of GMF (Algo-
rithm 2). The outline of the convergence results of GMF is
given in Algorithm 3. The details of the convergence results
are given in Sections IV-A–IV-D. The initial step of Algo-
rithm 3 is self-evident because we assume that the initial state
is a Gaussian mixture. Furthermore if our (exact) initial state
has an arbitrary density function it is possible to approximate
it as a Gaussian mixture such that the approximation weakly
converges to the exact initial state (Sec. III-B).

Algorithm 3 Outline of showing the convergence results of
the Gaussian mixture filter (Algorithm 2)

Initial state: Show that x+
0

w−→
N→∞

x+
0,exact.

for k = 1 to nmeas show

1) Prediction, Sec. IV-A:

x+
k−1

w−→
N→∞

x+
k−1,exact =⇒ x−

k

w−→
N→∞

x−
k,exact.

2) Approximation, Sec. IV-B:

x−
k

w−→
N→∞

x−
k,exact =⇒ x̄−

k

w−→
N→∞

x−
k,exact.

3) Update, Sec. IV-C:

x̄−
k

w−→
N→∞

x−
k,exact =⇒ x̄+

k

w−→
N→∞

x+
k,exact.

4) Reduce the number of components, Sec. IV-D:

x̄+
k

w−→
N→∞

x+
k,exact =⇒ x+

k

w−→
N→∞

x+
k,exact.

end for

A. Convergence results of Step 1 (prediction)

Here we show that if x+
k−1

w−→
N→∞

x+
k−1,exact then

x−
k

w−→
N→∞

x−
k,exact (Thm. 11).

Theorem 11 (Prediction convergence): If

x+
k−1

w−→
N→∞

x+
k−1,exact,
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wk−1 and {x+
k−1,N |N ∈ N}5 are independent, and wk−1 and

x+
k−1,exact are independent then

x−
k

w−→
N→∞

x−
k,exact.

Proof: Because wk−1 and {x+
k−1,N |N ∈ N} are indepen-

dent then wk−1 and {Fk−1x
+
k−1,N |N ∈ N} are independent.

From Thm. 10 we see that

Fk−1x
+
k−1

w−→
N→∞

Fk−1x
+
k−1,exact

and
[

Fk−1x
+
k−1

wk−1

]

w−→
N→∞

[

Fk−1x
+
k−1,exact

wk−1

]

.

Because

x−
k =

[

I I
]

[

Fk−1x
+
k−1

wk−1

]

and

x−
k,exact =

[

I I
]

[

Fk−1x
+
k−1,exact

wk−1

]

it follows that

x−
k

w−→
N→∞

x−
k,exact.

B. Convergence results of Step 2 (approximation)

Here we show that if x−
k

w−→
N→∞

x−
k,exact then x̄−

k

w−→
N→∞

x−
k,exact.

It is enough to show that

Fx−

k
(ξ) − Fx̄−

k
(ξ) −→

N→∞
0,

for all ξ. If we use the conventional approximation method
see Sec. III-B and if we use the new method (BGMA) see
Thm. 21 and Corollary 22.

Furthermore, we require that the most of the covariance
matrices Σ̄−

k,i,N of the components of our GM approximation

x̄−
k,N are arbitrary small. That is if ε > 0 then there is N0

such that for all N > N0

d
∑

j=1

(

Σ̄−
k,i,N

)

j,j
< ε, (14)

for almost all i. Both the conventional approximation
(Sec. III-B) and BGMA (Sec. V and Corollary 20) satisfy
this requirement.

C. Convergence results of Step 3 (update)

Here we show that if x̄−
k

w−→
N→∞

x−
k,exact then x̄+

k

w−→
N→∞

x+
k,exact.

The distribution x̄+
k is computed from the prior approximation

x̄−
k using the bank of EKF approximations (Sec. III-C). We use

the abbreviation x̄+,Bayes
k for the distribution that is obtained

from the prior approximation x̄−
k using the exact update Eq. (3)

(see also Eq. (15)). First we show that if x̄−
k

w−→
N→∞

x−
k,exact then

5Usually we suppress the index N (parameter of GMF), that is x+

k−1,N

"
=

x+

k−1
.

x̄+,Bayes
k

w−→
N→∞

x+
k,exact (Thm. 12). After that it is enough to show

that

Fx̄
+,Bayes

k

(ξ) − Fx̄+
k
(ξ) −→

N→∞
0,

for all ξ (Thm. 13).
Theorem 12 (Correct posterior convergence): Assume that

x̄−
k

w−→
N→∞

x−
k,exact,

and the density functions of x̄−
k and x−

k,exact are px̄−

k
(ξ) and

px−

k,exact
(ξ), respectively. Now

x̄
+,Bayes
k

w−→
N→∞

x+
k,exact.

Proof: Using the assumptions and Thm. 9 we get that
∫

p(yk|ξ)px̄−

k,N
(ξ)dξ −→

N→∞

∫

p(yk|ξ)px−

k,exact
(ξ)dξ,

where the likelihood p(yk|ξ) = pvk
(yk−hk(ξ)). Furthermore,

all these integrals are positive because

p(yk|ξ)px̄−

k,N
(ξ) > 0 and p(yk|ξ)px−

k,exact
(ξ) > 0,

for all ξ. Respectively, because a set {x |x < z} is open6, we
get that
∫ z

−∞
p(yk|ξ)px̄−

k,N
(ξ)dξ −→

N→∞

∫ z

−∞
p(yk|ξ)px−

k,exact
(ξ)dξ,

for all z. Combining these results we get that

Fx̄
+,Bayes

k

(z) −→
N→∞

Fx+
k,exact

(z),

for all z, where

Fx̄
+,Bayes

k

(z) =

∫ z

−∞ p(yk|ξ)px̄−

k
(ξ)dξ

∫

p(yk|ξ)px̄−

k
(ξ)dξ

and

Fx+
k,exact

(z) =

∫ z

−∞ p(yk|ξ)px−

k,exact
(ξ)dξ

∫

p(yk|ξ)px−

k,exact
(ξ)dξ

.

(15)

Theorem 13 (Bank of EKFs convergence): Let

Fx̄+
k
(z) =

∫ z

−∞ pEKF(yk|ξ)px̄−

k
(ξ)dξ

∫

pEKF(yk|ξ)px̄−

k
(ξ)dξ

and

Fx̄
+,Bayes

k

(z) =

∫ z

−∞ p(yk|ξ)px̄−

k
(ξ)dξ

∫

p(yk|ξ)px̄−

k
(ξ)dξ

,

where the likelihood

p(yk|ξ) = pvk
(yk − hk(ξ))

and the bank of EKF likelihood approximations7 (see Eq. (10))

pEKF(yk|ξ) = pvk
(yk − hk(µ̄−

i,k) − Hi,k(ξ − µ̄−
i,k)).

Then

Fx̄
+,Bayes

k

(ξ) − Fx̄+
k
(ξ) −→

N→∞
0.

6Here sign ′′ <′′ is interpreted elementwise.
7Note that current approximation is also a function of index i (see Eq. (10)).
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Proof: It is enough to show that
∫

∣

∣

∣
p(yk|ξ) − pEKF(yk|ξ)

∣

∣

∣
px̄−

k
(ξ)dξ −→

N→∞
0.

Now
∫

∣

∣

∣
p(yk|ξ) − pEKF(yk|ξ)

∣

∣

∣
px̄−

k
(ξ)dξ

≤
nvk
∑

j=1

n̄−

k
∑

i=1

βj,kᾱ−
i,k

∫

∣

∣

∣
N

v̄j,k

Rj,k
(z) − N

v̄j,k

Rj,k
(z̃i)
∣

∣

∣
N

µ̄−

i,k

Σ̄−

i,k

(ξ)dξ

=

nvk
∑

j=1

n̄−

k
∑

i=1

βj,kᾱ−
i,k

√

det (2πRj,k)
· . . .

∫
∣

∣

∣

∣

exp

(

−
1

2
‖z‖2

R−1
j,k

)

− exp

(

−
1

2
‖z̃i‖2

R−1
j,k

)∣

∣

∣

∣

N
µ̄−

i,k

Σ̄−

i,k

(ξ)dξ

=

nvk
∑

j=1

n̄−

k
∑

i=1

βj,kᾱ−
i,k

√

det (2πRj,k)
εi,j ,

where z = yk − hk(ξ), z̃i = yk − hk(µ̄−
i,k) − Hi,k(ξ − µ̄−

i,k)
and εi,j is
∫
∣

∣

∣

∣

exp

(

−
1

2
‖z‖2

R−1
j,k

)

− exp

(

−
1

2
‖z̃i‖2

R−1
j,k

)∣

∣

∣

∣

N
µ̄−

i,k

Σ̄−

i,k

(ξ)dξ.

It is easy to see that

εi,j < 1. (16)

Based on the assumptions (see p. 4) we know that almost all
µ̄−

i,k have a neighbourhood C̄i such that

∣

∣ξT hk
′′
j (x)ξ

∣

∣ ≤ cHξT

[

Id×d 0
0 0

]

ξ, for all ξ ∈ Rnx (17)

where cH is some constant, j ∈ {1, . . . , ny}, ny is the number
of measurements (length of vector y), d see p. 4 and x ∈
C̄i. We select C̄i such that it is as big as possible (union
of all possible sets). Especially we see that if x ∈ C̄i then
[

x1:d

x̄

]

∈ C̄i, where x̄ ∈ Rnx−d is an arbitrary vector.

The index set I1 contains the index i if both inequalities (14)
and (17) hold, the rest of the indices belong to the index set
I2. Now

∫

|p(yk|ξ) − pEKF(yk|ξ)|px̄−

k
(ξ)dξ

=

nvk
∑

j=1

n̄−

k
∑

i=1

βj,kᾱ−
i,k

√

det (2πRj,k)
εi,j ,

(16)

≤
nvk
∑

j=1

∑

i∈I1

βj,kᾱ−
i,k

√

det (2πRj,k)
εi,j +

∑

i∈I2

ᾱ−
i,k

√

det
(

2πR̄k

)

,

where det
(

2πR̄k

)

= minj det (2πRj,k). Since almost all
indices belong to the index set I1,

∑

i∈I2

ᾱ−
i,k

√

det
(

2πR̄k

)

−→
N→∞

0.

Appendix C (Lemma 27) shows that εi,j −→
N→∞

0 when i ∈ I1.

D. Convergence results of Step 4 (reduce the number of

components)

Here we show that if x̄+
k

w−→
N→∞

x+
k,exact then x+

k

w−→
N→∞

x+
k,exact.

First we show that if x̄+
k

w−→
N→∞

x+
k,exact then x̄+

k,f

w−→
N→∞

x+
k,exact,

(Thm. 14), see Eq. (12).

Theorem 14 (Forgetting components): If

x̄+
k

w−→
N→∞

x+
k,exact

then

x̄+
k,f

w−→
N→∞

x+
k,exact.

(See Sec. III-D1.)

Proof: Take arbitrary ε > 0, then there is an n1 such that

|Fx+
k,exact

(ξ) − Fx̄+
k
(ξ)| ≤

ε

2
,

for all ξ when N > n1. Now

|Fx+
k,exact

(ξ) − Fx̄+
k,f

(ξ)|

= |Fx+
k,exact

(ξ) − Fx̄+
k
(ξ) + Fx̄+

k
(ξ) − Fx̄+

k,f
(ξ)|

≤ |Fx+
k,exact

(ξ) − Fx̄+
k
(ξ)| + |Fx̄+

k
(ξ) − Fx̄+

k,f
(ξ)|

≤
ε

2
+

1

2N
≤ ε,

for all ξ ∈ Rnx , when N ≥ max(n1,
1
ε ). This completes the

proof (see Def. 8).

Theorem 15 (Merging components): If

x̄+
k,f

w−→
N→∞

x+
k,exact

then

x+
k

w−→
N→∞

x+
k,exact.

(See Sec. III-D2.)

Proof: Based on Thm. 14 it is enough to show that

|Fx̄+
k,f

(ξ) − Fx+
k
(ξ)| −→

N→∞
0,

for all ξ. Because all cumulative density functions are contin-
uous and

‖µ̄+
i1
− µ̄+

i1,m‖ −→
N→∞

0,

‖µ̄+
i2
− µ̄+

i1,m‖ −→
N→∞

0,

‖Σ̄+
i1
− Σ̄+

i1,m‖ −→
N→∞

0 and

‖Σ̄+
i2
− Σ̄+

i1,m‖ −→
N→∞

0

then

|Fx̄+
k,f

(ξ) − Fx+
k
(ξ)| −→

N→∞
0.

This completes the proof (see Def. 8).
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V. BOX GAUSSIAN MIXTURE APPROXIMATION

In this section, we define the Box Gaussian Mixture Ap-
proximation (BGMA) and present some of its properties.
Finally, we show that BGMA converges weakly to the original
distribution.

Definition 16 (BGMA): The Box Gaussian Mixture Ap-

proximation of x ∼ Nn(µ,Σ), note n
"
= nx, where Σ > 0,

is

xN ∼ M(αi, µi,Σi)(i,(2N2+1)d),

where the multi-index i ∈ Zd, with d ≤ n and ‖i‖∞ ≤ N2.
The parameters are defined as

αi =

∫

Ai

px(ξ)dξ,

µi =

∫

Ai

ξ
px(ξ)

αi
dξ, and

Σi =

∫

Ai

(ξ − µi)(ξ − µi)
T px(ξ)

αi
dξ,

(18)

where the sets

Ai =
{

x
∣

∣l(i) < A(x − µ) ≤ u(i)
}

,

constitute a partition of Rn. We assume that A =
[

A11 0
]

,
A11 ∈ Rd×d and

AΣAT = I. (19)

Here the limits l(i) and u(i) are

lj(i) =

{

−∞, if ij = −N2

ij

N
− 1

2N
, otherwise

,

uj(i) =

{

∞, if ij = N2

ij

N
+ 1

2N
, otherwise

.

Now we show that the assumption Eq. (19) enables feasible
computation time for the parameters of BGMA.

Theorem 17 (Parameters of BGMA): Let

xN ∼ M(αi, µi,Σi)(i,(2N2+1)d),

be the BGMA of x ∼ Nn(µ,Σ), where Σ > 0 (see Def. 16).
Then the parameters are

αi =
d
∏

j=1

(Φ (uj(i)) − Φ (lj(i))) ,

µi = µ + ΣAT εi, and

Σi = Σ− ΣATΛiAΣ,

where

Φ(x) =

∫ x

−∞
N0

1 (ξ)dξ,

Λi = diag(δi + diag(εiε
T
i )),

εi =
d
∑

j=1

ej
e−

1
2 lj(i)

2 − e−
1
2uj(i)2

√
2π (Φ (uj(i)) − Φ (lj(i)))

, and

δi =
d
∑

j=1

ej
uj(i)e−

1
2uj(i)2 − lj(i)e−

1
2 lj(i)

2

√
2π (Φ (uj(i)) − Φ (lj(i)))

,

where ej ∈ Rd is the jth column of the identity matrix I. The
sets Ai, and limits l(i) and u(i) are given in Def. 16.

Proof: We use the following block matrix notation

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

, Ā =

[

A11 0
−DΣ21Σ

−1
11 D

]

,

where D =
(

Σ22 − Σ21Σ
−1
11 Σ12

)− 1
2 . Because Σ > 0 then

D > 0. We see that ĀΣĀT = I. We use the variable
transformation

x̄ = Ā(x − µ).

Because x ∼ N(µ,Σ) then x̄ ∼ N(0, I), and if x ∈ Ai then
x̄ ∈ Bi and vice versa. Here

Bi =

{

x̄

∣

∣

∣

∣

∣

[

l(i)
−∞

]

< x̄ ≤
[

u(i)
∞

]

}

.

Now we compute parameters Eq. (18)

αi = P(x̄ ∈ Bi) =
d
∏

j=1

(Φ (uj(i)) − Φ (lj(i))) ,

µi = µ +

∫

Bi

Ā−1η
px̄(η)

αi
dη = µ + ΣAT εi,

Σi = Ā−1

∫

Bi

(η − εi)(η − εi)
T px̄(η)

αi
dηĀ−T

= Σ− ΣATΛiAΣ.

Here we have used the knowledge that Ā−1 = ΣĀT .

In Fig. 1, we compare the density function of the Gaussian
distribution

x ∼ N2

([

0
0

]

,

[

13 12
12 13

])

and the density function of its BGMA with parameters d = 2,
N = 2 and

A =

[

1√
13

0

− 12
5
√

13

√
13
5

]

.

Fig. 1 shows the contour plots of the Gaussian and the BGMA
density functions such that 50% of the probability mass is
inside the innermost curve and 95% of the probability mass
is inside the outermost curve.

Theorem 18 shows that BGMA has the same mean and
covariance as the original distribution.

Theorem 18 (Mean and Covariance of BGMA): Let

xN ∼ M(αi, µi,Σi)(i,(2N2+1)d),

be the BGMA of x ∼ Nn(µ,Σ), where Σ > 0 (see Def. 16).
Then

E(xN ) = µ and V(xN ) = Σ.

Proof: Now

E(xN )
Thm. 5
=

∑

i

αiµi
Def. 16

=
∑

i

αi

∫

Ai

ξ
px(ξ)

αi
dξ

=
∑

i

∫

Ai

ξpx(ξ)dξ =

∫

ξpx(ξ)dξ = µ,



10

0.95

0.5

Gaussian

BGMA

Fig. 1. Example of the BGMA

and

V(xN )
Thm. 5
=

∑

i

αi

(

Σi + (µi − µ)(µi − µ)T
)

=
∑

i

αi

(

Σi + µi(µi − µ)T
)

Def. 16
=

∑

i

αi

(
∫

Ai

ξ(ξ − µi)
T px(ξ)

αi
dξ + µi(µi − µ)T

)

Def. 16
=

∑

i

αi

∫

Ai

ξξT px(ξ)

αi
dξ − µµT

=

∫

ξξT px(ξ)dξ − µµT = Σ.

Lemma 19 considers bounded boxes of Def. 16, i.e. boxes
with parameters d = n and ‖i‖∞ < N2. Lemma 19 shows
that a ball with radius rin = 1

2N‖A‖ fits inside all boxes, and

all boxes fit inside a ball whose radius is rout =
√

n
2N

‖A−1‖.
Note that the proportion of these radiuses rin

rout
= 1√

nκ(A)
does

not depend on the parameter N . Here κ(A) = ‖A‖‖A−1‖ is
the condition number of matrix A.

Lemma 19: Let

A =

{

x
∣

∣

∣
−

1

2N
1 < Ax ≤

1

2N
1

}

,

Rin =
{

x
∣

∣

∣
‖x‖ ≤ rin

}

and Rout =
{

x
∣

∣

∣
‖x‖ ≤ rout

}

,

where 1 is a vector allof whose elements are ones,

rin =
1

2N‖A‖
, rout =

√
n

2N
‖A−1‖

and A is non-singular. Now Rin ⊂ A ⊂ Rout.
Proof: If x ∈ Rin then

‖Ax‖ ≤ ‖A‖‖x‖ ≤
1

2N
.

So Rin ⊂ A. If x ∈ A then

‖x‖ ≤ ‖Ax‖‖A−1‖ ≤ ‖
1

2N
1‖‖A−1‖ ≤

√
n

2N
‖A−1‖.

So A ⊂ Rout.

Corollary 20 considers the center boxes (‖i‖∞ < N2) of
BGMA (Def. 16) and shows that the covariances of the first
d dimensions converge to zero when N approaches infinity.

Corollary 20: Covariances Σi are the same as in Def. 16.
Now

d
∑

j=1

Σij,j −→
N→∞

0, when ‖i‖∞ < N2.

Proof: Because

d
∑

j=1

Σij,j =

∫

Ai

‖ξ1:d − µi1:d‖2 px(ξ)

αi
dξ

Lem. 19
≤

∫

Ai

d

N2
‖A−1

11 ‖
2 px(ξ)

αi
dξ

=
d

N2
‖A−1

11 ‖
2

then
∑d

j=1 Σij,j −→
N→∞

0, for all ‖i‖∞ < N2.

Theorem 26 (see Appendix B) shows that the BGMA
converges weakly to the original distribution when the center
boxes are bounded. Theorem 21 uses this result to show that
BGMA converges weakly to the original distribution even if
all boxes are unbounded.

Theorem 21 (BGMA convergence, Gaussian case): Let

xN ∼ M(αi, µi,Σi)(i,(2N2+1)d)

be BGMA of x ∼ Nn(µ,Σ), where Σ > 0 (see Def. 16). Now

xN
w−→

N→∞
x.

Proof: First we define new random variables

x̄ = Ā(x − µ) ∼ N(0, I) and

x̄N = Ā(xN − µ) ∼ M(αi, Ā(µi − µ), ĀΣiĀ
T )(i,(2N2+1)d),

where Ā is defined in Thm. 17. Note that ĀΣiĀT are diagonal
matrices. It is enough to show that (because of Slutsky’s
Theorem 10)

x̄N
w−→

N→∞
x̄.

Let FN and F be the cumulative density functions correspond-
ing to the random variables x̄N and x̄. We have to show that

FN (x̄) −→
N→∞

F (x̄), ∀x̄ ∈ Rn. (20)

Because

FN (x̄) =
∑

i

αi

∫ x̄1

−∞
Nεi

I−Λi
(η1)dη1

∫ x̄2

−∞
N0

I (η2)dη2

= GN (x̄1)

∫ x̄2

−∞
N0

I (η2)dη2,

F (x̄) =

∫ x̄1

−∞
N0

I (η1)dη1

∫ x̄2

−∞
N0

I (η2)dη2

= G(x̄1)

∫ x̄2

−∞
N0

I (η2)dη2,

where x̄ =

[

x̄1

x̄2

]

, it is enough to show that

x̄N1:d

w−→
N→∞

x̄1:d (21)
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Based on Thm. 26 (see Appendix B), Eq. (21) is true, which
implies the theorem.

Corollary 22 (BGMA convergence, GM case): Let

x̄j,N ∼ M(ᾱi, µ̄i, Σ̄i)(i,(2N2+1)d)

be the BGMA of xj ∼ Nn(µj ,Σj), where Σj > 0 (see
Def. 16). Let x be the GM whose density function is

px(ξ) =
Nx
∑

j=i

αj N
µj

Σj
(ξ).

and xN be the GM whose density function is

pxN
(ξ) =

Nx
∑

j=i

αjpx̄j,N
(ξ).

Now

xN
w−→

N→∞
x.

Proof: Take arbitrary ε > 0, then there are nj,
j = 1, . . . , Nx such that (Thm. 21)

|Fxj
(ξ) − Fx̄j,Nj

(ξ)| ≤ ε, (22)

for all j and ξ, when Nj > nj . Now

|Fx(ξ) − FxN
(ξ)| =

∣

∣

∣

Nx
∑

j=1

αj

(

Fxj
(ξ) − Fxj,N

(ξ)
)

∣

∣

∣

≤
Nx
∑

j=1

αj |Fxj
(ξ) − Fxj,N

(ξ)|

(22)

≤
Nx
∑

j=1

αjε = ε,

for all ξ, when N > maxj{nj}.

VI. BOX GAUSSIAN MIXTURE FILTER

The Box Gaussian Mixture Filter (BGMF) is a GMF
(Sec. III) that approximates the prior x−

k as a new GM
(Step 2 in Algorithm 2) using BGMA (Sec. V) separately for
each component of the prior. Section IV shows that BGMF
converges weakly to the exact posterior distribution.

VII. SIMULATIONS

In the simulations we consider only the case of a single

time step. Our state x =

[

ru

vu

]

consists of the 2D-position

vector ru and the 2D-velocity vector vu of the user. The prior
distribution is

x ∼ N

















100
10
10
10









,









90000 0 0 0
0 7500 0 2500
0 0 1000 0
0 2500 0 7500

















,

and the current measurement (see Eq. (8)) is








500
0
0
0









=









‖ru‖
0
0
0









+









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









x + v,

where v is independent of x and

v ∼ N

















0
0
0
0









,









104 0 0 0
0 103 0 0
0 0 1 0
0 0 0 1

















.

So now d = 2 and n = 4 (see Def. 16). The current posterior
of the 2D-position is shown in Fig. 2. We see that the posterior
distribution is multimodal.

−1000

−500 

0    

500  
700  

1000 

−200

0   

200 

0  

0.5

1  

r
2

r
1

Fig. 2. The posterior of the position.

Now we compute the posterior approximations using BGMF
(Algorithm 2 steps (2) and (3)) and a Particle Filter [18].
BGMF uses BGMA with parameters N ∈ {0, 1, 2, . . . , 9} ;
the corresponding numbers of posterior mixture components
are (Def. 16)

nBGMF ∈ {1, 9, 81, . . . , 26569} .

The numbers of particles in the Particle Filter are

nPF ∈
{

22 · 100, 23 · 100, . . . , 217 · 100
}

.

We compute error statistics

|P (xtrue ∈ C) − P (xapp. ∈ C)|,

where the set C =
{

x
∣

∣

∣
|eT

1 x − 600| ≤ 100
}

(see Fig. 2). We

know that P (xtrue ∈ C) ≈ 0.239202. These error statistics are
shown as a function of CPU time in Fig. 3. Thm. 9 shows
that these error statistics converge to zero when the posterior
approximation converges weakly to the correct posterior.

Fig. 3 is consistent with the convergence results. It seems
that the error statistics of both BGMF and PF converge to
zero when the number of components or particles increase.
We also see that in this case 210 · 100 ≈ 1e5 particles in
PF are definitely too few. However, BGMF gives promising
results with only 81 components (N = 2) when CPU time is
significantly less than one second, which is good considering
real time implementations.

VIII. CONCLUSION

In this paper, we have presented the Box Gaussian Mixture
Filter (BGMF), which is based on Box Gaussian Mixture
Approximation (BGMA). We have presented the general form
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Fig. 3. Simulation results of BGMF and PF.

of Gaussian Mixture Filters (GMF) and we have shown that
GMF converges weakly to the correct posterior at given time
instant. BGMF is a GMF so we have shown that BGMF
converges weakly to the correct posterior at given time in-
stant. We have illustrated this convergence result with a tiny
example in which BGMF outperforms a basic particle filter.
The assumptions of BGMF fit very well in positioning and
previous work [27] shows that BGMF is feasible for real
time positioning implementations. BGMF also has smaller
computational and memory requirements than conventional
GMFs, because it splits only those dimensions where we get
nonlinear measurements.

APPENDIX A
PRODUCT OF TWO NORMAL DENSITIES.

The aim of this appendix is to compute the product of two
Gaussian densities (Theorem 25).

Lemma 23: If A > 0 (s.p.d.) then

‖a ± A−1b‖2
A = aT Aa ± 2bT a + bT A−1b.

Proof:

‖a ± A−1b‖2
A =

(

a ± A−1b
)T

A
(

a ± A−1b
)

= aT Aa ± aT b ± bT a + bT A−1b

= aT Aa ± 2bT a + bT A−1b

Lemma 24: If Σ1,Σ2 > 0 then

‖x − µ‖2
Σ−1

1
+ ‖y − Hx‖2

Σ−1
2

= ‖x − µ̄‖2
Σ−1

3
+ ‖y − Hµ‖2

Σ−1
4

,

where

µ̄ = µ + K(y − Hµ),

Σ3 = (I − KH)Σ1,

K = Σ1H
TΣ−1

4 , and

Σ4 = HΣ1H
T + Σ2.

Proof:

‖x − µ‖2
Σ−1

1
+ ‖y − Hx‖2

Σ−1
2

Lem. 23
= xT (Σ−1

1 + HTΣ−1
2 H)x − 2(µTΣ−1

1 + yTΣ−1
2 H)x

+ µTΣ−1
1 µ + yTΣ−1

2 y
Lem. 23

= ‖x − Cc‖2
C−1 − cT Cc + µTΣ−1

1 µ + yTΣ−1
2 y

= ‖x − µ̄‖2
Σ−1

3
+ ‖y − Hy‖2

Σ−1
4

,

where c = Σ−1
1 µ + HTΣ−1

2 y,

C = (Σ−1
1 + HTΣ−1

2 H)−1

"1= Σ1 − Σ1H
T (HΣ1H

T + Σ2)
−1HΣ1

= (I − KH)Σ1 = Σ3,

in step $1 we use the matrix inversion lemma [34, p.729].

Cc = (I − KH)Σ1(Σ
−1
1 µ + HTΣ−1

2 y)

= (I − KH)µ + (I − KH)Σ1H
TΣ−1

2 y

= (I − KH)µ + Σ1H
TΣ−1

2 y − K(Σ4 − Σ2)Σ
−1
2 y

= (I − KH)µ + Σ1H
TΣ−1

2 y − Σ1H
TΣ−1

2 y + Ky

= µ + K(y − Hµ) = µ̄

and

cT Cc = (Σ−1
1 µ + HTΣ−1

2 y)T ((I − KH)µ + Ky)

= (µTΣ−1
1 + yTΣ−1

2 H)((I − KH)µ + Ky)

= µT (Σ−1
1 − HTΣ−1

4 H)µ + µT HTΣ−1
4 y . . .

+ yT (Σ−1
2 H − Σ−1

2 HKH)µ + yTΣ−1
2 HKy

(23)
= µT (Σ−1

1 − HTΣ−1
4 H)µ + µT HTΣ−1

4 y . . .

+ yTΣ−1
4 Hµ + yT (Σ−1

2 − Σ−1
4 )y

= −(yTΣ−1
4 y − 2µT HTΣ−1

4 y + µT HTΣ−1
4 Hµ) . . .

+ yTΣ−1
2 y + µTΣ−1

1 µ

= −‖y − Hy‖2
Σ−1

4
+ yTΣ−1

2 y + µTΣ−1
1 µ.

Σ−1
2 HK = Σ−1

2 − Σ−1
4 (23)

Theorem 25 (Product of two Gaussians): If Σ1,Σ2 > 0
then

Nµ
Σ1

(x)NHx
Σ2

(y) = Nµ̄
Σ3

(x)NHµ
Σ4

(y),

where

µ̄ = µ + K(y − Hµ),

Σ3 = (I − KH)Σ1,

K = Σ1H
TΣ−1

4 , and

Σ4 = HΣ1H
T + Σ2.
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Proof:

Nµ
Σ1

(x)NHx
Σ2

(y)

=
exp

(

− 1
2‖x − µ‖2

Σ−1
1

)

(2π)
nx
2

√

det(Σ1)

exp
(

− 1
2‖y − Hx‖2

Σ−1
2

)

(2π)
ny
2

√

det(Σ2)

Lem. 24
=

exp
(

− 1
2‖x − µ̄‖2

Σ−1
3

)

exp
(

− 1
2‖y − Hµ‖2

Σ−1
4

)

(2π)
nx
2 (2π)

ny
2

√

det(Σ1) det(Σ2)

(24)
=

exp
(

− 1
2‖x − µ̄‖2

Σ−1
3

)

(2π)
nx
2

√

det(Σ3)

exp
(

− 1
2‖y − Hµ‖2

Σ−1
4

)

(2π)
ny
2

√

det(Σ4)

= Nµ̄
Σ3

(x)NHµ
Σ4

(y)

where nx and ny are dimension of x and y, respectively.

det(Σ1) det(Σ2)

= det

([

Σ1 0
0 Σ2

])

= det

([

I 0
H I

] [

Σ1 0
0 Σ2

] [

I HT

0 I

])

= det

([

Σ1 Σ1HT

HΣ1 HΣ1HT + Σ2

])

= det

([

I K
0 I

] [

Σ3 0
HΣ1 Σ4

])

= det(Σ3) det(Σ4)

(24)

APPENDIX B
BGMA CONVERGENCE WHEN d = n

Theorem 26 (BGMA convergence when d = n): Let

xN ∼ M(αi, µi,Σi)(i,(2N2+1)d)

be the BGMA of x ∼ Nn(µ,Σ), where Σ > 0 (see Def. 16).
We assume that d = n. Now

xN
w−→

N→∞
x.

Proof: Let FN and F be the cumulative density functions
corresponding to the random variables xN and x. We have to
show that

FN (x) −→
N→∞

F (x), ∀x ∈ Rn. (25)

Let x ∈ Rn be an arbitrary vector whose components are xj ,
and define the index sets

IN(x) = {i|µi ≤ x and ‖i‖∞ < N2},
OUT (x) = {i|µi ! x and ‖i‖∞ < N2},
OUTj(x) = {i|(µi)j > xj and ‖i‖∞ < N2} and

OUT l
j(x) =

{i|lrin < (µi)j − xj ≤ (l + 1)rin and ‖i‖∞ < N2},

where rin = 1
2N‖A‖ and less than or equal sign ′′ ≤′′ is

interpreted elementwise. First we show that
∑

i∈IN(x)

αi → F (x).
(26)

Now

F (x − 2rout1) − εedge ≤
∑

j∈IN(x)

αj ≤ F (x + 2rout1),

where rout =
√

n
2N

‖A−1‖ and

εedge = P



x ∈
⋃

‖i‖∞=N2

Ai



 .

We see that rout −→
N→∞

0 and εedge −→
N→∞

0. Using these results

and the continuity of the cumulative density function F (x)
we see that equation (26) holds. So equation (25) holds if

εN (x) = FN (x) −
∑

i∈IN(x)

αi −→
N→∞

0, ∀x ∈ Rn.
(27)

Now we show that this equation (27) holds. We find upper
and lower bounds of εN (x). The upper bound of εN(x) is

εN (x) =

∫

ξ≤x

pxN
(ξ)dξ −

∑

i∈IN(x)

αi

≤ εedge +

∫

ξ≤x

∑

i∈OUT (x)

αi Nµi

Σi
(ξ)dξ

≤ εedge +
n
∑

j=1

∫

ξj≤xj

∑

i∈OUTj (x)

αi Nµi

Σi
(ξ)dξ

= εedge + n

∞
∑

l=0

∫

ξj≤xj

∑

i∈OUT l
j
(x)

αi Nµi

Σi
(ξ)dξ

≤ εedge + n

∞
∑

l=0

∫

ξj≤xj

∑

i∈OUT l
j
(x)

αi N
xj+lrin

r2
out

(ξj)dξj

≤ εedge + n

∞
∑

l=0

∫

y≤0
N

l
rin
rout

1 (y)dyαmax

(29)

≤ εedge + n

(

κ(A)
√

2πn + 2

4

)

αmax,

(28)

where

αmax = sup
j,l







∑

i∈OUT l
j
(x)

αi







≤ sup
j,c∈R

(P (|xj − c| ≤ 4rout)) .
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and
∞
∑

l=0

∫

y≤0
N

l
rin
rout

1 (y)dy

=
∞
∑

l=0

∫

y≤0

exp

(

− y2

2 + l rin

rout
y − 1

2

(

l rin

rout

)2
)

√
2π

dy

≤
∞
∑

l=0

exp

(

−
1

2

(

l
rin

rout

)2
)

∫

y≤0

exp
(

− y2

2

)

√
2π

dy

=
1

2

∞
∑

l=0

exp

(

−
1

2

(

l
rin

rout

)2
)

≤
1

2

(

1 +

∫ ∞

0
exp

(

−
1

2

(

l
rin

rout

)2
)

dl

)

Lem. 19
=

(

κ(A)
√

2πn + 2

4

)

.

(29)

The lower bound of εN (x) is

εN (x) =

∫

ξ≤x

pxk
(ξ)dξ −

∑

i∈IN(x)

αi

≥ −
∫

ξ!x

∑

i∈IN(x)

αi Nµi

Σi
(ξ)dξ

≥ −
n
∑

j=1

∫

ξj>xj

∑

i∈IN(x)

αi Nµi

Σi
(ξ)dξ

≥ −n

−1
∑

l=−∞

∫

ξj>xj

N
xj+(l+1)rin

r2
out

(ξj)dξjαmax

(29)

≥ −n

(

κ(A)
√

2πn + 2

4

)

αmax

(30)

So from equations (28) and (30) we get that

|εN (x)| ≤ εedge + n

(

κ(A)
√

2πn + 2

4

)

αmax,

because εedge −→
N→∞

0 and αmax −→
N→∞

0 then εN(x) −→
N→∞

0. Now

using Eq. (26) we get

FN (x) → F (x), ∀x ∈ Rn.

APPENDIX C
LEMMA FOR UPDATE STEP

Lemma 27: Let εi,j =
∫

$ dx, where8

$ = Nµi

Σi
(x)

∣

∣

∣

∣

exp

(

−
1

2
‖z‖2

R−1
j

)

− exp

(

−
1

2
‖z̃i‖2

R−1
j

)
∣

∣

∣

∣

,

z = y − h(x), z̃i = y − h(µi) − h′(µi)(x − µi), i ∈ I1 (see
Thm. 13). Now

εi,j −→
N→∞

0.

8Here we simplify a little bit our notation.

Proof: First we define sets Ci,k ⊂ C̄i which become
smaller when N becomes larger.

Ci,k =

{

x

∣

∣

∣

∣

∥

∥

[

Id×d 0
]

(x − µi)
∥

∥ ≤
1

k

}

,

where i ∈ I1, k > kmin and

kmin = max
j

(

√

nycH(3
√

‖Rj‖‖R−1
j ‖ + 2)

2
,
√

‖R−1
j ‖

)

.

(31)

Because Ci,k ⊂ C̄i the Hessian matrices h1
′′
j (x) are bounded

when x ∈ Ci,k. So there is a constant cH such that (17)

∣

∣ξT h′′
j (x)ξ

∣

∣ ≤ cHξT

[

Id×d 0
0 0

]

ξ, (32)

where j ∈ {1, . . . , ny}.

Now

εi,j =

∫

Ci,k

$ dx +

∫

!Ci,k

$ dx. (33)

We show that
∫

Ci,k
$ dx −→

k→∞
0 and

∫

!Ci,k
$ dx −→

N→∞
0 for all

k. We start to approximate integral
∫

Ci,k
$ dx, and our goal is

to show that
∫

Ci,k
$ dx −→

k→∞
0. Now

∫

Ci,k

$ dx =

∫

Ci,k

Nµi

Σi
(x)|fi,j(x)|dx, (34)

where

fi,j(x) = exp

(

−
1

2
‖z‖2

R−1
j

)

− exp

(

−
1

2
‖z + ζi‖2

R−1
j

)

,

ζi = h(x) − h(µi) − h′(µi)(x − µi).
(35)

Using Taylor’s theorem we get

ζi =

ny
∑

j=1

ej
1

2
(x − µi)

T h′′
j (x̄j)(x − µi),

where x̄j ∈ Ci,k for all j ∈ {1, . . . , ny} and ej is the jth
column of the identity matrix Iny×ny

. Now

‖ζi‖ ≤
ny
∑

j=1

∣

∣

∣

∣

1

2
(x − µi)

T h′′
j (x̄j)(x − µi)

∣

∣

∣

∣

(32)

≤
ny
∑

j=1

cH

2

∥

∥

[

Id×d 0
]

(x − µi)
∥

∥

2

x∈Ci,k

≤
nycH

2k2
,

(36)

where k > kmin. So ‖ζi‖ −→
k→∞

0, for all i ∈ I1 when x ∈ Ci,k.

Now we start to approximate fi,j(x), our goal being Eq. (44).
We divide the problem into two parts, namely, ‖z‖2

R−1
j

≥ k2

and ‖z‖2
R−1

j

< k2. First we assume that ‖z‖2
R−1

j

≥ k2. Now

‖z‖2 ≥
‖z‖2

R−1
j

‖R−1
j ‖

≥
k2

‖R−1
j ‖

(31)
> 1 (37)
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and using Eq. (31), Eq. (36) and Eq. (37) we get

‖ζi‖≤min
j

(

1, ‖z‖,
1

3
√

‖Rj‖‖R−1
j ‖

)

. (38)

Now

∣

∣

∣

∣

‖z + ζi‖2
R−1

j

− ‖z‖2
R−1

j

∣

∣

∣

∣

=

∣

∣

∣

∣

2zT R−1
j ζi + ‖ζi‖2

R−1
j

∣

∣

∣

∣

≤ (2‖z‖+ ‖ζi‖) ‖R−1
j ‖‖ζi‖

(38)

≤ 3‖z‖‖R−1
j ‖‖ζi‖

(40)

≤ 3
√

‖Rj‖
√

‖z‖2
R−1

j

‖R−1
j ‖‖ζi‖

(38)

≤
√

‖z‖2
R−1

j

(‖z‖2

R−1
j

≥k2>1)

≤
1

k
‖z‖2

R−1
j

.

(39)

Here we used the inequality

‖z‖2 = zT R
− 1

2
j RjR

− 1
2

j z

≤ ‖Rj‖‖R
− 1

2
j z‖2 = ‖Rj‖‖z‖2

R−1
j

.
(40)

So when ‖z‖2
R−1

j

≥ k2 we can approximate Eq. (35) as follows

fi,j(x)

≤ exp

(

−
1

2
‖z‖2

R−1
j

)

+ exp

(

−
1

2
‖z + ζi‖2

R−1
j

)

,

(39)

≤ exp

(

−
1

2
‖z‖2

R−1
j

)

+ exp

(

−
k − 1

2k
‖z‖2

R−1
j

)

‖z‖2

R−1
j

≥k2

≤ 2 exp

(

−
k2 − k

2

)

.

(41)

Now we assume that ‖z‖2
R−1

j

< k2, then

∣

∣

∣

∣

‖z + ζi‖2
R−1

j

− ‖z‖2
R−1

j

∣

∣

∣

∣

=

∣

∣

∣

∣

2zT R−1
j ζi + ‖ζi‖2

R−1
j

∣

∣

∣

∣

(40)

≤
(

2
√

‖Rj‖k + ‖ζi‖
)

‖R−1
j ‖‖ζi‖

(36)

≤
(

2
√

‖Rj‖k + ‖ζi‖
)

‖R−1
j ‖

nycH

2k2

(38)

≤
(

2
√

‖Rj‖k + 1

)

‖R−1
j ‖

nycH

2k2

≤ 2cmax
1

k
,

(42)

where cmax = maxj

(

2
√

‖Rj‖ + 1
)

‖R−1
j ‖nycH

4 . So when

‖z‖2
R−1

j

< k2, we can approximate Eq. (35) as follows

fi,j(x) ≤
∣

∣

∣

∣

1 − exp

(

1

2
‖z‖2

R−1
j

−
1

2
‖z + ζi‖2

R−1
j

)∣

∣

∣

∣

(42)

≤ exp

(

cmax
1

k

)

− 1.

(43)

Combining these results we get that if k > kmin, then

fi,j(x) ≤ max

(

2 exp

(

−
k2 − k

2

)

, . . .

exp

(

cmax
1

k

)

− 1

) (44)

Using this result we get (Eq. (34))
∫

Ci,k

$ dx =

∫

Ci,k

Nµi

Σi
(x)|fi,j(x)|dx,

≤ max

(

2 exp

(

−
k2 − k

2

)

, exp

(

cmax
1

k

)

− 1

) (45)

and then
∫

Ci,k
$ dx −→

k→∞
0.9

Finally we approximate the second integral
∫

!Ci,k
$ dx of

Eq. (33) and our goal is to show that
∫

!Ci,k
$ dx −→

N→∞
0, for

all k. Now
∫

!Ci,k

$ dx ≤
∫

!Ci,k

Nµi

Σi
(x)dx

= P(x ∈ !Ci,k)

= P

(

∥

∥

[

Id×d 0
]

(x − µi)
∥

∥ >
1

k

)

.

We know that (see Sec. IV-B, Sec. III-B (conventional approx-
imation) and Corollary 20 (BGMA))

d
∑

j=1

(Σi)j,j −→
N→∞

0, ∀i ∈ I2. (46)

Using this information, Chebyshev’s inequality and

[

Id×d 0
]

(x − µi) ∼ N
(

0, (Σi)(1:d,1:d)

)

,

we see that
∫

!Ci,k
$ dx −→

N→∞
0 for all k and i ∈ I1. Collecting

these results we get Eq. (33) εi,j −→
N→∞

0.
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9Actually it is straightforward to see that this integral converges to zero
because fi,j(µi) = 0 and function fi,j(x) is continuous. However based on
Eq. (44) we have some idea of the speed of convergence.
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