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Preface

Positioning techniques and algorithms have been studied for some years at the Tampere Univer-
sity of Technology within several research groups. The objective of this course hand-out has
been to collect together the most important algorithms and mathematical tools used in posi-
tioning including examples and starting from the basics. We do not go into details of special-
ized techniques and equipment, but after this course student should be able to solve application
dependent problems without having to “re-invent the wheel” again and again.

This hand-out and course provide a strong basis for the course TKT-2546 Methods for Posi-
tioning. During the previous years courses MAT-45806 Mathematics for Positioning and TKT-
2546 Methods for Positioning had a common hand-out. For practical reasons, the earlier hand-
out has been divided into two parts so that both courses now have their own hand-out. Still the
courses in question are tightly connected and it is strongly recommended to take both courses
the same school year.

Prerequisites are first-year engineering mathematics and basics of probability. Additionally, the
course TKT-2536 Introduction to Satellite Positioning is a useful but not compulsory prerequi-
site. There is no official course text book in addition to this hand-out, mostly because the authors
have not managed to find a single book to cover all the material on the level of abstraction we
need. The arsenal of positioning computation methods is collected from different areas of math-
ematics and engineering sciences, and there are often discipline and interpretation differences
between them, so we have tried to use common notations and represent connections between
different ways of thinking as best as we could.

The homepage of the course is http://math.tut.fi/courses/MAT-45806/ which contains
additional information about the course and if necessary errata of this hand-out.

The authors would like to thank Sami Tiainen for the initial translation of the manuscript,
and professor Robert Piché, Helena Leppäkoski, Henri Pesonen, Hanna Sairo, Martti Kirkko-
Jaakkola and others who have contributed to the hand-out. The sections excluded from this
year’s implementation have been marked with an asterisk (*).

Tampere, September 7, 2010

the authors
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Chapter 1

Preliminaries

SIMO ALI-LÖYTTY

In this chapter, we review the mathematical concepts and tools necessary for digesting the
rest of the material. The reader is assumed to be familiar with most of the material, and is
encouraged to look up some of the cited references if this is not the case. Mathematically
speaking, positioning is finding the “best”∗ estimator for state x ∈ Rn using the equation

y = f (x)+ ε. (1.1)

Here y is a vector that contains measurements and ε is called the error (unknown). An impor-
tant special case of equation (1.1) is when function f is linear; this special case is handled in
Section 1.2. Often the error term ε and possibly also the state x are modeled as random variables.
Because of this we review some probability theory in section 1.3. At the end of the chapter we
handle coordinate systems in 1.4 and moving coordinate systems in 1.5, which are a natural part
of positioning. First of all we give short introduction to linear algebra in 1.1.

1.1 Linear Algebra

Here we give short introduction to linear algebra, which is covered in detail in, for example,
[24, 25]. The following lists some properties of a matrix A ∈ Rm×n.

• The null space of matrix A is N (A) = {x ∈ Rn|Ax = 0}.

• The column space of matrix A is R (A) = {y ∈ Rm|y = Ax for some x ∈ Rn}.

• dim(R (AT )) = dim(R (A)) = rank(A).
∗It is not at all obvious what the word “best” means. One of the tasks of the mathematical modeller is to define a
criterion to compare estimators. Often this criterion is a so-called cost function, for instance in the form ‖y− f (x̂)‖2
or E(‖x− x̂‖2).
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• dim(N (A))+ rank(A) = n (The Rank Theorem).

• A ∈ Rn×n is orthogonal if ATA= I.

• A ∈ Rn×n is symmetric if AT =A.

• A ∈ Rn×n is idempotent if AA= A.

• If A ∈ Rn×n and Ax = λx, where x &= 0, then λ is an eigenvalue of the matrix A and the
corresponding eigenvector is x.

Example 1. Let A ∈ Rn×n be idempotent and λ be an arbitrary eigenvalue of A with corre-
sponding eigenvector x. Now

λx = Ax = AAx = λ2x =⇒ λ= 1 or λ= 0,

so eigenvalues of an idempotent matrix A are all either zero or one.

Let matrix A ∈ Rn×n be symmetric. Then

• Its eigenvalues are real.

• A is positive definite, denoted A> 0, if xTAx > 0 for all x &= 0.

• A is positive semi-definite, denoting A≥ 0, if xTAx ≥ 0 for all x.

• A> B is interpreted as A−B> 0, and A≥ B as A−B≥ 0.

Example 2. If A ≥ 0 and λ is an arbitrary eigenvalue of matrix A corresponding to eigen-
vector x, then

λx =Ax =⇒ λ‖x‖2 = xTAx ≥ 0=⇒ λ≥ 0,

so all eigenvalues of a positive semi-definite matrix are non-negative.

Theorem 1 (Schur decomposition). Let A ∈ Rn×n be symmetric. Then there is an orthogonal
matrix Q and a diagonal matrix Λ such that

A= QΛQT . (1.2)

Because Q is orthogonal, the inverse matrix of Q is QT . From Eq (1.2) follows that AQ= QΛ,
so diagonal elements of diagonal matrix Λ are eigenvalues of matrix A and columns of matrix Q
are normalized eigenvectors corresponding to diagonal elements of Λ.

Definition 1 (Square root of matrix A≥ 0). Using Schur decomposition we get

A= Q)λ1, . . .λn*QT .

where λi ≥ 0 for all i ∈ {1, . . . ,n} (Example 2). We define the square root∗ of matrix A as

A
1
2 = Q)

√
λ1, . . .

√
λn*QT .

∗Usually matrix B is called a square root of matrix A if A = BB. In some books also matrix C is called a square
root of matrix A if A = CCT . Neither one of the above matrices (B or C) is unique. Notice that our definition of
the matrix A 1

2 fulfills both definitions.
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1.2 Overdetermined linear system of equations

Consider the linear system of equations

Ax = y, (1.3)

where A∈Rm×n and y ∈Rm. Assume that the columns of the matrix A are linearly independent
i.e.

Ax = 0 only if x = 0.

If m > n, the system is called overdetermined, which can happen when for instance there are
more measurements than unknowns. Generally the overdetermined equation has no exact solu-
tion, in which case one approach is to search for the least squares solution

x̂ = argminx‖y−Ax‖2. (1.4)

Because (see Exercise 1.3)

‖y−Ax‖2 = ‖A((ATA)−1AT y− x)‖2+‖y−A(ATA)−1AT y‖2, (1.5)

the solution of Equation (1.4) is

x̂ = (ATA)−1AT y. (1.6)

If the system Ax = y is to be solved with Matlab software, it is recommended to use backslash-
command A\y instead of computing the inverse of ATA explicitly.

Example 3. Let y be measurement and let x0 be an initial guess. Compute the estimate x̂ that
minimizes ‖y−Hx‖2+‖x0− x‖2.

x̂ = argminx(‖y−Hx‖2+‖x0− x‖2)

= argminx

(∥∥∥∥

[
y
x0

]
−
[
H
I

]
x
∥∥∥∥
2
)

(1.6)
=

(
HTH+ I

)−1 (HT y+ x0
)
.

Example 4. We obtain the following two-dimensional
[

xi
yi

]
measurements

{[
−1
0

]
,

[
0
0

]
,

[
0
1

]
,

[
1
1

]
and

[
2
2

]}

Estimate the parameters of equation y = ax + b so that the error ∑5i=1‖yi − (axi +b)‖2 is as
small as possible.
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Now, denoting z =

[
a
b

]
, we have

5

∑
i=1

‖yi − (axi +b)‖2 =

∥∥∥∥∥∥∥∥∥∥





0
0
1
1
2




−





−1 1
0 1
0 1
1 1
2 1





[
a
b

]

∥∥∥∥∥∥∥∥∥∥

2

= ‖y−Az‖2

It follows from Eq (1.6) that the solution is

ẑ = (ATA)−1AT y =

[
6 2
2 5

]−1[ 5
4

]
=
1
26

[
5 −2
−2 6

][
5
4

]
=

[ 17
26
14
26

]
.

So the estimated equation is y = 17
26x+ 7

13 . See Fig. 1.1.

Figure 1.1: Example 4. Here red dots are two-dimensional measurements and straight line is esti-
mated equation.

1.3 Probability theory

In this section, we briefly review the basics of probability theory the focus being on the normal
distribution and conditional probability. For a proper definition of a random variable, see [33,
11]. In this section, a random variable is denoted in boldface, e.g. x, and can be either vector or
scalar. (In later sections, it should be clear from the context whether boldface is used to refer to
a vector or to a random variable.) The density function of random variable x is denoted as fx(x)
or px(x) and cumulative distribution function as Fx(x). The independence of random variables
is a central concept: it is needed for instance in filtering in Chapter 3.
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Definition 2 (Independence). Random variables x1, . . . ,xk are independent if

Fx1,...,xk(x1, . . . ,xk) =
k

∏
i=1

Fxi(xi), ∀x1, . . . ,xk ∈ R
n.

Theorem 2. Random variables x1, . . . ,xk are independent if and only if

fx1,...,xk(x1, . . . ,xk) =
k

∏
i=1

fxi(xi), ∀x1, . . . ,xk ∈ R
n.

Example 5. Let the density function of a two-dimensional random variable x= [x1,x2] be

fx1,x2(x1,x2) =

{ 1
π , when x21+ x22 ≤ 1
0, otherwise .

Are the random variables x1 and x2 independent?

Now the density functions of the marginal distributions are

fx1(x1) =
Z ∞

−∞
fx1,x2(x1,x2)dx2 =

{
2
π

√
1− x21, when |x1|≤ 1

0, otherwise

and

fx2(x2) =
Z ∞

−∞
fx1,x2(x1,x2)dx1 =

{
2
π

√
1− x22, when |x2|≤ 1

0, otherwise
.

Because

fx1(0) fx2(0) =
4
π2

&=
1
π

= fx1,x2(0,0),

it follows from Theorem 2 that the random variables x1 and x2 are not independent.

Definition 3 (Expectation). Assume that x is a continuous random variable and that the integral
Z ∞

−∞
|g(u)| fx(u)du

converges. Then the expectation of the random variable g(x) is

E(g(x)) =
Z ∞

−∞
g(u) fx(u)du.

The next theorem follows from the linearity of integration.

Theorem 3. If A ∈ Rp×n and b ∈ Rp are constant, then

E(Ax+b) = AE(x)+b.
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The mean µx = E(x) and the covariance matrix Σx = V(x) = E((x−µx)(x−µx)T ), of random
variable x are important expectation values.

The correlation matrix of random variable x is

Rx =DΣxD, (1.7)

where D is a diagonal matrix whose diagonal contains the square roots of the reciprocals of the
diagonal elements of the covariance matrix Σx.

Example 6. Let xi be independent identically distributed continous random variables, so that
E(xi) = µ and V(xi) = Σ. Define random variable x̄= 1

n ∑
n
i=1xi. Now

E(x̄) =
Z

(
1
n

n

∑
i=1

xi

)
n

∏
k=1

fxk(xk)dx1 · · ·dxn =
1
n

n

∑
i=1

Z

xi fxi(xi)dxi = µ and

V(x̄) =
Z

(
1
n

n

∑
i=1

(xi −µ)

)(
1
n

n

∑
j=1

(x j −µ)

)T n

∏
k=1

fxk(xk)dx1 · · ·dxn

=
1
n2

n

∑
i=1

n

∑
j=1

Z

(xi −µ)(x j −µ)T
n

∏
k=1

fxk(xk)dx1 · · ·dxn =
1
n
Σ.

The random variable x̄ is an unbiased estimator of the parameter µ because E(x̄−µ) = 0.
Furthermore, we see that V(x̄) = 1

nΣ→ 0, when n → ∞. Thus, for all ε > 0, the probability
P(‖x̄−µ‖ > ε) → 0 when n → ∞. Therefore, the estimator x̄ is also consistent.

1.3.1 Normal distribution

We assume that the reader is familiar with the one-dimensional normal distribution. We define
n-dimensional normal distribution as follows.

Definition 4 (Normal distribution). An n-dimensional random variable x is normal distributed
with parameters µ ∈ Rn and Σ ∈ Rn×n, Σ ≥ 0, denoted x ∼ N(µ,Σ) or x ∼ Nn(µ,Σ), if the
random variable aTx is one-dimensional normal distribution or constant for all vectors a ∈ Rn.

Let x ∼ N(µ,Σ). Then the parameters are the mean µ = E(x) and the covariance Σ=V(x) of
the random variable x. If Σ is positive definite, then the density function of random variable x is

fx(x) =
1

(2π) n
2
√
det(Σ)

exp
(
−
1
2
(x−µ)TΣ−1(x−µ)

)
. (1.8)

If Σ positive semi-definite but singular, then we call the distribution a singular normal distri-
bution. For instance, in Chapter 3 the state model error wk−1 (3.1) can quite possibly follow
singular normal distribution. This happens for instance when we know that the user is stationary,
then the position state model is simply xk = xk−1+wk−1, where wk−1 ∼N(0,0).
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Example 7 (Visualizing the normal distribution). Figure 1.2 shows the density function of the
random variable

x∼ N(0,Σ), (1.9)

where Σ=

[
16 24
24 52

]
= 1√

5

[
1 −2
2 1

][
82 0
0 22

]
1√
5

[
1 2
−2 1

]
.

−12
−6 

0  
6  

12 

−12

−6 

0  

6  

12 

0    

0.005

0.01 

 f
 x

 x
1

 x
2 −12 −6 0 6 12

−12

−6

0

6

12

 x
1

 x
2

Figure 1.2: Two visualizations of the density function of normal distribution (1.9) in the area
|x1|≤ 12, |x2|≤ 12

The picture on the left shows density function (1.8) values. The picture on the right shows the
level curve of the density function that contains 68% of the probability mass, see Exercise 1.10.
The picture on the right also contains line segments which are directed along the eigenvectors
of Σ and whose lengths are proportional to the square roots of corresponding eigenvalues.

Theorem 4. If x∼N(µ,Σ) and y= Ax+b then y∼N(Aµ+b,AΣAT ).

Example 8 (Generate a sample from the normal distribution). If u ∼ Nn(0, I) then random
variable x= Σ

1
2u+µ has normal distribution with parameters µ and Σ (Theorem 4) that is

x∼Nn(µ,Σ).

If we can generate a sample from distribution Nn(0, I) then we can generate a sample from
arbitrary normal distribution Nn(µ,Σ). For example, in Matlab we can use the commands:

x1=sqrtm(Sigma)*randn(n,1)+mu or
x2=chol(Sigma,’lower’)*randn(n,1)+mu

Even though both random variables x1 and x2 have normal distribution with parameters
µ and Σ they are not the same random variable because matrices sqrtm(Sigma) and
chol(Sigma,’lower’) are unequal (see also Theorem 4 and footnote on the page 5).
Matlab Statistics Toolbox has also the command mvnrnd for generating samples from an arbi-
trary normal distribution. This command uses the Cholesky decomposition.
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−12 −6 0 6 12
−12

−6

0

6

12

 x1

 x2

Figure 1.3: 100 samples from normal distribution (1.9).

Figure 1.3 shows one hundred samples (with some samples outside the figure) from normal
distribution (1.9). Compare Figure 1.3 and Figure 1.2.
Theorem 5. Let x∼ N(µ,Σ). Then Ax and Bx are independent if and only if AΣBT = 0.
Example 9. Let

[
x
y

]
∼ N

([
x̄
ȳ

]
,

[
Σxx Σxy
Σyx Σyy

])
and z= x−ΣxyΣ

−1
yy y.

Show that random variables z and y are independent.

Note that
[
I −ΣxyΣ−1yy

][ Σxx Σxy
Σyx Σyy

][
0
I

]

=
[
Σxx −ΣxyΣ−1yy Σyx Σxy −ΣxyΣ−1yy Σyy

][ 0
I

]

=
[
Σxx −ΣxyΣ−1yy Σyx 0

][ 0
I

]
= 0.

Thus, the random variables z and y=
[
0 I

][ x
y

]
are independent (Theorem 5).

1.3.2 χ2 distribution *

Definition 5. Random variable z is χ2 distributed with n degrees of freedom, denoted z∼ χ2 (n),
if it has the same distribution as random variable xTx, where x∼Nn (0, I).

Example 10. Let x∼ Nn(µ,Σ) be a non-singular normal random variable. Now Σ−
1
2 (x−µ) ∼

N(0, I), and so

(x−µ)TΣ−1(x−µ) ∼ χ2 (n) .
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Definition 6. Random variable z is noncentral χ2 distributed with n degrees of freedom and
noncentral parameter λ, denoted z ∼ χ2 (n,λ), if it has the same distribution as the random
variable xTx, where x∼Nn (µ, I) and λ= µT µ.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

χ2(2,0)

χ2(3,0)

χ2(4,0)

χ2(2,4)
χ2(3,4)

χ2(4,4)

Figure 1.4: Density functions of noncentral χ2 distributions.

Theorem 6. Let x ∼ Nn (µ,Σ) be a non-singular normal random variable, let matrix A be
symmetric and let matrix AΣ be idempotent. Then

xTAx∼ χ2
(
rank(A) ,µTAµ

)
.

Proof. Let B= Σ
1
2AΣ 1

2 . Matrix B is symmetric because matrix A and Σ 1
2 are symmetric, and B

is idempotent because

BB= Σ
1
2AΣAΣ

1
2 = Σ

1
2AΣAΣΣ−

1
2

idemp.
= Σ

1
2AΣΣ−

1
2 = B.

Using Schur decomposition (Theorem 1) and Example 1 we get

B= Q
[
Irank(B) 0
0 0

]
QT ,

where Q orthogonal. In Exercise 1.2, we show that rank(B) = rank(A). Define rank(A)-
dimensional random variable y= [Irank(A),0]QTΣ−

1
2x. Now using Theorem 4 we get

y∼ N([Irank(A),0]QTΣ−
1
2µ, Irank(A)).

and so, by Definition 6,

xTAx= xTΣ−
1
2Q

[
Irank(A) 0
0 0

]
QTΣ−

1
2x= yTy∼ χ2(rank(A),µTAµ).
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1.3.3 Conditional density function

The conditional density function plays a central role in Bayesian probability theory.

Definition 7 (Conditional density function). The conditional density function of a random vari-
able x with condition y= y is defined with equation

fx|y(x|y) =
fx,y(x,y)

fy(y)
,

at points where the denominator is positive.

According to Theorem 2 we see that random variables x and y are independent if and only if
fx|y(x|y) = fx(x). Conditional expectation is defined correspondingly:

Definition 8 (Conditional expectation). The conditional expectation of a random variable x
with condition y= y is defined with equation

E(x|y= y) =
Z ∞

−∞
x fx|y(x|y)dx.

Notice that conditional expectation E(x|y= y) depends on the value y of the random variable y
and it is therefore also a random variable, defined in the same probability space as y.

Example 11 (Conditional density function). Assume that the user’s state x is normally
distributed according to x∼N(0,16), and we get measurement

y=
3
2
x+v,

where the error v ∼ N(0,16) is independent of the state (of the random variable x). Then the

density function of joint distribution
[
x
v

]
is the product of the density functions of random

variables x and v. Easy calculation shows that
[
x
v

]
∼N(0,16 · I),

then according to Theorem 4
[
x
y

]
∼ N

(
0,
[
16 24
24 52

])
.

It can then be shown (Exercise 1.14) that

x|y∼N
(
6
13

y,
64
13

)
. (1.10)

For instance, if we get an observation y=−12, then the conditional distribution of random vari-
able x with condition y = −12 is N(−5 713 ,4

12
13). Graphically, the conditional density function

is a normalized slice of the density function in the plane y= y. Compare the function in plane
y=−12 on the left side of Figure 1.2 with the calculated density function of normal distribution
(Figure 1.5).
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−12 −6 0 6 12
0

0.1

0.2

 x
1

Figure 1.5: The density function of normal distribution N(−5 713 ,4
12
13 ) within interval [−12,12],

which can be compared to the left hand side of Figure 1.2.

1.4 Coordinate systems*

JUSSI COLLIN

The precise definition of the coordinate systems used is a fundamental part of navigation. A
linear coordinate system consists of an origin and a basis, for instance (O,u,v,w), where vectors
u, v andw are linearly independent. Now any position can be given in component representation
r= xu+ yv+ zw, and coordinates x, y and z are uniquely defined.

When positioning with respect to Earth,

P

x

y

z

h

λ

φ

Figure 1.6: Geodetic coordinates and x-, y- and z-
axis of the corresponding rectangular
coordinate system.

curvilinear coordinate systems are often
necessary. For example, in a spher-
ical coordinate system, position is given
as coordinates (r,θ,ϕ). Here r is the
point’s distance from origin, angle θ
is the colatitude and ϕ is the azimuth
angle. The commonly used geodetic
coordinate system is slightly different
from this. The geodetic coordi-
nate system is generated by rotating
an ellipse around its minor axis. This
ellipsoid is usually characterized by two
parameters, the major axis length a and
flattening ratio f = a−b

a (b is minor axis
length). Geodetic coordinates in this
coordinate system are defined as shown
in Figure 1.6, i.e.

• φ, geodetic latitude. Notice that the angle in question is the angle between the equatorial
plane and the normal vector of the ellipsoid surface.

• λ, geodetic longitude. The angle between reference meridian and meridian of the loca-
tion P.

• h, geodetic height. Signed distance from the ellipsoid surface.
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In addition to mathematical definition, a coordinate system has to be fixed to some physical
entity. The problem here is the dynamic behavior of Earth – a planet is not a rigid body. An
realization of a coordinate is therefore fixed to some time instant, i.e. epoch. Typically the
origin is fixed to be the Earth’s mass center, the positive z-axis goes through the North Pole, the
reference meridian goes through the Greenwich observatory and major axis length as well as
flattening ratio are found by fitting an ellipsoid to the mean sea level of Earth. GPS uses World
Geodetic System 84 (WGS-84) coordinate system [32]. The Finnish coordinate system realiza-
tion (EUREF-FIN) has been defined in the Finnish Government Recommendation 153 [10].

1.4.1 Linear coordinate transformation

Navigation algorithms often require transformations between different coordinate systems. For
instance, GPS computations start from inertial coordinates (satellites’ orbits), switch to geodetic
coordinates (coordinate system rotating with Earth) and finally to local coordinates for showing
the position on a 2D map. In inertial positioning computations the coordinates have to be trans-
formed perhaps even more often; sensors form their own coordinate system, sensor measure-
ments are with respect to inertial coordinates, and gravitation computation requires position in
geodetic coordinates.

Let A-coordinates be given as vector mA = [α1 α2 α3]T and B-coordinates as vector mB =
[β1 β2 β3]T . Here αi are coordinates of position P in coordinate system A and βi are the same
position’s coordinates in coordinate system B. Coordinate transformation is then the function

fBA(mA) =mB. (1.11)

When the transformation is between linear coordinate systems this function is easy to find.
Assume that both coordinate systems have the same origin. The position vector q can be written
using the basis vectors and coordinates:

q = XAmA

q = XBmB ,

where columns of X are the basis vectors of the coordinate system in question. A matrix formed
from the basis vectors is non-singular, and thus the transformation is just

mB = X−1
B XAmA.

In the following equations, the basis vectors are assumed orthonormal, and therefore X−1 =XT .
Additionally, we set a natural base XA = I= [e1,e2,e3] for A. Then the transformation is simpli-
fied into form

mB = XT
BmA.

Now we can define a matrix often used in positioning, called the direction cosine matrix CB
A:

mB = CB
AmA, (1.12)
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where mA is a vector given in coordinate system A and mB is the same vector in coordinate
system B. It can be shown (Exercise 1.15) that

CB
A =




cos(u,e1) cos(u,e2) cos(u,e3)
cos(v,e1) cos(v,e2) cos(v,e3)
cos(w,e1) cos(w,e2) cos(w,e3)



 , (1.13)

where (u,v,w) is the orthonormal basis of B. Coordinate transformation back to A is easy,
because CA

B = (CB
A)−1 = (CB

A)T . The following chain rule is needed especially in inertial navi-
gation algorithms:

CD
A = CD

BCB
A. (1.14)

Equation (1.13) is in quite nice form for handling coordinate frame rotations.

Example 12. Assume that coordinate frames A1 and A2 are initially identical. Rotate the
frame A2 around the z-axis by angle θ. An observer using frame A1 sees an interesting object
in location aA1 = [1 1 1]T . Where does an observer using frame A2 find this object?

Answer: Define rotations as right handed, i.e. a positive rotation fo the vector v around the
vector w takes the tip of v towards the direction w×v. Note that every base vector is rotated
in coordinate transformation. Now it is easy to see that the z-axis is not transformed. The other
angles in equation (1.13) are also easy to find:

CA2
A1 =




cos(θ) cos(π2 −θ) cos(π2 )

cos(π2 +θ) cos(θ) cos(π2 )
cos(π2) cos(π2) cos(0)



 (1.15)

The solution is therefore aA2 = CA2
A1aA1 =




cos(θ)+ sin(θ)
cos(θ)− sin(θ)

1



.

In order to deal with more general rotations, it is good to introduce some mathematical tools
that make things easier. Denote with (a×) the matrix form of the cross product:

a×b= (a×)b=




0 −az ay
az 0 −ax
−ay ax 0



b (1.16)

Direction cosine matrix is not the only way to describe orientations of the coordinates. It can
be shown (see for instance [29] ), that direction cosine matrix can be represented in the form

CA1
A2 = I+

sin(p)

p
(p×)+

1− cos(p)

p2
(p×)(p×), (1.17)

where p is the rotation vector and p its length. When coordinate frame A1 is rotated around
axis p by angle p, we get a new coordinate frame A2, and Equation (1.17) shows the connection
between the direction cosine matrix and the rotation vector. As an exercise, you will verify that
it does not matter whether the rotation vector is given in coordinates A1 or A2. In Example 12,
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the rotation vector is p= [0 0 θ]T , and it is left as an exercise to show that when this is substituted
into formula (1.17) we get the transpose of the matrix (1.15), as expected.

Here we have represented coordinate transformations in matrix forms. Another common
approach is quaternion algebra, so that for example the matrix (1.17) corresponds to the quater-
nion (see e.g.[6, 28, 18])

qA1
A2 =

[
cos(12 p)

sin(12 p)p/p

]
. (1.18)
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1.5 Rotating coordinate frames *

Transformations between coordinate frames that are moving linearly relative to each other are
easily handled by adding velocities and translating the origin. In this section we rather focus
on rotating coordinate frames. We start with simple rotation, i.e. keep the angular velocity
and direction of rotation vector constant. Assume again that coordinate frames A1 and A2 are
initially (t = 0) equivalent. Then the rotation vector can be given in the form

p= ωtu, (1.19)

where ω (= ṗ) is angular speed (rad/s), t is time and u is unit vector. The derivative of Equa-
tion (1.19) with respect to time is thus the angular velocity

w= ṗ= ωu. (1.20)

Now the derivative of Equation (1.17) with respect to time is

ĊA1
A2 = ωcos(ωt)(u×)+ωsin(ωt)(u×)(u×)

= [cos(ωt)I+ sin(ωt)(u×)](w×)
. (1.21)

Here you should notice that CA1
A2(w×) = [Icos(ωt)+ sin(ωt)(u×)](w×) ∗.

Example 13. Assume that the rotation angle in Example 12 depends on time: θ(t) = ωt. How
does the object seem to move when observed from frame A2?

Start with

aA1 = CA1
A2aA2 ⇒

daA1

dt =
dCA1

A2aA2

dt ⇒
daA1

dt =
dCA1

A2
dt a

A2+CA1
A2

daA2

dt ⇒
daA1

dt = CA1
A2(w×)aA2+CA1

A2
daA2

dt ⇒
daA1

dt = CA1
A2

(
daA2

dt +w×aA2
)

(1.22)

This Coriolis equation describes how to transform velocity vectors from between rotating coor-
dinate frames. Similarly the derivative of a in A2 frame is

daA2

dt
= CA2

A1

(
daA1

dt
−w×aA1

)
. (1.23)

Now aA1 is constant (the object is stationary with respect to frame A1), so

daA2

dt
= −CA2

A1(w×)aA1. (1.24)

Substitute θ(t) = ωt to Equation (1.15), and because w= [0 0 ω]T , we obtain the result

daA2

dt
=
[
ωcos(ωt)−ωsin(ωt) −ωcos(ωt)−ωsin(ωt) 0

]T
. (1.25)

∗This can be verified by using the formula (a×)(a×) = −‖a‖2I+aaT , for example
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The following coordinate frames are used in inertial navigation:

• Inertial frame (I), non-rotating, non-accelerating coordinate system. Newton’s laws of
motion apply in this coordinate system. In some cases (relativity theory) we additionally
need to assume that there is no gravitation in I-frame, but in this course the computations
in I-frame can be approximated with the ECI (Earth Centered Inertial) coordinate system.
The origin of ECI is the Earth’s mass center, and the axes keep their direction with respect
to stars.

• Earth frame (E), coordinate axes are fixed to Earth, z-axis has the same direction as
Earth rotation axis, x- and y-axes are in equatorial plane. In literature one often sees
abbreviation ECEF (Earth Centered Earth Fixed). The Earth-fixed frame rotates with
respect to the inertial fram with wE

IE ≈ [0 0 7.29×10−5]T (rad/s).

• Local frame (L), axes define directions “up–down”, “north–south” and “west–east”. It is
common to use ENU (East, North, Up) ordering, i.e. x-axis points east, y-axis north and
z-axis points up. When the origin is fixed to user’s position, CE

L is a function of time and
wL

IL =wL
IE +wL

EL, where the last term describes user’s movement with respect to Earth.

• Body frame (B), frame fixed to the vehicle in which the navigation system is used, or
the mobile unit in the case of personal navigation. This is the main coordinate system in
inertial measurements. Gyro triad measurement is wB

IB and the acceleration triad outputs
aB −gB, where a is acceleration in ECI and g is local gravitation acceleration.

INS literature often uses the notation wB
IB, which reads as the angular velocity in B-coordinate

frame with respect to I-coordinate frame (wIB), and the vector is expressed in B-frame coor-
dinates (wB). The subscript conventions thus differ from those in the direction cosine matrix.
I-coordinate frame means inertial coordinate frame (it does not rotate nor accelerate in space),
and B-coordinate frame is a coordinate system fixed to the measurement unit. The vector wB

IB
is in fact the output of an ideal gyro triad.

In general, integrating the gyro measurements through Eq. (1.20) does not produce a rotation
vector because the equation does not hold if the direction of rotation changes. The equation
connecting the measurable angular velocity vector and the change of rotation axis is [4]

ṗ= wB
IB +

1
2
p×wB

IB +
1
p2

(1−
psin(p)

2(1− cos(p))
)p× (p×wB

IB), (1.26)

where, in the case of above treated simple rotation, the two last terms are zeros. The general
case will be treated on a separate course on INS.
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Exercises
1.1. Let A ∈ Rn×n be symmetric. Show that

A> 0⇐⇒ the eigenvalues of A are positive
A> 0⇒ det(A) > 0
A> 0⇐⇒A−1 > 0

1.2. Suppose that matrices B> 0 and A have the same size. Show that

rank(BAB) = rank(A).

1.3. (a) Let columns of matrix A ∈ Rm×n with m > n be linearly independent (rank(A) = n).
Show that matrix ATA is invertible.

(b) Show that equation (1.5) is correct.

1.4. Let matrices A> 0 and B> 0. Show that matrix A+B is invertible.

1.5. With A=

[
5 −4
−4 5

]
, compute A1

2 .

1.6. Find all matrices B ∈ R2×2 such that BB = I. Which of the obtained matrices are
symmetric and positive definite?

1.7. A user is inside an equilateral triangle building. The length of each side of the triangle is
6l. The user has distance measurements from each side, these measurements are l, 2l and
3l. What is the least squares estimate of the user’s position?

1.8. Let A ∈ Rp×n and b ∈ Rp be constants and x a random variable such that V(x) = Σ.
Compute

V(Ax+b)

1.9. Consider the system y = Hx + ε, where ε ∼ N(0,σ2I). Compute the distribution of the
estimator

x̂= (HTH)−1HTy.

Is the estimator unbiased (E(x− x̂) = 0)?

1.10. Give the equation of the ellipse shown on the right of Figure 1.2. (hint. Matlab:
chi2inv(0.68,2)≈ 2.279)
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1.11. Let
x∼ N

([
1
−1

]
,

[
5 −4
−4 5

])
and a =

[
1
1

]
.

Compute the probability P
(
aTx≤ 0

)
.

1.12. Let z∼ χ2(n,λ). Compute E(z).

1.13. Let x ∼ N(x̄,Σx) and y ∼ N(ȳ,Σy) be independent random variables, with Σx > 0 and
Σy > 0. Show that [

x
y

]
∼ N

([
x̄
ȳ

]
,

[
Σx 0
0 Σy

])
.

tip: If A and C are square matrices, then det
([

A B
0 C

])
= det(A)det(C).

1.14. Prove Equation (1.10) starting from Definition 7.

1.15. Derive the direction cosine matrix (1.13).

1.16. Let p be rotation vector between frames A1 and A2. Show that pA1 = pA2. If CA1
A2 &= I, can

you find q &= αp, α ∈ R which satisfies qA1 = qA2?

1.17. Try formula (1.17) with vectors p1 =
[
0 0 θ

]T ja p2 =
[
0 0 −θ

]T

1.18. A hiker walks 5 km south, 5 km east and 5 km north, and ends up at the initial loca-
tion. What was the origin of his journey? Express the movement using direction cosine
matrices, and try to find those locations where C12C23C34 = I.

1.19. A maglev train runs from Helsinki to Rovaniemi at 300 km/h. How large lateral force is
needed to keep the train in north directed course?
What is the angle between Earth’s rotation axis and the direction of the train with respect
to time?
Assume a spherical Earth with radius R, train mass M and simplify the coordinates as:
Helsinki: 60o10′00′′ north latitude 25o0′00′′ east longitude
Rovaniemi: 66o30′00′′ north latitude 25o0′00′′ east longitude

21



1.20. Let a mobile phone coordinate system (B) be defined as follows: x-axis points to direc-
tion given by numbers 9-6-3, y-axis points to direction given by numbers 9-8-7, and
z-direction is the cross product of x-axis and y-axis (from the screen to viewer of the
screen). Rotate the phone -90 degrees around phone’s y-axis. Next, rotate phone 90
degrees around x-axis. Finally, rotate phone 90 degrees around y-axis. Do the same math-
ematically, i.e. write direction cosine matrices. What happens if you change the order of
the rotations? What if you do the rotations with respect to a non-rotating (e.g. fixed to
your desktop) coordinate system?

1.21. Show that

ĊA1
A2 = CA1

A2(w×).

Hint: (1.17), (1.21) and uT (u×) = . . ..
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Chapter 2

Static positioning

NIILO SIROLA

Positioning (or localization) means estimation of a receiver’s coordinates and possibly other
interesting quantities (velocity, orientation, clock bias, etc). Many kinds of measurements
coming from different sources can be used, and to solve the problem we first form a mathe-
matical model to describe the measurements, and then apply suitable mathematical machinery
to the model. No model describes reality perfectly, and often even if we knew the phenomenon
quite accurately we may still decide to use some simpler model that fits better to the mathemat-
ical method we want to (or know how to) use for the problem.

Static positioning means computing a single location estimate from several simultaneously
taken measurements, independent of previous or future measurements or estimates. The
more general time series solution will be tackled later in Chapter 3; Depending on the
choice of measurement model, the static positioning problem can be formulated as solving a
nonlinear system of equations either in the sense of least squares (Section 2.3), in closed form
(Section 2.2), or with respect to likelihoods (Section 2.4) or probability (Section 2.5).

Most of the methods needed for static positioning come from estimation theory, see e.g. [30, 31].

2.1 Measurement equations

Usually, not all details of the measurement process are known exactly, or it is not sensible to
include them all in the model. Simple models often are sufficiently accurate without making
computations too complicated. For instance, measurement error results from several different
factors that can have complex mutual dependencies, but still modelling the error with one
normally distributed term often works surprisingly well.

The measurement model can be written as a probability density function or in equation form. We
start from the equation form, which is simpler but has some limitations (e.g. all measurements
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have to be numerical and continuous). Measurements are thought to consist of a “true value”
and an error:

measurement= theoretical value at location x + error.

All the measured values are collected into a vector y and the system of equations is written in
the form

y= h(x)+v (2.1)

where the measurement function h is a known vector valued function and v is the measurement
error vector, whose probability distribution is assumed known.∗

When measurements have been made and the measurement equations known, we search for
a location/state estimate x̂ that fits the measurements best. There are different solutions and
solution methods depending on what we mean by the words “fit” and “best”. The solution is
not always unique, that is, more than one location candidate may fit the measurements equally
well.

Example 14 (Measurement equations). Range measurement to a station located at s can be
written as

r = ‖s−x‖+ v,

where r is the measured range, x is location and ‖s−x‖ ( = h(x) ) is the true range.

As another example, GPS pseudorange

s1

pseudorange

clock bias

range
true

s2

s3

Figure 2.1: Positioning with pseudoranges. Clock
bias shows up as an error with same
magnitude in all pseudoranges.

measurement can be written as

ρ= ‖s−x‖+b+ v,

where b is the additional error in
meters caused by the receiver’s clock
bias. Because the clock bias b is
also an unknown to be solved in the
same way as location, we define a 4-
dimensional state vector such that the
first three state components, denoted by
x1:3, contain location and the remaining
component x4 is the clock bias. If there
are measurements to several different
satellites/stations, then the measurement
equations (2.1) can be written in vector
form





ρ1
...
ρn




 = h(x)+v=





‖s1−x1:3‖+ x4

...
‖sn −x1:3‖+ x4




+






v1
...

vn




 .

∗We do not go into the determination of real-life measurement error distributions based on the properties of the
transmission path, transmitter and receiver or based on empirical measurement data. Just assume for now that the
measurement error distribution or at least its variance has been given (or guessed) beforehand.
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2.2 Closed form solutions

Closed form solution, or direct solution, is a general name for various non-iterative algorithms,
where an initial guess is not needed to start the iteration. The advantage is that termination
conditions are not needed for iteration, and there is no fear of converging to a wrong solution. If
the problem has several solutions, the closed form solution gives them all. There is no general
closed form solution capable of digesting any kind of measurement, it has to be derived sepa-
rately for each measurement model, e.g. [2, 7, 17, 23].

In geometric solutions, every measurement is thought to define a surface in the parameter space
on which the measurement equation is fulfilled. For instance, a range measurement defines a
spherical surface in three-dimensional location-space, a range difference measurement defines
a hyperboloid, etc. The problem’s solutions are all the points where all measurement equations
are satisfied, i.e. where all measurement surfaces intersect. Another approach, of which the
Bancroft method is shown below as an example, is algebraic where different kinds of calculation
tricks are used to find a special solution for the measurement equations.

Closed form solutions are useful as initial guesses for iterative methods, but otherwise mostly in
theoretical research and problem visualization, because it is difficult to account for measurement
errors with them.

Example 15 (Bancroft method [2]). If all the measurements are pseudorange measurements
(for instance if only GPS-measurements are used), then a least squares solution∗ can be
computed in closed form as follows. Start from the system of measurement equations

‖s1−x‖+b = y1
...

‖sn −x‖+b = yn.

Trick 1: Move the b’s to the right hand side of the equations and square both sides of the
equations. We then get n equations of the form:

‖si −x‖2 = (yi −b)2

⇔‖si‖2−2sTi x+‖x‖2 = y2i −2yib+b2.

Remark. Squaring both sides of an equation can cause the solution to have several branches
that have to be treated separately. In this case, because norm must be non-negative, all solutions
with yi −b < 0 are invalid.

Trick 2: Collecting the squared terms into a new variable λ= ‖x‖2−b2, we get a linear equa-
tion whose variables are x, b and λ:

2sTi x−2yib = λ+‖si‖2− y2i .

∗For over-determined systems, the solution is not the same as obtained with iterative methods, because the methods
minimize slightly different functions.
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Collect all the equations into a linear system and solve for x and b in the least squares sense:



2sT1 −2y1

...
2sTn −2yn




[
x
b

]
=




1
...
1



λ+




‖s1‖2− y21...
‖sn‖2− y2n





[
x
b

]
=





2sT1 −2y1

...
2sTn −2yn






†



1
...
1






︸ ︷︷ ︸
=p

λ+





2sT1 −2y1

...
2sTn −2yn






†



‖s1‖2− y21

...
‖sn‖2− y2n






︸ ︷︷ ︸
=q

⇔
[
x
b

]
= pλ+q=

[
d
f

]
λ+

[
e
g

]

where A† = (AT A)−1AT and vectors p and q can be computed from known quantities. The
original system of equations is thus fulfilled (in a least squares sense) if and only if

x= dλ+ e
b = fλ+g.

(2.2)

Substitute these back into the definition of λ:

λ= ‖x‖2−b2 = ‖dλ+ e‖2− ( fλ+g)2,

expand square terms and rearrange into

(‖d‖2− f 2)λ2+(2dT e−2 f g−1)λ+‖e‖2−g2 = 0

which is a second degree polynomial with respect to λ and all other terms are known. Solve
roots and compute the corresponding x and b by substituting the roots back into formula (2.2).
Although there sometimes are two feasible solution candidates, GPS satellite geometry is such
that the other solution is in outer space and can be neglected.∗

2.3 Iterative least squares

Write the system of measurement equations (2.1) again with the help of the residual:

p(x) = h(x)−y.

The residual describes the incompatibility between measurements and an assumed location x.
If measurements are error-free, then the residual goes to zero when x is the true location (but
possibly also in other points). The idea of the least squares method is to determine a location
estimate x̂ that minimizes the expression ‖p‖2 that is equivalent to p(x)Tp(x) or ∑ pi(x)2.

∗Unless the application is e.g. space rocket positioning. . .
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If there are no measurement errors, then the residual goes to zero in true location x̄:

p(x̄) = 0,

in which case the solution(s) could be found also by directly solving the system of measurement
equations (see Section 2.2). Usually, the measurements contain some error, and the residual
does not necessarily have zeros at all. Then the location estimate is obtained by solving the
minimization problem:

x̂= argmin
x
p(x)Tp(x). (2.3)

Nonlinear optimization is a demanding problem and there is no general way to solve it analyti-
cally.

If the function to be minimized is well-behaved and there is an initial guess “close enough” to
the minimum, then we can use an iterative optimization method. The idea is to start from an
initial guess x0 and then compute refined estimates x1,x2, etc., until the solution does not change
anymore. In Gauss-Newton method [12, section 4.2.1], [16, p. 93], [26, section 9.6] (which in
positioning context is usually called iterative least squares method) the residual is linearized in
the neighborhood of xk using the first order Taylor expansion p(xk +Δxk) ≈ p(xk)+p′(xk)Δxk
and a step Δxk is sought such that the linearized residual goes to zero:

p(xk+1) = p(xk +Δxk) ≈ p(xk)+p′(xk)Δxk = 0.

Denoting the residual’s derivative matrix, or the Jacobian matrix , with Jk = p′(xk) = h′(xk),
the equation can be written in the form

JkΔxk = −p(xk).

As long as there are enough independent measurements, this is an overdetermined system of
linear equations, whose least squares solution (1.6) is

Δxk = −(JTk Jk)
−1JTk p(xk).

Thus, a better estimate for the minimizer is obtained with the iteration

xk+1 = xk − (JTk Jk)−1JTk p(xk). (2.4)

For algorithm implementation, the initial guess x0 is needed, and starting from that, the itera-
tion is repeated until the solution has converged to some point x̂ (or the maximum number of
iterations has been reached). It can be shown that the iteration converges if the initial point is
“close enough” to the minimum and the second derivative of the residual is “small enough” [16].
When using just satellite measurements, the center of the Earth usually works as an initial guess
when no better information is available, because the measurement equations are nearly linear.

If some measurements are more accurate than others, the algorithm can further be improved by
using a weight matrix that forces good-quality measurement equations to have more influence
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Algorithm 1 Gauss-Newton method (Iterative Least Squares)

1. Choose initial guess x0 and stopping tolerance δ. Set k = 0.

2. Compute Jk = h′(xk).

3. Step: xk+1 = xk +Δxk, where Δxk = −Jk\(h(xk)−y)

4. If stopping condition ‖Δxk‖ < δ is not satisfied, then increase k and repeat from Step 2.

than poor-quality equations. When the inverse of the measurement covariance matrix is used as
a weight matrix the problem to be solved is thus

x̂= argmin
x
p(x)TΣ−1p(x). (2.5)

This produces the minimum variance estimate (proved in [20, chapter 6.A.1]), and in the case
of normally distributed errors, also the maximum likelihood estimate (see Example 17 on page
32).

Algorithm 2Weighted Gauss-Newton method (Iterative Weighted Least Squares)

1. Choose initial guess x0 and stopping tolerance δ. Additionally, measurement covariance
matrix Σ= cov(v) is required. Set k = 0.

2. Compute Jk = h′(xk)

3. Step: xk+1 = xk +Δxk, where Δxk = −(Σ−
1
2 Jk)\

(
Σ−

1
2 (h(xk)−y)

)

4. If stopping condition ‖Δxk‖ < δ is not satisfied, increase k and repeat from item 2.

Example 16 (Jacobian matrix computation). The system of measurement equations for range
measurements to three stations in locations s1, s2 and s3 is




y1
y2
y3



 =




‖s1−x‖
‖s2−x‖
‖s3−x‖



+




v1
v2
v3



 .

The Jacobian matrix required in Gauss-Newton algorithm is

J(x) =
∂
∂xh(x) =

∂
∂x




‖s1−x‖
‖s2−x‖
‖s3−x‖



 =






∂
∂x‖s1−x‖
∂
∂x‖s2−x‖
∂
∂x‖s3−x‖






=






− (s1−x)T

‖s1−x‖

− (s2−x)T

‖s2−x‖

− (s3−x)T

‖s3−x‖




 .

In this case, each row of the Jacobian matrix is the transpose of a unit vector pointing from the
presumed position x to a station.
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2.3.1 Error analysis and sensitivity

In addition to location or state estimates, we are interested in the accuracy and reliability of
the estimate. Measurements always contain errors, so after computing the location estimate an
essential question is how close to the true location the estimate can be promised to be. Before
actual error analysis, it is useful to classify different kinds of errors and to specify which of
them we even try to consider.

• modelled errors: caused by measurement errors and measurement geometry
• modeling errors: wrong assumptions/guesses about errors’ distributions or their depen-
dencies, measurement resolution or detection threshold, incorrect values of physical
constants, etc.

• numerical errors: caused by limited accuracy in computations (and/or careless program-
ming)

• approximation, truncation and sampling errors: often intentional in order to speed up the
algorithm

• others: environmental factors, equipment misuse, etc.

In this section, we only consider modelled errors, i.e. the errors that our chosen measurement
model says will be there. The obtained error bound and estimates strictly speaking hold only
if there are no other kinds of errors, but all the models are correct, random errors follow their
assumed distributions, and computations are done without significant numerical errors. Error
bounds computed this way have to be carefully interpreted along the lines of: “If the models
were correct, then. . . ”.

The error of the estimation process can be characterized in different ways:

• Error propagation: Given the distribution (or at least the covariance) of measurement
errors (=input), compute the distribution (covariance) of the solution (=output)

• Confidence intervals: Compute the probability that the true location is inside a given area,
or determine an area that includes the true position with e.g. 95% probability

• Sensitivity analysis: How much do small changes in measurements change the solution.
If for measurements y we get estimate x̂, how much does the estimate change if the
measurement is ỹ= y+Δy, where the change Δy is assumed to be relatively small?

2.3.2 Least squares error analysis

Let x̄ be the true location, ȳ the error-free measurements and v the realized measurement error.
If the least squares method converges to solution x̂= x̄+u, then the iteration step (2.4) length
at this point is zero, i.e.:

(JT J)−1JT (h(x̄+u)− (ȳ+v)) = 0.
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The Jacobian matrix J is a function of x, but if the position error u is assumed small, J is almost
constant in the neighborhood and measurement equations can be linearized h(x̂) ≈ h(x̄)+ Ju.
We get

(JT J)−1JT (h(x̄)︸︷︷︸
=ȳ

+Ju− (ȳ+v)) = 0

(JT J)−1JT Ju− (JT J)−1JTv= 0
u= (JT J)−1JTv.

If the measurement errors are normally distributed, v∼N(0,Σ), then it follows from Theorem 4
(p. 10) that

u∼ N
(
0,(JT J)−1JTΣJ(JT J)−1

)
. (2.6)

In the special case where measurement errors are distributed independently and identically,
i.e. Σ = σ2I, the location error simplifies to u ∼ N

(
0,σ2(JT J)−1

)
. Then the covariance of

estimation error derived from measurement errors is simply the product of the variance σ2
of measurement errors and matrix (JT J)−1 which depends on measurement geometry. In the
context of GPS, this matrix is called DOP matrix (Dilution of Precision) [20, sections 6.A.1–2],
from which different DOP-numbers can be computed as follows:

Global/Geometric Dilution of Precision: GDOP =
√
tr(JT J)−1

Position Dilution of Precision: PDOP =
√
tr[(JT J)−1](1:3,1:3)

Horizontal Dilution of Precision: HDOP =
√
tr[(JT J)−1](1:2,1:2)

Vertical Dilution of Precision: V DOP =
√

[(JT J)−1](3,3)

Time Dilution of Precision: T DOP =
√

[(JT J)−1](4,4)

DOP figures are useful because they summarize the quality of the satellite geometry by a single
number. For example, the position error standard deviation can be estimated simply by multi-
plying measurement error deviation with the PDOP figure. If measurements have different devi-
ations, however, then the error formula (2.6) does not simplify into DOP form, see Computer
Exercise 2.5.

Let us emphasize that in the derivation of formula (2.6), the error u was assumed small so that
the measurement function h(x) could be linearized in the neighborhood of the estimate. The
more nonlinear, or “curved”, the measurement equations are, the poorer the estimate for location
error obtained this way is. (see Exercise 2.17)

Remarks:

1. The Weighted Least Squares method gives optimal results (in variance sense) as long as
the measurement covariance is known (that is, if measurement errors follow the presumed
distribution). The least squares criterion is sensitive to large measurement errors, called
“outliers”, which should be detected and removed.
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2. If the measurement equation is strongly nonlinear, then the Gauss-Newton method can
behave poorly and some other optimization method such as line search or Levenberg-
Marquardt can be better. If the measurement equation has discontinuities, then it usually
has to be either approximated with some continuous function or the residual minimized
with some Monte Carlo type algorithm. [26]

3. In addition to measurement equations, inequality constraints (e.g. mobile phone network
cell sector boundary) can also be taken into the measurement model. Then the problem
becomes a constrained minimization problem, for which there are special techniques.

2.4 Maximum likelihood

The conditional probability density function is a more general form of measurement model. It is
denoted with p(y | x), which can be read “the probability that y is measured in location x” (see
Section 1.3.3). When x is considered as the variable and measurements y as a constant in the
expression, the function is then called the likelihood function (or simply the likelihood) and it
is interpreted such that the larger the value of likelihood with measurements y and in location x,
the better the location in question “fits” the measurements. The likelihood function is sometimes
denoted L(x|y) to emphasize that x is considered a variable. The joint likelihood of independent
measurements is obtained by multiplying the individual measurements’ likelihoods together.

If the measurement model is given in equation form y = h(x)+ v, then it is easily written in
likelihood form because v= y−h(x) and the distribution of v is known, so

p(y | x) = pv(y−h(x)),

where pv is the known error distribution. Converting a likelihood function into a measurement
equation is however possible only in special cases. Maximum likelihood as a method is there-
fore more generally usable than the ones previously presented.

Figure 2.2: Examples of measurement likelihood functions. 1) range from a base station, 2) angle
of arrival from a station, 3) the range and angle together (the product of likelihoods)
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When the measurement model is in likelihood form and we obtain a measurement, the solu-
tion x̂ is sought such that its likelihood given the measurements is as large as possible:
x̂ = argmaxx p(y|x). To accomplish this, we can use nonlinear optimization methods, for
instance the Gauss-Newton method.

Example 17. Consider a system of n measurements

y= h(x)+v

where the error v is normally distributed, v∼N(0,Σ). Remember that the density function of a
multidimensional normal distribution is

pv(z) = C exp
(
−
1
2
zTΣ−1z

)

(the scaling constant C = (2π)−n/2 det(Σ)−1/2 is not relevant here). Now the likelihood function
is

p(y | x) = pv(y−h(x)) = C exp
(
−
1
2
(y−h(x))TΣ−1(y−h(x))

)
.

Because the covariance matrix Σ is positive definite, the exponential function’s argument is
always non-positive. Therefore the solution with largest likelihood is found by minimizing the
expression (y−h(x))TΣ−1(y−h(x)), which is exactly the same as the weighted least squares
method’s cost function with weight matrix Σ−1.

Thus, for normally distributed errors, the maximum likelihood and weighted least squares
method are identical if the inverse of the measurement covariance matrix is used as the weight
matrix.

2.5 Bayesian solution

The likelihood function p(y | x) does not have a concrete interpretation as a probability density.
A more interesting quantity would be the probability density of the state (i.e. location) condi-
tioned on obtained measurements p(x | y). This quantity can be computed using Bayes’
formula:

p(x | y) =
p(x)p(y | x)

R

p(x)p(y | x)dx (2.7)

where p(y | x) is the likelihood function of the measurement model and p(x) is prior distribu-
tion, independent of measurements, that gives an “educated guess” of possible values of x in
the form of a density function∗. When the obtained measurement y is substituted into Bayes’
formula, the result is the posterior distribution i.e. the conditional probability distribution for
state x.

∗If we know nothing beforehand about x, the prior can be chosen to have uniform density.
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Bayes’ formula gives a probability distribution p(x | y), and this is more informative than just
the state estimate x̂. The distribution contains all information we have on the state, based
on prior information and measurement. From the posterior distribution we can, when needed,
compute expectation or most probable estimate, covariance, confidence intervals, etc. and it can
be used as prior information for the solution of the next time instant .

If densities are more complicated, then the posterior density cannot usually be found analyt-
ically, and we resort to Monte Carlo integration, which works for arbitrary functions. More
about this in Section 3.5.

Example 18. Consider the one-dimensional example where we measure the location of an
object in a 10 meter long pipe. Let the measurement error distribution be N(0,32).

The likelihood function is now the normal density function (the constant coefficient is not rele-
vant)

p(y | x) = C exp
(
−

(x− y)2

2 ·32

)

and a uniform distribution inside the pipe is used as prior:

p(x) =

{
1
10 if 0≤ x ≤ 10
0 otherwise

If measurement is, say y = 8 meters, then using Bayes formula (2.7) we get

p(x | y) =
p(x)p(8 | x)

R

p(x)p(8 | x)dx
=

p(x)C exp
(
− (x−8)2

2·32

)

R

p(x)C exp
(
− (x−8)2

2·32

)
dx

=






exp
(
− (x−8)2

18

)

R 10
0 exp

(
− (x−8)2

18

)
dx

if 0≤ x ≤ 10

0 otherwise

=

{
0.1788exp

(
− (x−8)2

18

)
if 0≤ x ≤ 10

0 otherwise
.

Prior information was used here to restrict the estimate






  



  





to be inside the allowed area. If the rough location of
the object in the pipe had been known more precisely,
this information could also have been used as prior.

To the best of our knowledge, the obtained posterior
distribution p(x|y) now describes the object’s location
probability in different parts of the pipe. From the
posterior we can compute any estimates required, such as expectation µ =

R

xp(x|y)dx ≈ 6.76
and variance σ2 =

R

(x− µ)2p(x|y)dx ≈ 2.122. Compared to measurement y = 8, the use of
prior information thus moved the estimate a little more to the center and reduced estimate’s
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standard deviation from 3 meters to 2.12 meters. If we were to get further independent measure-
ments (assuming the object is not moving), then the currently solved posterior can be used as
the new prior, thus using all the information from all the measurements optimally.

2.5.1 Bayesian error analysis

It was previously mentioned that a Bayesian location solution produces a probability density
function of the location, from which we can compute both location estimate and its expected
mean square error

MSE =
Z

(x− x̂)(x− x̂)T p(x | y)dx

where the integral is usually computed numerically [22]. If the estimate x̂ is the expectation
E(x | y), then the mean square error is by definition the posterior covariance.

Example 19. Here we show that for normally distributed measurements, the error covariance
is (nearly) the same as obtained in least squares method error analysis. Let measurement
errors’ distribution be v∼N(0,σ2I), and prior p(x) be uniform distributed∗. Now the likelihood
function is

p(y | x) = C exp
(
−

(h(x)−y)T (h(x)−y)
2σ2

)

and thus

p(x | y) =
p(x)p(y | x)

R

p(x)p(y | x)dx =
p(y | x)

R

p(y | x)dx

=
C exp

(
− (h(x)−y)T (h(x)−y)

2σ2

)

R

C exp
(
− (h(x)−y)T (h(x)−y)

2σ2

)
dx

= C2 exp
(
−

(h(x)−y)T (h(x)−y)
2σ2

)
.

If we use the same linearization in the neighborhood of true location as in least squares analysis,
h(x) ≈ h(x̄)+ J(x̄−x) = ȳ+ JΔx= y−Δy+ JΔx, then we get

p(x | y) ≈C2 exp
(
−

(JΔx−Δy)T (JΔx−Δy)
2σ2

)
,

∗The prior is often chosen to be a uniform density in whole space, which is a contradiction because a probability
density function’s integral should equal to 1. In practice, the uniformly distributed prior cancels out from the
computations, and it can be thought that we used prior that is uniformly distributed in an area “large enough" and
that outside of this area there remains so little probability mass that it does not have any significant effect on the
results. Another approach is to use a Gaussian prior with covariance λI and let λ→ ∞
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which, unlike the corresponding least squares variance, depends on the realized measurement
error Δy. For illustrative purposes, see what happens when Δy = 0 (reasonable because the
measurement errors are zero centered):

p(x | y)|Δy=0 ≈C2 exp
(
−
1
2
ΔxT JT JΔx

σ2

)

= C2 exp
(
−
1
2
ΔxT [σ2(JT J)−1

]−1
Δx

)

which is the density function of the distribution Δx ∼ N(0, σ2(JT J)−1) i.e. the same result
which was obtained in previous section for least squares method. The Bayesian error estimates
in this case thus fluctuate around the one given by least squares, depending on the realized
measurements.

2.6 Confidence intervals

In one-dimensional case, confidence interval means an interval inside of which the estimated
quantity is with e.g. 99% probability.∗ Confidence interval is usually centered around the esti-
mate, but nothing prevents setting it asymmetrically if needed. In multidimensional case, we
usually use confidence spheres or ellipsoids centered around the estimate, but again nothing
stops us from using area of any shape, as long as it contains the desired fraction of the distribu-
tion.

If the distribution is known, then the probability of being inside a certain interval is computed
by integrating the distribution over the desired interval:

P(a ≤ x ≤ b | y) =
Z b

a
p(x | y)dx.

In the case of Gaussian distribution, we can use the precomputed values of the cumulative
distribution function and its inverse function, and get the familiar rules of thumb: inside±2σ is
95% of the probability, inside ±3σ is 99.7% etc.

Even when the distribution of the estimated quantity is not known, its variance can usually be
approximated. Confidence intervals derived from the normal distribution do not hold in general,
but we can apply Chebyshev’s inequality, which gives a lower bound for how much probability
mass lies outside a certain interval when the distribution variance is σ2:

P(|x− x̂|≥ λσ) ≤
1
λ2

. (2.8)

∗This is the Bayesian interpretation which we prefer over the traditional one in this context. Basically the question
is how randomness should be modeled mathematically. According to the frequentistic interpretation, probability
means the proportion of successes if a test is repeated “many” times. In the Bayesian interpretation probability is
a subjective measure that tells us how much we know (or think we know) about something.
The difference in the views is seen e.g. in the interpretation of the 99% confidence interval. In the frequentistic

sense the true location is a fixed value and in 99% of the test repetitions the confidence interval that we compute
will contain the true location. The Bayesian interpretation is slightly more intuitive: we compute the confidence
interval just once, and the true location is considered to be a random variable whose probability distribution has
99% of its probability lying inside the confidence interval.
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For example, according to this formula, the probability mass lying over three sigmas away from
the average can be at most 1/9, which means that whatever the distribution is, there is always at
least 8/9 ≈ 89% of the probability inside the interval x̂±3σ.

The corresponding n-dimensional Chebyshev inequality is

P
(
‖x− x̂‖ ≥ λ

√
trace(Σ)

)
≤
1
λ2

where Σ is the covariance matrix of the distribution. If variables have large correlations or they
have variances with different orders of magnitude, then the less simplified formula

P
(√

(x− x̂)TΣ−1(x− x̂) ≥ λ
√

n
)
≤
1
λ2

(2.9)

gives a significantly tighter limit.

Formula (2.9) can also be used for defining the equation for confidence ellipsoid. For instance,
the 95% confidence ellipsoid results from choosing on the right hand side of the equation 1/λ2=
0.05, meaning that at most 5% of the probability is outside the ellipsoid. Thus, λ =

√
1/0.05,

and the ellipsoid

E95% =
{
x | (x− x̂)TΣ−1(x− x̂) <

n
0.05

}

contains at least 95% of the probability mass (compare with Exercise 1.10 on page 20).

Conclusion and observations

• The static positioning problem can be formulated as either solving a nonlinear system of
equations or seeking maximum likelihood or the maximum or mean of the Bayesian poste-
rior. Problems are solved either with standard optimization methods or with numerical
integration [22], which we return to in Section 3.5.

• If measurement equations are nearly linear such that J(x) = h′(x) is nearly constant near
the solution (then it can be denoted only by J) and measurement errors are normally
distributed or can be modeled as such, then the least squares estimate and Bayesian mean
estimate are practically identical.

• Closed form solutions are harder to derive, and usually more sensitive to measurement
errors. They are however sometimes useful for providing an initial guess or all the
possible solutions for the problem.

Exercises
2.1. The unknown to be solved is the two-dimensional position x =

[
x1 x2

]T . Write the
measurement model when the measurement y is

36



(a) a noisy measurement of the coordinate x2,
(b) a noisy range from a fixed station at s=

[
s1 s2

]T ,
(c) a noisy angle to the station s so that zero angle points north, and the angle grows

clockwise,
(d) the difference of noisy ranges to stations s1 and s2.

2.2. An ideal INS unit measures the velocity vector in B-coordinates and the rotation vector p
defining the attitude of the B-frame with respect to the local L-frame. Write the measure-
ment equation assuming p is error-free.

2.3. The unknown to be solved is the 2D position x. The measurement model is

y= h(x)+v=

[
‖[100 0]T −x‖
‖[0 50]T −x‖

]
+v, where v∼ N(0,102I)

(a) Give the formulas for the residual p(x) and its derivative matrix J= p′(x).
(b) Let the measurement be y=

[
108 46

]T . What is the first step of the Gauss-Newton
method, if the starting point is x= [0 0]T?

2.4. Derive the iteration step of the Weighted Gauss-Newton method (Algorithm 2), that is,
show that the step minimizes the cost p(x)TΣ−1p(x).

2.5. Derive the distribution of the error of the Weighted Gauss-Newton method (Algorithm 2)
similarly to Section 2.3.2. The weighting matrix isW and the measurement covariance Σ.

2.6. A radar measures the range to a target and the rate of the change of the range, i.e. the
radial velocity. The antenna is installed on a rotating rod, so that its coordinates at time t
are s(t) = [cost sint]T .
Write the measurement equation and its Jacobian matrix at time t with respect to the state
vector [r1 r2 r′1 r′2]T .
(Note: be careful to distinguish between differentation with respect to time and differenta-
tion with respect to state.)

2.7. Given a linear measurement model y = Hx+v and a vector x0, derive an estimator that
minimizes the formula ‖y−Hx‖2+‖x0−x‖2.

2.8. Derive a closed-form solution (similar to Example 15 on page 25) for the measurement
system

‖s1−x‖ = y1
...

‖sn −x‖ = yn.

Then apply your algorithm to the situation of Exercise 2.3.
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2.9. With WLAN signals, for example, it is not often possible or reasonable to convert the
measured signal strength into a range measurement. Instead, in fingerprint methods, the
positioning system is first calibrated by choosing a set of locations pi, i = 1 . . .n, and
measuring the signal strength of all stations ai ∈ Rm in each calibration point. After
this, positioning is performed by comparing received measurements with the calibration
database.
Write the measurement model assuming that measurement noise is i.i.d. N(0,σ2) and
that the calibration database contains the accurate expected values of the measurements
at each calibration point. Consider also, what kind of algorithm would be needed to solve
position from your measurement model.

2.10. Write the likelihood functions p(y | x) corresponding to the following measurement equa-
tions:
(a) y = x2+ v, v ∼Uniform[−1,1]
(b) y = h(x)+ v, v ∼ Uniform[−1,1]
(c) y = 1 if ‖s−x‖ ≤ 100, otherwise y = 0
(d) y = 1 if ‖s−x‖+ v ≤ 100, v ∼ N(0,1), otherwise y = 0
(e) y = ‖s−x‖2, s∼N(ŝ, I)
Note that in (c) and (d), the measurement y is binary, so that its likelihood function
consists of just the two values p(0 | x) and p(1 | x).

2.11. The measurement model is y = floor(x + v), where v ∼ N(0,(1/2)2) and 4·* denotes the
floor function.
(a) What is the likelihood function of the measurement? Sketch graphs of the likelihood

as a function of y (with some fixed value of x), and as a function of x (with some
fixed y).

(b) What is the likelihood of n independent measurements?
(c) (optional Matlab exercise) The values of five independent measurements are

0,−2,−1,0 and −1. Ignoring the floor function, the estimate of x would be the
mean of the measurements, i.e. −0.8.
Plot the joint likelihood over some suitable interval, for example [−2,1], and esti-
mate the maximum likelihood point from the graph.

2.12. Derive the Bayes formula (2.7) from the definition of conditional density (page 13).

2.13. When both the prior and likelihood are one-dimensional normal distributions, also the
posterior is a normal distribution. Derive its parameters.
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2.14. Let the density of the prior be p(x) =

{
1/2 when −1≤ x ≤ 1
0 otherwise.

What is the mean and variance of this distribution?

The measurement model is p(y | x) =






(y+1)/2 when x ≥ 0 and −1≤ y ≤ 1
(1− y)/2 when x < 0 and −1≤ y ≤ 1
0 otherwise.

Work out what this means, e.g. how the value of x affects the distribution of measured y.
Compute the posterior distribution, and based on that the Bayesian state estimate and its
variance.
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2.15. Consider the Chebyshev inequality (2.8).
(a) If x is distributed according to a two-sided exponential distribution, p(x) = 1

2e−|x|,
its expectation value is 0 and standard deviation

√
2. Compute the 67% confidence

interval [−a, a] both accurately and using the Chebyshev inequality.
(b) Give an example of a distribution that satisfies the equality P(|x− x̂|≥ σ) = 1.

Computer exercises
2.16. Continues Exercise 2.3:

(a) Program the Gauss-Newton method (Algorithm 1 on page 28), and run it using

initial guess x0 =

[
0
0

]
. Use the stopping tolerance δ= 10−3. What solution did you

end up and how many iteration steps were needed?

(b) Run algorithm again using initial guess x0 =

[
100
100

]
. What solution did you end up

and how many iteration steps were needed?
(c) Draw the residual norm in area x ∈ [−50,150], y ∈ [−50,150]with Matlab’s surf or

contour command. Estimate how close to the correct solution initial guess should
be so that iteration finds correct solution.

2.17. Continues previous exercise.
Because all the measurements have the same variance σ2, location error covariance can
be estimated in the form σ2(JT J)−1.
Let true location be xtrue = [0 0]T . Location estimate distribution can be approximated
numerically with simulated measurements. Now y∼ N([100 50],σ2I).
(a) Compute location estimate a thousand times with different measurement realiza-

tions, and compute covariance of the obtained estimates and its error compared to
computed covariance estimate σ2(JT J)−1 when σ= 1 and when σ= 10.

(b) Draw DOP values in area x ∈ [−50,150], y ∈ [−50,150] with Matlab’s surf or
contour command. It may be necessary to cut off too large values from the figure,
e.g. to draw min(DOP,10).
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Chapter 3

Filtering

SIMO ALI-LÖYTTY

A filter uses all the earlier measurements in addition to the current ones for computing the
current state estimate. A basic prerequisite for the use of earlier measurements in positioning is
a dynamic state model

xk = fk−1(xk−1)+wk−1, (3.1)

which describes how current state depends on the previous ones. We use the board term state
instead of location, so that we can include for example velocities, clock biases, or other inter-
esting quantities as unknowns. In equation (3.1) we use the following notations: xk is the state,
fk is the state transfer function and wk is the state model error. The subscript k refers to time
instant tk. In this chapter, the state x of an observable is interpreted as a stochastic process
[1, 9, 13].

Definition 9 (Stochastic process). Let (Ω,F ,P) be a probability space and T a parameter set.
Stochastic process is a mapping x : Ω× T → Rn, such that for every fixed t ∈ T, x(·, t) is a
random variable, which is usually denoted xt or x(t).

Because state is a stochastic process, computation of the state estimate is done in two phases.
At each time instant, we find the state distribution conditioned on measurements:

pxk|y1:k(xk|y1:k).

Here the notation y1:k is used for all measurements up to current time instant. Measurements
are also interpreted as realizations of random variables. Measurement equations are the same
as in the static case (2.1):

yk = hk(xk)+vk, (3.2)

where yk are the measurements, hk is measurement function and vk measurement error. In
addition to the state model and the measurement equations, we also need an initial state x0 for
the computation of the conditional distribution. Once we have the conditional state distribution,
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we can compute an estimate that is optimal with respect to some chosen criterion. These optimal
estimates are handled in Section 3.4. From the state distribution, we can compute also other
interesting quantities such as the covariance matrix of the estimation error.

In order to do estimation within reasonable time, we must be able to compute the state’s condi-
tional distribution recursively instead of reusing the whole measurement history at each time
instant. This can be done if we make some independence assumptions. The first assumption is
that errorswk and vk are mutually independent andwhite noise, whichmeans that the errors inde-
pendent of past errors. For simplicity we also assume that the errors are zero-mean; if necessary
we can always change the state transfer- and measurement functions so that the errors become
zero-mean. Additionally we assume that errors wk and vk are independent of the initial state x0.
With these assumptions the state’s conditional distribution can be computed recursively. This is
covered in Sections 3.2 and 3.4.

Computing the conditional state distribution in a time series, from which we obtain the desired
estimate, is called filtering. Filtering has many advantages compared to a static location solu-
tion. First of all, we can use all the measurements nearly optimally independent of how many
measurements we get at each time instant. This enhances positioning accuracy considerably
compared to static positioning. Additionally, a location solution can also be computed even if
we have not got any measurement at the concerned time instant, because with the help of the
state model we can compute the distribution of the coming state without new measurements.

Filtering makes it easy to use possible other information in positioning such as map informa-
tion and sector/maximum range information of the base stations. Also, different kinds of error
models that take into account multipath effects or other faulty measurements can be used to
make positioning more fault tolerant. On the other hand, filtering has disadvantages also, first
of all in several cases computation of conditional distribution is not possible analytically and
although the computation can be done numerically it typically takes many times more computa-
tion time than static positioning. Additionally, filtering needs an initial state, the state dynamics
model, and the distributions of the errors, any of which we do not necessarily need in static posi-
tioning. Often these are not well known, and thus the model does not necessarily correspond to
reality as well as in static positioning.

As previously mentioned, we often cannot solve the conditional state distribution analytically.
However, if both the state model and the measurement equations are linear and the errors
and the initial state are normally distributed, then the state conditional distribution can be
computed recursively. The algorithm doing this is called the Kalman filter, named after Rudolf
E. Kalman [14]. The Kalman filter also solves a wider class of problems, as it remains the
best linear unbiased estimator (BLUE, Best Linear Unbiased Estimator) even when the distribu-
tions are non-Gaussian. The Kalman filter is presented in Section 3.2 from the BLUE point of
view, and in Exercise 3.7 you are asked to confirm that it also computes the state’s conditional
distribution. There also exists numerous approximations of the Kalman filter in cases where the
state model and/or the measurement equations are not linear; these non-linear Kalman filters
are presented in Section 3.3.

The general Bayesian filtering problem is presented in Section 3.4. Numerical methods for
solving the general Bayesian filtering problem are presented in Section 3.5.
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3.1 Constant velocity model

The state dynamics model (3.1), like the measurement model, is dependent on the observed
system. Clearly, for a stationary target, a suitable state model is different than for a cyclist
weaving through a crowd. The problem is that we rarely know the correct state model in advance.
This is why, for instance, the interactive multiple model method (IMM) uses a set of several
measurement/state models from which the filter tries to choose the best during runtime [27].
Another approach to this problem is adaptive filter that try to estimate and update the state
model parameters along with the state itself. It is good to remember that often we have to settle
for broad generalizations in the selection of the models, because the purpose is to get models
that work as good as possible and are simple enough. In this section, we introduce a simple but
commonly used model called the constant velocity model.

The constant velocity model has 6 state variables, the three-dimensional location and three-
dimensional velocity. The clock bias and its derivative required in satellite positioning can be
included in the same manner, as is done for example in the books [5, 8, 15, 21].

We model the state as a stochastic differential equation

dx= Fxdt +Gdβ, (3.3)

where

F=

[
0 I
0 0

]
ja G=

[
0
I

]
,

Here the velocity error is modeled as Brownian motion, denoted with β. The diffusion matrix
for the Brown motion β is chosen to be a simple diagonal matrix Qc = σ2cI, where σ2c describes
velocity error in the axis directions. To be more precise, σ2c describes how much variance needs
to be added to the velocity error within one second in north-south, east-west and up-down
directions.

The solution of the stochastic differential equation (3.3) can be discretized into a state model
(see e.g.[19, s.171] or [9, s.200])

xk =Φk−1xk−1+wk−1,

where

Φk−1 = e(tk−tk−1)F =

[
I ΔtI
0 I

]
.

The term Δt = tk − tk−1 is the length of time step. State model error wk is white zero-mean
normally distributed noise, which is assumed independent of initial condition x0. The covari-
ance matrix Qk of the state model error is

Qk =V(wk−1) =
Z tk

tk−1
Φ(tk, t)GQcGTΦ(tk, t)T dt =

[ 1
3Δt3I 1

2Δt2I
1
2Δt2I ΔtI

]
σ2c .
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3.2 The Kalman filter

The Kalman filter solves the filtering problem where the state model and the measurement
model (measurement equations) are linear. Then the state model is

xk =Φk−1xk−1+wk−1, (3.4)

where xk is the process state, Φk is the state transfer matrix and wk is the state model error,
which is assumed zero-mean white noise and independent of the errors in the measurements
and the initial state. The covariance matrix of the state model error is denoted with Qk. The
measurement model is

yk =Hkxk +vk, (3.5)

where yk are the measurements, Hk is the measurement matrix (or system matrix) and vk is
the measurement model error, which is assumed zero-centered white noise and independent of
the errors in the measurements and the initial state. The covariance matrix of the measurement
model error is denoted with Rk, which is assumed positive definite. In addition to the state
model and the measurement model, the Kalman filter needs initial state x0. We denote the the
expectation of the initial state with vector x̂0 and the covariance matrix with constant matrix P0,
which is assumed positive definite. The hat notation refers to an estimator, which is a function
of the measurements. In the case of x̂0, the estimator is a constant random variable, because
at time instant t0 we do not yet have any measurements. Covariance matrix P0 can also be
interpreted as a mean square error (MSE) matrix E

(
e0eT

0
)
, where e0 = x0− x̂0.

The purpose of the Kalman filter is to solve a best linear unbiased estimator for state xk. Because
of the independence assumptions, this can be done recursively and then the estimator can be
written as

x̂k =
[
Jk−1 Kk

][ x̂k−1
yk

]
, (3.6)

where x̂k−1 is the best linear unbiased estimator for state xk−1 at time instant tk−1. The corre-
sponding mean square error matrix is denoted Pk−1. The measurements at time instant tk are
denoted with random variable yk.

In the remainder of this section, we derive such matrices Jk−1 and Kk that (3.6) becomes the best
linear unbiased estimator, i.e. the Kalman filter. The best here means that the mean square error
of the estimator E(eT

k ek) = tr(E(ekeT
k )) would be as small as possible. This estimator is called

the least squares estimator (MSE-estimator). Because the estimator is required to be unbiased,
we get

E(xk) = E(x̂k) =
[
Jk−1 Kk

][ E(x̂k−1)
E(yk)

]
.

Using the unbiasedness of the estimator x̂k−1, the state model (3.4) and the measurement
model (3.5) we get

Φk−1 E(xk−1) = Jk−1 E(xk−1)+KkHkΦk−1 E(xk−1).
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This equation needs to hold for any expectation E(xk−1), thus

Jk−1 =Φk−1−KkHkΦk−1. (3.7)

The best linear unbiased estimator of state xk which does not use measurements at the current
time instant tk is called the prior estimator. In other words, the prior estimator is the same
form as the estimator in formula (3.6), but with matrix Kk set to zero. Then the prior estimator,
denoted by a minus superscript, is according to formula (3.7)

x̂−k =Φk−1x̂k−1. (3.8)

The mean square error matrix of the prior estimator is thus

P−k = E
(
(xk − x̂−k )(xk − x̂−k )T)

(3.4)
= E

(
(Φk−1ek−1+wk−1)(Φk−1ek−1+wk−1)

T)

indep.
= Φk−1 E

(
ek−1ek−1

T)ΦT
k−1+E

(
wk−1wT

k−1
)

=Φk−1Pk−1Φ
T
k−1+Qk−1.

The estimator in formula (3.6) that also uses measurements at time instant tk is called the poste-
rior estimator. The error of the posterior estimator is

ek = xk − x̂k

= xk − (Φk−1−KkHkΦk−1)x̂k−1−Kkyk
(3.5)
= (I−KkHk)(xk − x̂−k )−Kkvk

(3.9)

According to the assumption, the error of the prior estimator e−k = xk− x̂−k is independent of the
measurement error vk, so that the mean square error matrix of the posterior estimator is

Pk = E
(
ekeT

k
)

(3.9)
= (I−KkHk)P−k (I−KkHk)

T +KkRkKT
k

unbiased,ex.3.2
= P−k −P−k H

T
k (HkP−k H

T
k +Rk)

−1HkP−k
+(KkB−P−k H

T
k B−1)(KkB−P−k H

T
k B−1)T ,

(3.10)

where B= (HkP−k H
T
k +Rk)

1
2 . The trace of Pk is at minimum when the trace of the matrix

(KkB−P−k H
T
k B−1)(KkB−P−k H

T
k B−1)T (3.11)

is minimized, because the other terms in the sum do not depend on matrix Kk. The trace of
matrix (3.11) is smallest possible when KkB−P−k H

T
k B−1 = 0 (Exercise 3.3), and the solution

to this equation is

Kk = P−k H
T
k (HkP−k H

T
k +Rk)

−1. (3.12)

This matrix is called the Kalman gain. Combining the results, we get the Kalman filter estimator

x̂k = x̂−k +Kk(yk −Hkx̂−k ), (3.13)
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where the prior estimator has been given in formula (3.8) and the Kalman gain in formula (3.12).
The mean square error matrix of this estimator (3.10) can be written as

Pk = (I−KkHk)P−k .

The Kalman filter has been given in compact form in Algorithm 3.

In formula (3.13), the difference between the measurement yk and the predicted measurement
ŷk =Hkx̂−k , i.e. yk−Hkx̂−k is called the innovation. The mean square error matrix of the measure-
ment prediction (the covariance matrix of the innovation) is HkP−k H

T
k +Rk (Exercise. 3.1). The

use of the innovation is almost the only way of monitoring the quality of the filter solution
during runtime. Because the covariance matrix of the innovation is known, we can do statis-
tical tests on whether the realized measurement is probable or not. Many robust filters do these
kinds of tests and if the result is that the measurement is unlikely, it is either not used at all or
it is given less weight than the “likely” measurements. Additionally, many adaptive filters use
innovations to define or update filter parameters during runtime, for instance the covariances of
the errors [3, Chapter 11].

Algorithm 3 The Kalman filter

• The state model: xk =Φk−1xk−1+wk−1, V(wk−1) =Qk−1
• The measurement model: yk =Hkxk +vk, V(vk) = Rk
• The measurements: y1:m = {y1,y2, . . . ,ym}
• The initial state estimate and its MSE: x̂0 and P0

1. Set k = 1.

2. • The prior estimate: x̂−k =Φk−1x̂k−1

• The prior MSE: P−k =Φk−1Pk−1ΦT
k−1+Qk−1

• The Kalman gain: Kk = P−k H
T
k (HkP−k H

T
k +Rk)−1

• The posterior estimate: x̂k = x̂−k +Kk(yk −Hkx̂−k )

• The posterior MSE: Pk = (I−KkHk)P−k

3. Stop if k = m, otherwise set k = k +1 and get back to step 2.

Example 20 (A Kalman filter). Figure 3.1 shows an example of a situation where a two-
dimensional constant velocity model has been used, see Section 3.1. Constant velocity model
satisfies assumptions of Kalman filter. The parameters used in the example are as following:

x0 =
[
0 0 5 0

]T
, P0 =

[
102I 0
0 32I

]
,

Φ=

[
I I
0 I

]
, Q=

[ 1
3 I

1
2I

1
2 I I

]
,

H=
[
I 0

]
and R=

[
302 0
0 502

]
.

(3.14)
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The true route over one minute period has been drawn with a black dashed line. The positioning
system gives location measurements according to the measurement model at one second inter-
vals (red dots linked with narrow lines). The Kalman filter uses the locations as measurements,
and the resulting state estimate is drawn with a continuous blue line.







Figure 3.1: Example of a Kalman filter applied to two-dimensional location measurements.

3.3 Nonlinear Kalman filters

The Kalman filter is very popular for linear systems, because it is relatively easy to compute
and requires few assumptions. For this reason, there are several methods of applying something
similar to the Kalman filter also to nonlinear systems (3.1), (3.2). In this section, we introduce
the basic ideas on which most Kalman filter extensions are based. First, we give a slightly
generalized version of the BLU-estimator. Let

E
([

xk
yk

])
=

[
x̄k
ȳk

]
, and V

([
xk
yk

])
=

[
Pxxk Pxyk
Pyxk Pyyk

]
.

Now the BLU-estimator of state xk is [3]

x̂k = x̄k +PxykP
−1
yyk

(yk − ȳk),

E((xk − x̂k)(xk − x̂k)
T ) = Pxxk −PxykP

−1
yyk
Pyxk .

(3.15)

Nonlinear extensions of the Kalman filter try to solve the unknown quantities of equation (3.15),
x̄k, ȳk,Pxxk ,Pxyk = PT

yxk
,Pyyk by using some approximation. For these kinds of algorithms we use

a general name nonlinear Kalman filter, whose algorithm has been given on page 48. Next,
we treat two commonly used nonlinear Kalman filters in more detail, the so-called extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) [27].

When using nonlinear Kalman filters, it is good to remember that they do not actually even
approximate the optimal solution which is handled in Section 3.4. For this reason, EKF for
instancemay give completely false results like in the example on page 56. Nevertheless, in many
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practical application nonlinear Kalman filters work fairly well (see Exercise 3.14) and they
often require significantly less computation than the numerical approximations of the general
Bayesian filter, which are handled in Section 3.5. Because of these reasons, nonlinear Kalman
filters are popular in engineering.

Algorithm 4 Nonlinear Kalman filter (EKF and UKF)

• The state model: xk = fk−1(xk−1)+wk−1, V(wk−1) =Qk−1
• The measurement model: yk = hk(xk)+vk, V(vk) = Rk
• The initial state estimate, its MSE and the measurements: x̂0, P0 and

y1:m = {y1,y2, . . . ,ym}

1. Set k = 1.

2. • The prior estimate: x̂−k = x̄k

• The prior MSE: P−k = Pxxk

• The posterior estimate: x̂k = x̂−k +PxykP
−1
yyk

(yk − ȳk)

• The posterior MSE: Pk = Pxxk −PxykP
−1
yyk
Pyxk ,

3. Stop, if k = m, otherwise set k = k +1 and go back to step 2.

3.3.1 Extended Kalman filter

The extended Kalman filter is a nonlinear Kalman filter that is based on the first order Taylor
approximations of the state model and the measurement model.

• The state model approximation:
xk ≈ fk−1(x̂k−1)+Φk−1(xk−1− x̂k−1)+wk−1 where Φk−1 = f′k−1(x̂k−1) and

• The measurement model approximation:
yk ≈ hk(x̂−k )+Hk(xk − x̂−k )+vk, where Hk = h′k(x̂

−
k ).

Then the unknown quantities in Algorithm 4 are easily computed:
[

x̄k
ȳk

]
=

[
fk−1(x̂k−1)
hk(x̂−k )

]
, and

[
Pxxk Pxyk
Pyxk Pyyk

]
=

[
P−k P−k H

T
k

HkP−k HkP−k H
T
k +Rk

]
,

where P−k =Φk−1Pk−1ΦT
k−1+Qk−1. It is also possible to use a higher order Taylor approxima-

tion of the quantities listed above. On the other hand, higher order approximations often need
more restrictive assumptions about the prior and posterior distributions, for instance normality,
so that the quantities in formula (3.15) can be computed. Additionally, the analytical computa-
tion of even a first order Taylor approximation is difficult and in some cases impossible. This
the reason for developing nonlinear Kalman filters that do not require the derivative of the state
transfer function or the measurement function, such as the UKF in the next section.
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3.3.2 Unscented Kalman filter

Unscented Kalman filter (UKF) is a derivative-free nonlinear Kalman filter based on a numer-
ical integration method called the unscented transformation (UT). The UT approximates the
expectation of function f(x) using the so-called σ-points {χ0, . . . ,χN−1} when the distribution
of random variable x is known. This numerical integration method can be written as

E(f(x)) =
Z

f(x)p(x)dx ≈
N−1

∑
i=0

ωif(χi), (3.16)

where weights ωi and sigma-points χi are selected such that the approximation is accurate for
certain degree polynomials f(x) when random variable x is normally distributed.

Let n be the state dimension, x̂ be the expectation of random variable x and the covariance
matrix be P. Then the generally used σ-points selection contains 2n+1 points which are

Index (i) Weight (ωi) σ-point (χi)
0 κ

κ+n x̂
1, . . . ,n 1

2(κ+n) x̂+
√
κ+n

√
Pei

n+1, . . . ,2n 1
2(κ+n) x̂−

√
κ+n

√
Pei−n,

(3.17)

where
√
P means such a matrix which has the property that

√
P
√
PT

= P. Parameter κ> −n is
a freely selectable constant. With these σ-points and weights, the approximation (3.16) is exact
if the random variable x is normally distributed and function f(x) is a third degree polynomial.
In addition, the choice κ = 3−n minimizes the error of the integral approximation of a fourth
degree polynomial and it is therefore commonly used, see Exercise 3.8.

Let now {χ0k−1, . . . ,χ(N−1)k−1} be the σ-points generated based on the posterior distribution at
time instant tk. Then the unknown quantities of Algorithm 4 can be computed:

x̄k =
N−1

∑
ik−1=0

ωik−1fk−1(χik−1), ȳk =
N−1

∑
ik−1=0

ωik−1hk(χik|k−1),

Pxxk =
N−1

∑
ik−1=0

ωik−1(fk−1(χik−1)− x̄k)(fk−1(χik−1)− x̄k)
T +Qk−1,

Pxyk =
N−1

∑
ik−1=0

ωik−1(χik|k−1− x̄k)(hk(χik|k−1)− ȳk)
T and

Pyyk =
N−1

∑
ik−1=0

ωik−1(hk(χik|k−1)− ȳk)(hk(χik|k−1)− ȳk)
T +Rk,

where χik|k−1 = fk−1(χik−1). Another way is to generate these σ-points of the prior distribution
from a prior distribution whose expectation is x̄k and whose covariance matrix is Pxxk , then the
results are a little different from the previous implementation.
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3.4 Bayesian filter

In this section, we use the state model, the measurement model, and the initial state as well as
the usual independence assumptions introduced at the beginning of the chapter on page 41. The
aim in Bayesian filtering is to determine the state’s conditional density function conditioned on
the measurements,

pxk|y1:k(xk|y1:k)
5
= p(xk|y1:k).

The abbreviated notation is used where it is easy to see from the context what the notation
means. Assume that the state’s conditional density function at the previous time instant is
p(xk−1|y1:k−1). The conditional density function for the current instant conditioned on previous
measurements, p(xk|y1:k−1), can be determined with the help of the Chapman-Kolmogorov
equation

p(xk|y1:k−1) =
Z

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

This distribution is called the prior distribution. The conditional density function p(xk|xk−1) can
be derived from the state model

p(xk|xk−1)
(3.1)
= pwk−1(xk − fk−1(xk−1)).

Now, by Bayes’ rule and the independence assumptions of the errors, we can derive a formula
for the current state’s conditional density function conditioned on current and previous measure-
ments:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

R

p(yk|xk)p(xk|y1:k−1)dxk
.

This distribution is called the posterior distribution. The first term of the numerator

p(yk|xk) = pyk=yk|xk(yk|xk)
(3.2)
= pvk(yk −hk(xk))

is called the likelihood. Note that this is not a probability density function. The density function
of the posterior distribution is proportional to the product of the prior distribution and the like-
lihood. The denominator is the normalization constant p(yk|y1:k−1), which is the conditional
density function of the new measurement conditioned on previous measurements. From this the
filtering can be continued recursively.

As already mentioned, in linear-Gaussian cases the Kalman filter is the exact solution for this
filtering problem, see Exercise 3.7. Nevertheless, in the general case the posterior distributions
cannot be analytically solved. Because of this, several numerical methods for the approximation
of the posterior distribution have been developed. These methods are described in Section 3.5.
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Optimal estimator

In practical applications, we usually are interested in finding an optimal state estimator and
an estimate of the estimation error, rather than the full Bayesian posterior distribution. By
“estimator” we mean a function whose arguments are the measurements and the initial state,
and by “optimal” we mean that the estimator minimizes the expectation of some scalar cost
function L(xk − x̂k), in short

x̂opt
k = argminx̂k E(L(xk − x̂k)).

The cost function can be chosen with many different ways and thus we get different kinds of
optimal estimators. It is usually assumed, as we shall, that the cost function is non-negative and
that it has the value zero in the origin. Because

E(L(xk − x̂k)) = E(E(L(xk − x̂k)|y1:k)), (3.18)

it suffices to find an estimator that minimizes the conditional expectation

x̂opt
k = argminx̂k E(L(xk − x̂k)) = argminx̂k E(L(xk − x̂k)|y1:k = y1:k), (3.19)

for all values of the measurements y1:k. A common estimator is the least squares estimator, that
we get by minimizing the expectation value of the square of the error norm, that is,

L(xk − x̂k) = ‖xk − x̂k‖2. (3.20)

It can be shown that the estimator corresponding to the cost function (3.20) is the same as the
expectation of the posterior

x̂MSEk = E(xk|y1:k = y1:k),

(see Exercise 3.9). In fact, this same cost function is used for deriving the Kalman filter
(Section 3.2). It is however good to remember that the Kalman filter minimizes the expecta-
tion (3.18) among linear estimators only, whereas the optimal estimators handled in this section
minimize the conditional expectation (3.19) from the set of all estimators, not just linear ones.

Another common estimator is the maximum a posteriori, i.e. MAP estimator, then accordingly
the estimator is

x̂MAPk = argmaxxk
p(xk|y1:k).

The MAPestimator minimizes the so-called hit or miss cost function L = limδ↓0Lδ, where

Lδ(xk − x̂k) =

{
1, ‖xk − x̂k‖ ≥ δ
0, ‖xk − x̂k‖ < δ

,
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3.5 Numerical methods for filtering

This section presents some numerical methods for solving filtering problems. A hallmark for
a good numerical approximation method is that there is a way to control the trade-off between
accuracy and computational load. for example parameter N that can be increased in order to
make the solution approach the correct one. In numerical Bayesian filtering, this parameter
often is the number of the pairs {pi

k(x),ω
i
k} (i = 1, . . . ,N), with which we approximate the

density function of the posterior distribution

p(xk|y1:k) ≈
N

∑
i=1

ωi
k pi

k(xk).

For instance, for the particle filter (Section 3.5.2) and for the point mass filter

pi
k(xk) = δ(xk − xi

k),

where δ is the delta function (Dirac’s delta measure). For the grid filter, the function pi
k(xk)

is the characteristic function of set Ai and for the Gaussian mixture filter pi
k(xk) is the density

function of a normal distribution.

The biggest difference between the particle filter and the point mass filter is that in the particle
filter particles {xi

k} are chosen randomly whereas in the point mass filter they are deterministi-
cally set. The particle filter is based on Monte Carlo integration, described next.

3.5.1 Monte Carlo integration

Monte Carlo integration is based on the law of large numbers.

Theorem 7 (Strong law of large numbers). Let z1,z2, . . . ,zn be independent identically
distributed random variables. Then∗

P

(

lim
n→∞

1
n

n

∑
i=1
zi = µ

)

= 1

if and only if the distribution has an expectation value and E(z) = µ.

Write the integral to be computed in the form

I =
Z

g(z)dz =
Z g(z)

f (z)
f (z)dz 5

=
Z

h(z) f (z)dz, (3.21)

where f (z) > 0 is the density function of a random variable z. The random variable z can be
chosen almost freely, so it is good to pick one from which it is convenient to draw random
samples. Then according to the Strong law of large numbers (above), the sample mean

h̄n =
1
n

n

∑
i=1

h(zi) (3.22)

∗Then it is said that the sample mean converges almost surely. From almost certain convergence follows convergence
in the probability sense, from which furthermore follows convergence in the distribution sense.
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converges almost surely towards integral I (3.21). If E(h(z)2) exists, then the variance of random
variable h̄n can be approximated

V(h̄n) =
1
n

Z

[h(z)−E(h(z))]2 f (z)dz ≈
1
n2

n

∑
i=1

(
h(zi)− h̄n

)2 5
= σ2h̄n

. (3.23)

Additionally, it can be shown that the quotient (compare to the central limit theorem)

h̄n −E(h(z))
√
σ2h̄n

approaches in a distribution sense the distribution of the random variable N(0,1).

Example 21 (Monte Carlo integration). Let a random variable be z∼ N(0,1) and

g(z) =

{ 3
4(1− z2), |z|≤ 1
0, |z| > 1

When the number of the simulated random variables is n = 104, one realization of Monte Carlo
approximation of integral

R

g(z)dz = 1 is about 1.005, equation (3.22) and the approximation
of the variance of this approximation is about 3.045 · 10−5 (3.23). The density function of the
normal distribution corresponding to these values is visualized on the left in Figure 3.2. In the
background of the density function there has been drawn a histogram of a thousand such Monte
Carlo simulations. The histogram resembles a normal distribution whose expectation is one,
just like in theory. In Figure 3.2 on the right is a visualization of the error of the Monte Carlo
integration compared to the number n of random draws used. The line in the plot reflects the
theoretic convergence rate O(n− 1

2 ).
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Figure 3.2: Results of the Monte Carlo simulation.
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3.5.2 Particle filter

In this section, we describe different variants of particle filters [27]. A particle filter is based
on the Monte Carlo method and it approximates prior and posterior distributions using samples,
called particle clouds, of the distributions in question. One particle filter is given as the Algo-
rithm 5. In fact, the algorithm in question can be considered as an algorithm for a family
of particle filters, because by choosing different model parameters we get different kinds of
particle filters. These choices are discussed in the next section. Additionally, it is good to
remember that this is not the most general formulation for particle filter but there exists even
more general or in some way differing particle filters.

Algorithm 5 Particle filter

• The state model: xk = fk−1(xk−1)+wk−1, pwk−1(w)

• The measurement model: yk = hk(xk)+vk, pvk(v)
• The initial state and the measurements: px0(x) and y1:m = {y1,y2, . . . ,ym}
• The number of particles and the proposal distributions: N and g(xk|xi

k−1,yk)

In this algorithm i = 1, . . . ,N.

1. • Simulate samples xi
0 from distribution px0(x)

• Set ωi
0 = 1

N and k = 1

2. • Simulate particles xi
k from distributions g(xk|xi

k−1,yk)

• Set ωi
k = ωi

k−1
pvk (yk−hk(xi

k))pwk−1(x
i
k− fk−1(xi

k−1))

g(xi
k|x

i
k−1,yk)

3. Normalization: ωi
k =

ωi
k

∑N
i=1ω

i
k

4. Compute point estimates, e.g.:

• The posterior expectation: x̂k ≈ ∑N
i=1ω

i
kxi

k

• The covariance matrix of the posterior: Pk ≈ ∑N
i=1ω

i
k
(
xi

k − x̂k
)(

xi
k − x̂k

)T

5. Resample when needed:

• Simulate particles xi
k from distribution ∑

k
i ω

i
kδ(xk − xi

k)

• Set ωi
k = 1

N

6. Stop, if k = m, otherwise set k = k +1 and go back to Step 2.

Sequential importance sampling (SIS) is a simple particle filter and it is obtained from Algo-
rithm 5 when the resampling (Step 5) is left out. However, this eventually causes all the weight
to accumulate in just a few particles. Then all the other weights are practically zero, and a
lot of computation capacity has to be spent without having any effect on the approximation of
the posterior distribution. Because of this, in the SIR filter (sampling importance resampling)
the resampling is done at every step. Additionally, prior distributions p(xk|xi

k−1) are used as
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proposal distributions g(xk|xi
k−1,yk), so that the formula of the weights in step 2 of the algo-

rithm simplifies into ωi
k = pvk(yk −hk(xi

k)).

In the SIS filter, resampling is not done at all, whereas in the SIR filter it is done at every time
instant. Generally speaking, neither of these is the optimal way to operate. Different heuristics
have been developed to decide whether it is worth resampling or not. One of these ways is to
compute an approximation for the number of effective samples

Neff ≈
1

∑N
i=1(ω

i
k)
2 ,

and resample if it is smaller than a certain threshold value.

The resampling can be done in many ways. Algorithm 6 introduces systematic resampling. A
computationally heavier resampling algorithm (so-called multinomial resampling) is obtained
when in the systematic resampling the algorithm comparison points zi ∼Uniform(0,1] are simu-
lated each time. Systematic resampling takes one sample from each interval

( i−1
N , i

N
]
. This

guarantees that if the weight of a particle is ω j
k ≥ l

N , where l is a natural number, then the
corresponding particle appears at least l times in the resampled particle set. This also holds for
the so-called stratified resampling where one comparison point is simulated from each interval( i−1

N , i
N
]
and otherwise it functions the same as Algorithm 6.

Algorithm 6 Systematic resampling

• Particles and weights {xi
k,ω

i
k}, where i = 1, . . . ,N.

1. Simulate the starting point: z1 ∼Uniform(0, 1N ] and set i = 1.

2. Compute current comparison point zi = z1+(i−1) 1N .

3. Set xi
k = x j

k, where j is set in such a way that ∑ j−1
l=1 ω

l
k < zi ≤ ∑

j
l=1ω

l
k.

4. If i = N set ωi
k = 1

N for all i and stop, otherwise set i = i+1 and go back to Step 2.

The proposal distribution g(xk|xi
k−1,yk) was mentioned earlier in connection with the SIR filter,

which uses prior distributions p(xk|xi
k−1) as proposal distributions. Prior distribution is a popular

choice for the proposal distribution, although they are not the optimal choice when an effec-
tive sample size is considered. The optimal choice would be to use posterior distributions
p(xk|xi

k−1,yk) as proposal distributions. However, usually they are not known∗, and then we
often end up using either the prior distributions or the approximations of the posterior distribu-
tions which can be computed for example with the nonlinear Kalman filter (Section 3.3).

Example 22 (PF and EKF). Figure 3.3 shows a positioning example using particle filter (PF)
and extended Kalman filter (EKF). The system state is four-dimensional, two location coor-
dinates and two velocity coordinates, and state model parameters Φ and Q are the same as
in the Kalman filter example (3.14). A measurement is taken at one second intervals as a

∗Because they are the ones we are seeking.
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range measurement from two base stations, which have also been drawn in the figure. Then the
measurement model is

yk =

[
‖xbs1−xk‖
‖xbs2−xk‖

]
+vk,

where xbs1 =

[
−250
0

]
, xbs2 =

[
250
0

]
and vk ∼N(0,102I). The initial state of the system is

x0 ∼ N











−150
−30
3
3




 ,






202 0 0 0
0 202 0 0
0 0 52 0
0 0 0 52









 .

The location estimates given by the filters have been drawn in the figure, which are in
this case approximations of the expectations of the posterior distributions. At time instants
{0,10,20,30,40} the ellipses corresponding to the covariance matrices given by the EKF have
been drawn. The ellipses are defined in such a way that if the posterior distributions were
normal with parameters given by the EKF, then the ellipse would represent the level curve of
the density function of the posterior distribution such that with about 68% probability the state
is inside the ellipse.

The particle filter used is the SIR filter













Figure 3.3: Figure of the situation of the
example, more detailed explana-
tion is found in the text.

(p. 54) with a million particles. The particle
clouds have been visualized at time instants
{0,10,20,30,40} with a hundred particles,
which have been got from the original set
of one million particles by using system-
atic resampling (algorithm 6). Because the
number of particles is relatively large, it can
be thought that the particle filter represents
some kind of reference filter in the example.

From the figure we see that at the last time
instant (t = 40), the posterior distribution
clearly has two separate peaks. The EKF has
started following one of these peaks, which
is very characteristic for the EKF. In this
case the EKF has “chosen” the wrong peak
and then we say that the EKF has gone
astray. Although the EKF gives completely

false results, the covariance matrix shows that the EKF trusts very much the estimate in ques-
tion. After this, the EKF does not easily “find” the correct location even when measurements
from additional sources become available and the bimodal (two-peaked) posterior becomes
unimodal. As a rule of thumb, we can say that it is worth applying the EKF to the system if
the posterior distributions resemble normal distribution i.e. they are unimodal and the tails of
the distribution rapidly decay towards zero, but in this kind of two-peaked case applying EKF
starts to be quite risky. This bimodal situation would completely change if there were range
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measurements from one more base station or if the route did not go near the line connecting the
base stations.

Exercises
3.1. Show that the mean square error matrix of prediction ŷk = Hkx̂

−
k of measurement yk =

Hkxk +vk is HkP
−
k H

T
k +Rk.

3.2. Assume that matrix R is symmetric positive definite and matrix P is symmetric positive
semi-definite. Show that

(I−KH)P(I−KH)T +KRKT = P−AAT +(KB−A)(KB−A)T ,

where B= (HPHT +R)
1
2 and A= PHTB−1.

3.3. Let A be an arbitrary real matrix. Show that the zero matrix is the unique solution for the
problem argminA tr(AAT ).

3.4. Let prior distribution of the position x ∼ N(6,8) and measurement model y = 2x+ 4v,
where random variable v∼N(0,1) is independent of the prior distribution. What is
the conditional distribution of the position, when measurement y= 14? Here prior and
measurement are given at the same instant.

3.5. Let prior distribution of the position
[
x1
x2

]
∼N

([
10
24

]
,

[
60 0
0 20

])

and measurement model y= x1+x2+v, where random variable v∼N(0,10) is indepen-
dent of the prior distribution. What is the conditional distribution of the position, when
measurement y= 43? Here prior and measurement are given at the same instant.

3.6. For a partitioned matrix it holds that (check it)
[
A B
C D

]−1
=

[
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

]
,

if the required inverse matrices exist. On the other hand, we know that the inverse matrix
of a symmetric matrix is symmetric. Applying this information to matrix

[
P−1 HT

H −R

]

may be of help in the next task. Additionally, let A and B be symmetric positive definite
matrices. Now, if A≤ B then B−1 ≤A−1 [11, Corollary 3.3.4.].
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(a) Show that (P−1+HTR−1H)−1 = P−PHT (HPHT +R)−1HP, when P> 0 and R> 0.
(b) Show that in linear Gaussian case posterior covariance matrix is “increasing”. That

is, show that if 0 < P1 ≤ P2 then 0 < P+
1 ≤ P+

2 , where P+
i = (I−KH)Pi and K =

PHT (HPHT +R)−1.

3.7. (a) Let xk−1 ∼ N(x̂k−1,Pk−1), wk−1 ∼ N(0,Qk−1) and vk ∼ N(0,Rk) be independent
random variables. What is the distribution of the random variable

[
xk
yk

]
=

[
Φk−1 I 0
HkΦk−1 Hk I

]


xk−1
wk−1
vk



?

(b) Let
[
x
y

]
∼ N

([
x̄
ȳ

]
,

[
Σxx Σxy
Σyx Σyy

])
,

show that x|y= y ∼ N(x̄+ΣxyΣ−1yy (y− ȳ),Σxx −ΣxyΣ−1yy Σyx).
(c) Apply the result of part (b) to the distribution from part (a), and compare the

obtained result with the BLU-estimator introduced in Section 3.2.

3.8. Show that in one-dimensional case, the unscented transformation using the points given
in formula (3.17) make the approximation (3.16) exact for a third degree polynomial.
Naturally, here p(x) is the density function of distribution N(µ,σ2). On what grounds is
the choice κ= 2 reasonable? (Hint:

R

x4p(x)dx = µ4+6µ2σ2+3σ4)

3.9. Show that the posterior expectation minimizes the expectation E(‖xk − x̂k‖2 | || y1:k =
y1:k).

3.10. Let prior distribution of the position x ∼ Uniform(0,3π). The measurement model is
y = sin(x)+ v, where random variable v∼ Uniform(−1

2 ,
1
2) is independent of the prior

distribution. What is the probability density function (pdf) of the posterior distribution,
when measurement y = 1

2?

3.11. Let pdf of the random variable w be pw(w) = N0Q(w) and pdf of the random variable x

px(x) = αNµ1
Σ (x)+(1−α)Nµ2

Σ (x),

where 0≤ α≤ 1 and

Nµ
Σ(x) =

exp
(
−1
2(x−µ)TΣ−1(x−µ)

)
√
det(2πΣ)

.

The random variables w and x are independent. Let the random variable y = Fx+w,
where F is a constant matrix.
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(a) Calculate E(y).
(b) Calculate pdf of the random variable y.
Lemma: If Σ1,Σ2 > 0 then Nµ

Σ1
(x)NHx

Σ2 (y) =Nµ̄
Σ3

(x)NHµ
Σ4

(y), where µ̄ = µ+K(y−Hµ),

Σ3 = (I−KH)Σ1, K= Σ1HTΣ−14 , Σ4 =HΣ1HT +Σ2 and Nµ
Σ(x) =

exp(− 1
2 (x−µ)TΣ−1(x−µ))√

det(2πΣ)
.

Computer exercises

3.12. Implement the Kalman filter (KF), whose specification is

% [X,P] = kalman(x0,P0,F,Q,Y,H,R)
%
% x_{k+1} = Fx_{k}+w
% y_{k} = Hx_{k}+v
%
% IN: x0 = initial state at time 0 (R^n)
% P0 = initial covariance matrix
% F = state transformation matrix
% Q = covariance matrix of process noise (w)
% Y = measurements Y=[y_1,...,y_k](R^(m \times k),
% H = ’’measurement model’’
% R = covariance matrix of measurements errors (v)
%
%OUT: X = [x_0,x_1,...,x_k], where x_i is estimate at time i.
% P(:,:,i) = MSE matrix at time i

function [X,P] = kalman(x0,P0,F,Q,Y,H,R)

There are data in web page http://www.students.tut.fi/~aliloytt/menetelmat/
harkat.html that you can test your filter. Visualize these tests.

3.13. Compute by using Monte Carlo integration the expression

I =

R

A
x
2π exp

(
−1
2xT x

)
dx

R

A
1
2π exp

(
−1
2xT x

)
dx

,

where A = [0,2]× [0,2]. Additionally, study the convergence of Monte Carlo simulations
towards the exact value

I =
1− exp(−2)√

2π(Φ(0)−Φ(−2))

[
1
1

]
,

where Φ is the cumulative function of distribution N(0,1). The integral in question repre-
sents the expectation of a posterior distribution whose prior distribution is N(0, I) and the
measurement is the information that the state is inside the area A.
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3.14. Implement two filters of this group {EKF, UKF, PF}, whose specifications is

% [X,P,...] = filter(x0,P0,F,Q,Y,S,R)
%
% x_{k+1} = Fx_{k}+w
% y_{k} = h(x_{k})+v,
% where (h(x_{k}))_i is range measurement from base station s_i
%
% IN: x0 = initial state at time 0 (R^n)
% P0 = initial covariance matrix
% F = state transformation matrix
% Q = covariance matrix of process noise (w)
% Y = measurements Y=[y_1,...,y_k](R^(m \times k),
% S = coordinates of base stations [s_1,...,s_l]
% R = covariance matrix of measurements errors (v)
%
%OUT: X = [x_0,x_1,...,x_k], where x_i is estimate at time i.
% P(:,:,i) = MSE matrix at time i

function [X,P,...] = filter(x0,P0,F,Q,Y,S,R)

There are data in web page http://www.students.tut.fi/~aliloytt/menetelmat/
harkat.html that you can test your filter. Visualize these tests.
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