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Abstract

Implicit Runge-Kutta methods are used for solving stiff ODEs such as
those arising in mechanical or electrical system simulation and in semidis-
cretisation of partial differential equation evolution problems. Embedding
one Runge-Kutta formula with another is a way of obtaining an estimate of
the local error (for step size control) at a modest computation cost. Our in-
terest is with the design of embedded pairs of low order. We consider both
accuracy and basic stability properties of Runge-Kutta formulas with an eye
to the performance of the pair as a whole. We present some negative results
showing that embedded pairs with certain combinations of stability properties
cannot exist. Finally we analyze and compare 7 pairs from the literature and
6 new pairs.
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1 Introduction

Implicit Runge-Kutta formulas of relatively low order (order 2 or 3), such as the
trapezoid rule, are often used for solving stiff ordinary differential equations arising
in mechanical or electrical system simulation and in semidiscretisation (method of
lines, Rothe method) of partial differential equation evolution problems.

Although implicit Runge-Kutta formulas have been studied for many years, new
classes of methods continue to appear. Hosea and Shampine [8] have recently studied
low order formulas with the novel property that they contain both implicit and
explicit stages. They present several negative results asserting the nonexistence
of formulas with certain combinations of stability and accuracy properties. Such
negative results are obviously helpful in directing the search for new formulas, and
they complement the negative results gathered in the survey paper by Alexander [1]
and in the monograph of Hairer and Wanner [5].

The purpose of having an embedded pair of Runge-Kutta formulas is to get
an estimate of local error. This estimate is typically used for controlling the step
size used when advancing the solution. In this paper we try to keep in mind the
interaction between the two formulas in the pair and what this interaction implies
for the operation of the pair as a whole. For example, it would not make sense to
pack one formula with desirable properties if the consequence was that the other
formula suffered to such a degree that the embedded pair performed poorly.

We include results for pairs whose implicit parts are based either on singly im-
plicit (SIRK) or singly diagonally implicit (SDIRK) Runge-Kutta formulas.

After presenting some definitions in section 2, we review in section 3 some rel-
evant stability properties and discuss what the stability properties imply for the
behavior of the pair. Section 4 contains a number of negative results asserting the
nonexistence of pairs with certain combinations of properties. We consider accuracy
properties in section 5, again focusing on what is desirable so that the pair perform
well. The last section contains analysis and comparison of seven pairs from the
literature and six new pairs.

2 Definitions

The Butcher table for a pair of embedded Runge-Kutta (RK) formulas is given as
follows:

c A

bT

b̂T
(1)

In this table A is an s×s matrix and c = Ae, where e is a vector of ones. The vectors
b and b̂ are associated with the lower and higher order RK methods respectively;
each has s elements. We will consider methods involving both implicit and explicit
stages.

The RK formula associated with b will be called the estimator formula or the
b-formula. The auxiliary formula or the b̂-formula is that associated with b̂. Unless
otherwise stated, we will assume that the estimator formula is used to advance
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the state. The orders of the b-formula and the b̂-formula are denoted by p and p̂
respectively.

We will be considering methods whose A matrix is block-lower diagonal with the
following structure:

A =

⎡⎢⎣ A1 0 0
A2 A3 0
A4 A5 A6

⎤⎥⎦ . (2)

In this partition, A1 and A6 are lower triangular matrices whose diagonal elements
are zero and A3 is an si × si matrix whose rank is si. The number of implicit and
explicit stages in an RK formula are denoted by si and se ≡ (s− si) respectively.

An Implicit RK formula (IRK) has si > 0. A Diagonally Implict RK formula
(DIRK) is one where A3 in (2) is lower triangular. A Singly Diagonally Implicit
RK formula (SDIRK) is a DIRK formula where all diagonal elements of A3 in (2)
are the same. A Singly Implicit RK formula (SIRK) is one where A3 has one real
si-fold eigenvalue, μ, and A3 is not lower triangular. As defined here, SIRK formulas
and SDIRK formulas are mutually exclusive.

Next we will define the stability functions we will use. We assume we are starting
from yn corresponding to time tn. We restrict ourselves to a linear problem of the
form

y′ = λy + q , λ ∈ C . (3)

We will assume p < p̂. The numerical estimate to the true solution at tn+1 ≡ tn+h,
provided by the lower order estimator formula satisfies

yn+1 = R(hλ)(yn − q) + q . (4)

The stability function for the estimator formula is given by

R(z) ≡ 1 + zbT (I − zA)−1e (5)

where z = hλ and eT = [1, 1, . . . 1]. Similarly the higher order auxilary formula is
given by

ŷn+1 = R̂(hλ)(yn − q) + q , (6)

where

R̂(z) ≡ 1 + zb̂T (I − zA)−1e (7)

The error estimate, δ, is calculated from

δn+1 ≡ ŷn+1 − yn+1 = Rδ(z) (yn − q) . (8)

where the error estimate stability function is given by

Rδ(z) ≡ R̂(z)−R(z) . (9)

We will have use for the following limits:

γ ≡ lim
|z|→∞

R(z) , (10)
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γ̂ ≡ lim
|z|→∞

R̂(z) . (11)

A stability function is a rational function. An RK formula with stability function
R(z) = G(z)/H(z) is proper if degree(G) ≤ degree(H) or equivalently if γ < ∞.
An RK formula with stability function, R(z) = G(z)/H(z) is strictly proper if
degree(G) < degree(H) or equivalently if γ = 0.

3 Runge-Kutta formula stability properties

Many different stability properties have been developed for RK formulas. Hairer
and Wanner [5] provide a detailed and comprehensive survey. We will focus our
attention on what certain basic stability properties imply for the embedded pair as
a whole.

When dealing with stiff ODE’s we must concern ourselves with the operation of
the embedded pair for both large |z| and small |z|, where z = λh (see (5)). Stability
issues arise for large |z|, so we will be concerned with large |z| in this section.

Properness Properness was defined in section 2. The significance of properness
can be seen by studying the test problem (3) with constant q. Given the initial
conditions y(tn) = yn the exact solution to this test problem at time tn+1 = tn + h
is given by y∗:

y∗(tn+1) = q + exp(hλ)(yn − q) .

The local error of the estimator formula (4) is hence

εn+1 ≡ y∗(tn+1)− yn+1 = ( exp(hλ)− R(hλ) )(yn − q) . (12)

We will assume that h > 0 and that the linear system (3) is stable, i. e. Re(λ) < 0.
Using z = hλ, we can find the limit of the local error:

lim
|z|→∞

|εn+1| = lim
|z|→∞

| ( exp(z)−R(z) )(yn − q) | = γ |yn − q| . (13)

If R(z) is not proper, the local error |εn+1| will grow as |z| grows. Clearly properness
is important for the estimator formula. Now consider the auxiliary function. We
will assume γ < ∞. Using (10) and (11), the limit of the error estimate from (8)
can be written as follows:

lim
|z|→∞

|δn+1| = lim
|z|→∞

∣∣∣ ( R̂(z)−R(z) )(yn − q)
∣∣∣

= | γ̂ − γ | |yn − q| (14)

If R̂ is not proper, then γ̂ → ∞ as |z| → ∞. Hence although the size of the local
error from (12) is actually γ|yn− q|, the estimated error grows without bound as |z|
increases. If R̂ is not proper we can thus expect the local error to be overestimated,
sometimes grossly. This will make any step size adjustment overly conservative and
this will cost us in the number of steps needed to integrate to a certain point. Now
let us consider the situation where both R̂(z) and R(z) are proper but not strictly
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proper. Given γ > 0, we want to know what is a desirable value for γ̂. From
(14) and (13) it follows that if |γ̂ − γ| < |γ|, then for large |z| the local error will
be underestimated. This can occur for γ̂ ≈ γ. Underestimation of error is to be
avoided. For an exact error estimate for large |z| we would need |γ̂ − γ| = |γ|, i. e.
γ̂ = 0 or γ̂ = 2γ. We do not suggest that one must have γ̂ = 0 or γ̂ = 2γ, since this
result comes from setting |z| = ∞, which is impossible. Still we do suggest avoiding
γ̂ ≈ γ when γ �= 0.

A-stability An RK formula for which |R(z)| ≤ 1 when Re(z) < 0 is A-stable. Let
us consider again the test problem of (3). It is important for the estimator formula
(4) to be A-stable since we are using the output of (4) to advance y. If R(z) is
A-stable and (3) is stable, then we may vary h arbitrarily without having to worry
about the stability of the sequence [ yn+1, yn+2, . . . ] that is produced by (4). The
estimator formula retains or inherits the stability of (3). Consider now the auxiliary
formula (6). We are only using (6) one step at a time, i. e. the initial condition used
in (6) is a previous estimate yn provided by the estimator formula (4). In contrast
to properness, we cannot see any obvious reason to require the auxiliary formula to
be A-stable.

L-stability An RK formula is L-stable if it is both A-stable and strictly proper,
i. e. γ = 0 (see 10). Using the definitions of section 2 we obtain

L-stable formula ⇒ strictly proper formula (15)

L-stable formula ⇒ A-stable formula ⇒ proper formula (16)

We continue the analysis presented above. Consider the local error limit in (13).
When the estimator formula is L-stable, γ is zero, and hence the local error tends
to 0. One should approach this seemingly good news with some caution. Although
|εn+1| → 0 as |z| grows, |εn+1| does not necessarily tend to zero with as much
accuracy as one might expect. Prothero and Robinson [10] have shown that the
apparent order of many RK methods decrease significantly as |z| grows. Let us
consider how the estimate of the local error behaves. If the estimator formula is
L-stable and the auxiliary formula is not, then γ̂ > 0 and γ = 0. It follows that the
local error estimate in (14) will be too large since the true local error limit in (13)
tends to zero. This in turn implies overly conservative step size adjustment. Note
though, that the value of γ̂ does matter: the overestimation of local error for large
|z| will be less for smaller γ̂ values.

S-stability The concept of S-stability was introduced by Prothero and Robinson
[10]. They had noticed that A-stability was not enough to ensure stability for large
stiff problems. Their analysis was based on the following test problem

y′ = g′(t) + λ(y − g(t)) , λ ∈ C . (17)

They show that the solution provided by a Runge-Kutta method can be written in
the following form:

yn+1 = R(z) ( yn − g(tn) ) + g(tn+1) + hβ( z, g, g′, g(tn), g(tn+1) ) , (18)
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where z = hλ, g and g′ are vectors representing the evaluation of g and g′ at the
points determined by the c of (1). ( Note that the Prothero and Robinson’s z is the
inverse of the z used here.) For (17) the true solution is y∗(t) = g(t), hence the local
error of (18) is

εn+1 ≡ y∗(tn+1)− yn+1 = R(z)(yn − g(tn)) + hβ(z) , (19)

where for simplicity we have dropped all the arguments on β except for z. If the
Runge-Kutta method is S-stable, it essentially means that for finite real h, the |hβ(z)|
term in (19) is bounded for |z| → ∞ and Re(λ) < 0. A strongly S-stable method
has |β(z)| → 0 under the same conditions. Clearly, strong S-stability would appear
to be desirable for the estimator formula when dealing with stiff problems. Let us
consider what S-stability or strong S-stability implies for the local error estimate.
The local error estimate for (17) will be

δn+1 = ( R̂(z)− R(z) ) ( yn − g(tn) ) + h( β̂(z)− β(z) ) . (20)

The ( R̂(z)−R(z) ) term we have discussed above when we considered properness and
L-stability. The ( β̂(z)− β(z) ) term is new but the conclusions are familiar. If the
estimator formula is S-stable (or strongly S-stable) and the auxiliary formula is not,
we can expect overestimation of error and the step sizes selected will be conservative.
Finally to relate these S-stability properties to those stability properties previously
discussed, we note that for a formula to be S-stable it must be A-stable, and for a
formula to be strongly S-stable it must be L-stable.

4 Some negative results

In this section we present results showing that embedded pairs of IRK formulas with
certain properties do not exist. The purpose of these negative results is to eliminate
certain possibilities when one is designing embedded IRK formulas.

Table 1 summarizes the results of this section. To interpret the results in this
table one can use (15), (16) and the definitions provided at the end of sec. 2. For
example, from (15) it follows that a formula must be strictly proper for it to be
L-stable.

We start with a result that shows that we will need at least 3 implicit stages
to get an embedded pair with orders (p, p̂) = (2, 3) where the b-formula is strictly
proper and the b̂-formula is proper.

Theorem 1 No pair of embedded SDIRK formulas exists with the following prop-
erties: (a) p = 2 and the b-formula is stricly proper, (b) p̂ = 3 and the b̂-formula is
proper, and (c) si < 3.

Proof The case of si = 1 is trivial and we shall not include it. Let us consider
si = 2. Since we are dealing with SDIRK formulas the diagonal elements of A3 of (2)
are all the same. Let this diagonal element be μ. We will show that the conditions
imposed result in two incompatible conditions on μ.
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Table 1: A summary of the results of section 4 regarding different types of Runge-
Kutta embedded pairs. “Stricly proper” has been shortened to st. proper (see sec. 2).

type no. of stages (property, order) for conclusion thm.

b-formula b̂-formula
SDIRK si < 3, se ≥ 0 (st. proper,2) (proper,3) no pair exists 1
SIRK si < 3, se ≥ 0 (st. proper,2) (proper,3) no pair exists 2
SDIRK si < 4, se ≥ 0 (st. proper,3) (proper,4) no pair exists 3
SDIRK si = 3, se = 0, 1 (st. proper,2) (st. proper,3) no pair exists 4, 5
SIRK si = 3, se = 0 (st. proper,2) (st. proper,3) no pair exists 6, 7

IRK si = 3, se ≥ 0 (st. proper,2) (st. proper,3) R(z) = R̂(z) 9

The stability function for the b-formula is given by (5). Let G(z) and H(z) be
the numerator and denominator polynomials of R(z):

R(z) =
G(z)

H(z)
=

∑s
j=0 gj z

j∑s
j=0 hj zj

(21)

From (5) we may write

R(z) = 1 +
zbTGA(z)e

det(I − zA)
, (22)

where
(I − zA)−1 = GA(z) / det(I − zA) , (23)

and GA(z) is a matrix polynomial in A. Note that H(z) = det(I − zA). The GA(z)
matrix polynomial can be expressed as

GA(z) =
s∑

j=0

Gj z
j (24)

where Gj can be obtained by expanding Leverrier’s algorithm [13, pp. 117–8]:

Gj =
j∑

k=0

hj−k A
k (25)

It follows from (21), (22) and (24) that

gj = hj + bTGj−1e , G−1 = 0 . (26)

The expressions (21)–(25) are valid for R̂(z) if we substitute b̂ for b. Hence following
the same development for the auxiliary formula, R̂(z), we can obtain

ĝj = hj + b̂TGj−1e , G−1 = 0 . (27)

We will derive an expression for g2, the coefficient of z2 in the G(z) polynomial.
Using (26), the g2 coefficient can be written as

g2 = h2 + bTG1e . (28)
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From the definition of an SDIRK with si = 2, it follows that det(I − zA) = H(z) =
(1− μz)2. Using this and (25) we may write

g2 = μ2 + bT (−2μI + A)e . (29)

Now the b-formula was of order 2, so the following two conditions must hold:

bT e = 1 , (30)

bT c = bTAe = 1/2 . (31)

Using (30) and (31), in (29) we obtain

g2 = μ2 − 2μ+ 1/2 . (32)

We required the b-formula to be strictly proper. Since degree(H) = 2, for the
b-formula to be strictly proper we must have g2 = 0.

We now consider the b̂-formula. In particular we want the coefficient of z3 in the
numerator of R̂(z). From (27) the coefficient of z3 is given by

ĝ3 = h3 + b̂TG2 e = h3 + b̂T
[
h2I + h1A + h0A

2
]
e (33)

The b̂-formula was of order 3 which means that the following four conditions hold:

b̂T e = 1 , (34)

b̂T c = 1/2 , (35)

b̂T (c� c) = 1/3 , (36)

2b̂TAc = b̂T (c� c) , (37)

where c = Ae and � represents the componentwise product, (x�y)i ≡ (xiyi). Using
H(z) = (1− μz)2 and (34)—(37) in (33), we obtain

ĝ3 = μ2 − 2μb̂T c+ b̂TAc = μ2 − μ+ 1/6 . (38)

From the condition that the b̂-formula be proper and degree(H) = 2, it follows that
ĝ3 = 0. From above we also needed g2 = 0. The roots of (38) and those of (32) do
not intersect.

Remarks
Using almost the same arguments as used in the proof of Theorem 1 it can be shown
that there does not exist an SDIRK formula that is proper with p = 3, si = 1 and
se > 1. Similary it can be shown that there does not exist an SDIRK formula that
is stricly proper with p = 3, si = 2 and se > 1.

We will next prove a similar result for an embedded SIRK pair (see sec. 2).

Theorem 2 No pair of embedded SIRK formulas exists with the following proper-
ties: (a) its A matrix is given by (2), (b) p = 2 and the b-formula is stricly proper,
(c) p̂ = 3 and the b̂-formula is proper, and (d) si < 3.
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Proof We shall only present what is necessary and then refer to the proof of
Theorem 1. We ignore the trivial case of si = 1 and consider only si = 2.

The stability function for the b-formula is given by (22). Since A1 and A6 in (2)
are triangular with zero diagonals we can write

det(I − zA) = det(I − zA1) det(I − zA3) det(I − zA6) = det(I − zA3) (39)

From the definition of a SIRK we know that det(I−zA3) = (1−μz)2. The remainder
of the proof is analogous to that of Theorem 1.

An analogous result to Theorem 1 exists for SDIRK pairs of orders 3 and 4.

Theorem 3 No pair of embedded SDIRK formulas exists with the following prop-
erties: (a) p = 3 and the b-formula is stricly proper, (b) p̂ = 4 and the b̂-formula is
proper, and (c) si < 4.

Proof The proof is analogous to the proof of Theorem 1, so we provide only those
points that differ significantly from it. We consider only si = 3. We will derive
expressions for g3 of R(z) and ĝ4 of R̂(z) (see (21)). Using g3 and ĝ4 we will show
that the requirements on the embedded pair result in incompatible conditions on μ,
where all diagonal elements of A3 of (2) are equal to μ.

From (26) we may write an expression for g3:

g3 = h3 + bTG2e . (40)

This expression is the same as (33) except that b replaces b̂. For an SDIRK with
si = 3, det(I − zA) = H(z) = (1 − μz)3. Taking this into account and using the
order conditions (34)—(37) with b̂ replaced by b, we can rewrite (40) as

g3 = −μ3 + 3μ2 − 3μ/2 + 1/6 . (41)

The b̂-formula was of order 4. In addition to conditions (34)—(37) holding, the
following must be satisfied:

b̂T (c� c� c) = 1/4 , (42)

3b̂TA(c� c) = b̂T (c� c� c) , (43)

b̂TA(c� c) = 2 b̂T A2c . (44)

From (27) we may write an expression for ĝ4:

ĝ4 = h4 + b̂TG3e . (45)

Using (25) and H(z) = (1− μz)3 we get

ĝ4 = b̂T
[
−μ3I + 3μ2A − 3μA2 + A3

]
e . (46)

Using (34)—(37) and (42)—(44) in (46) we obtain

ĝ4 = −μ3 + 3μ2/2 − μ/2 + 1/24 . (47)

We wanted the b-formula to be stricly proper. Since degree(H) = 3, it follows
that we must have g3 = 0. Similarly, to attain a proper b̂-formula we must have
ĝ4 = 0. The roots of (41) and (47) are not compatible.
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Remarks
Using almost the same arguments as used in the proof of Theorem 1 it can be shown
that there does not exist an SDIRK formula that is proper with p = 4, si = 2 and
se > 1 Similarly we can show that there does not exist an SDIRK formula that is
strictly proper with p = 4, si = 3 and se > 1.

In the next two theorems we show that for si = 3 and se < 2, we cannot get an
embedded SDIRK pair with (p, p̂) = (2, 3) where both formulas are stricly proper.

Theorem 4 No pair of embedded SDIRK formulas exists with the following prop-
erties: (a) the b-formula is of order 2 and is strictly proper, (b) the b-formula is of
order 3 and is strictly proper, and (c) s = si = 3.

Proof Let all diagonal elements of A3 of (2) be equal to μ. We will show that the
requirements lead to conflicting demands on μ.

Expressions (21)–(25) are valid for the b-formula. Analogous expressions are
valid for the b̂-formula when b is replaced with b̂. For an SDIRK with s = si = 3,
det(I − zA) = H(z) = (1 − μz)3. The coefficient of z3 in the numerator of R̂(z) is
given by (33), which is repeated here:

ĝ3 = h3 + b̂TG2 e = h3 + b̂T
[
h2I + h1A + h0A

2
]
e (48)

An analogous expression applies for the coefficient of z3 in the numerator of R(z):

g3 = h3 + bTG2 e = h3 + bT
[
h2I + h1A + h0A

2
]
e (49)

Both the estimator and auxiliary formulas satisfy order 2 conditions;

bT e = b̂T e = 1 , (50)

bT c = bTAe = b̂T c = b̂TAe = 1/2 . (51)

Since we want both R and R̂ to be stricly proper we must have g3 = ĝ3 = 0. From
this and (48)–(51) it follows that

bTA2e = b̂TA2e . (52)

We can combine (50)–(52) to obtain the following:[
e Ae A2e

]T
[b− b̂] = [0 0 0]T . (53)

Let M ≡ [e Ae A2e]. If M is nonsingular, then b = b̂ and we will not have an
embedded pair. So M must be singular. For M singular, det(M) = a221a32 = 0.
Both a21 = 0 and a32 = 0 result in the following dependence on the columns of M :

A2e = 2μAe − μ2e . (54)

Using (54), (50), (51) and H(z) = (1− μz)3 in (49) we obtain

g3 = −μ3 + 3μ2 bT e − 3μ bTAe + 2μ bTAe − μ2 bT e

= −μ (μ2 − 2μ + 1/2 ) . (55)
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Using order 3 conditions (34)–(37) in (48) we obtain

ĝ3 = −μ3 + 3μ2 − 3μ/2 + 1/6 . (56)

We want g3 = ĝ3 = 0, but the roots of (55) and (56) are not compatible.

Theorem 5 No pair of embedded SDIRK formulas exists with the following prop-
erties: (a) the b-formula is of order 2 and is strictly proper, (b) the b̂-formula is of
order 3 and is strictly proper, and (c) si = 3 and se = 1.

Proof The proof is similar to that of Theorem 4, hence we will use much directly
from there. We will show that the requirements produce conflicting demands on μ,
the diagonal element of A3 of (2).

The denominator of R(z) and R̂(z) is the same as in Theorem 4, i. e. H(z) =
(1 − μz)3, but now s = 4. The expressions for g3 and ĝ3 given in (48) and (49) are
valid. The coefficient of z4 in the numerator of R̂(z) can be written as:

ĝ4 = h4 + b̂TG3 e = b̂T
[
h3I + h2A + h1A

2 + h0A
3
]
e . (57)

By replacing b̂ with b we obtain the corresponding expression for g4. In Theorem 4
it was shown that requiring g3 = ĝ3 = 0 resulted in bTA2e = b̂TA2e, see (52). Using
(50)–(52) and requiring g4 = ĝ4 = 0 results in

bTA3e = b̂TA3e . (58)

We need g4 = ĝ4 = 0 for both formulas to be strictly proper. From (50)–(52) and
(58) we may write

[
e Ae A2e A3e

]T
[b− b̂] = [0 0 0 0]T . (59)

Let M ≡ [e Ae A2e A3e]. If M is nonsingular then b = b̂ and we will not have
an embedded pair. So we must have a singular M . For M singular, det(M) =
a232a43(μ + a21) = 0. The cases of a32 = 0, a43 = 0 and μ = −a21 all result in the
same dependence on the columns of M :

A3e = 2μA2e − μ2Ae . (60)

Using (60) and the order 3 conditions (34)–(37) in (57) we obtain

ĝ4 = −μ (μ2 − μ + 1/6 ) . (61)

The expression in (56) is valid for ĝ3. For the b̂-formula to be strictly proper we
require ĝ4 = ĝ3 = 0, but the roots of (61) and (56) are not compatible.

The next 3 theorems concern SIRK methods. These theorems are comparable
to Theorems 4 and 5, i. e. we show that when si = 3 and se < 2 we cannot get an
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embedded pair of formulas where both are strictly proper. Burrages [2] considered
embedded pairs having the following Butcher table:

c1 a11 a12 . . . a1,s−1 0
c2 a21 a22 . . . a2,s−1 0
...

...
...

...
cs−1 as−1,1 as−1,2 . . . as−1,s−1 0
cs as,1 as,2 . . . as,s−1 μ

b1 b2 . . . bs−1 0

b̂1 b̂2 . . . b̂s−1 b̂s

(62)

Let As−1 be the (s− 1)× (s− 1) upper left block of the A matrix of (62). This was
found from

As−1 = Vs−1 Ăs−1 V
−1
s−1 (63)

where Vs−1 is an (s−1)× (s−1) Vandermonde matrix defined in terms of the ci and
Ăs−1 is an (s− 1)× (s− 1) matrix all of whose eigenvalues are equal to μ. Details
can be found from Burrage’s paper.

Theorem 6 Consider the embedded pair of SIRK formulas with s = si = 3 pre-
sented in equations (33)–(34) of Burrage’s 1978 paper [2]. The pair has one param-
eter μ. There is no value of μ for which both the b-formula and the b̂-formula are
strictly proper.

Proof The stability functions for the two formulas are as follows:

R(z) =
2− 4 zμ+ 2 z2μ2 + 2 z − 4 z2μ+ z2

2− 4 zμ+ 2 z2μ2

R̂(z) =
6 z3μ3 − 18 z2μ2 − 18 z3μ2 + 18 zμ+ 9 z3μ+ 18 z2μ− 6− 6 z − z3 − 3 z2

−6 + 18 zμ− 18 z2μ2 + 6 z3μ3

For the b-formula to be strictly proper the degree of the numerator in R(z) must be
less than the degree of the denominator. From this it follows that:

2μ2 − 4μ+ 1 = 0 .

A similar condition on R̂(z) results in

6μ3 − 18μ2 + 9μ− 1 = 0 .

These two polynomials in μ do not have any common roots.
One type of embedded formulas not considered by Burrage [2] was that corre-

sponding to the following Butcher table:

c Vs Ăs V
−1
s

bT

b̂T
(64)

We do not assume that bs = 0 as in Burrage’s pair (62). In the next theorem we
consider this embedded pair.
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Theorem 7 No embedded pair of SIRK formulas exists with the following proper-
ties: (a) its Butcher table is given (64) with Vs and As defined in Burrage’s paper
[2], (b) s = si = 3, (c) the b-formula is of order 2 and is strictly proper, and (d) the
b̂-formula is of order 3 and is strictly proper.

Proof This theorem is analogous to Theorem 4 and hence we will use some of the
material there. As before we will show that the requirements lead to impossible
demands.

As in the proof of Theorem 4, we find that for b and b̂ to be different M must
be singular, where M ≡ [e Ae A2e]. For M to be singular we require

det(M) = (1/2) (c3 − c2) (c1 − c3) (c1 − c2) = 0 (65)

By using the order 3 conditions, (34)–(37), we can obtain the following expressions
for the elements of b̂:

b̂1 =
6 c2 c3 − 3 c2 − 3 c3 + 2

6 (c1 − c3) (c1 − c2)
, b̂2 = −6 c3 c1 − 3 c1 − 3 c3 + 2

6 (c1 − c2) (c2 − c3)
,

b̂3 =
6 c2 c1 − 3 c1 − 3 c2 + 2

6 (c2 − c3) (c1 − c3)

If we satisfy (65), then at least two of the b̂i coefficients will be undefined.

Our next theorem concerns a SIRK-based embedded pair that has one explicit
stage. The Butcher table corresponding to this pair is as follows:

c1 a11 a12 a1,3 0
c2 a21 a22 a2,3 0
c3 a31 a32 a33 0
c4 a41 a42 a43 0

b1 b2 b3 b4
b̂1 b̂2 b̂3 b̂4

(66)

In (66) the upper left 3× 3 block of the A matrix is given by

A3 = V3 Ă3 V
−1
3 (67)

where V3 and Ă3 are taken from Burrage’s paper [2]. All three eigenvalues of A3 are
equal to μ.

Theorem 8 Consider the embedded pair of formulas given in (66) and (67). Let
this pair have the following properties: (a) the b-formula is of order 2 and is strictly
proper, (b) the b̂-formula is of order 3 and is strictly proper. These conditions imply
that R(z) = R̂(z).
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Proof Expressions (21)–(25) are valid for the b-formula. Analogous expressions
are valid for the b̂-formula when b is replaced with b̂. Combining (21)–(25) with (66)
we get

R̂(z) =
ĝ0 + ĝ1z + ĝ2z

2 + ĝ3z
3 + ĝ4z

4

det(I − zA)
=

ĝ0 + ĝ1z + ĝ2z
2 + ĝ3z

3 + ĝ4z
4

H(z)
(68)

From (66) it follows that degree(H) ≤ 3. For R̂(z) to be strictly proper we require
that ĝ3 = ĝ4 = 0. Expressions for ĝ0, ĝ1 and ĝ2 can be found from (27) and (25):

ĝ0 = h0 , ĝ1 = h1 + h0b̂e , ĝ2 = h2 + h1b̂e + h0b̂Ae . (69)

Using only the order 2 conditions, b̂e = 1 and b̂Ae = 1/2, we can rewrite (69):

ĝ0 = h0 , ĝ1 = h1 + h0 , ĝ2 = h2 + h1 + h0/2 . (70)

The expression for R(z) is completely analogous to (68) when ĝj is replaced by gj.
We want R(z) to be strictly proper, so we require g3 = g4 = 0. The expressions
derived for ĝ0, ĝ1 and ĝ2 in (70) used only order 2 conditions. It follows that precisely
the same expressions would be obtained for g0, g1 and g2. Hence R(z) = R̂(z).

Remarks
1. In proving Theorem 8 we never actually used the fact that the embedded pair in
question was a SIRK pair, i. e. that all three nonzero eigenvalues of A were equal to
μ. Hence the result is true for any IRK having 3 implicit stages and one explicit.

2. A two-parameter family of embedded SIRK formulas that meets the conditions
of Theorem 8 is given in Fig. 1. The free parameters remaining are ă42 and b4. To
prevent the b-formula from becoming an order 3 formula we must have ă42 �= 1/2
and b4 �= 0. The purpose of this SIRK pair is to serve as an example; there is nothing
special about it. In particular several free parameters were set in rather arbitrary
fashion: (a) c1, c2, c3 and c4 = ă41 were given values such that the interval [0, 1] was
nicely divided, and (b) either b4 = 0, or b̂4 = 0, but not both, and in Fig. 1 we chose
the latter.

Theorem 8 can be extended to any embedded IRK pair whose A matrix is given
by (2).

Theorem 9 Consider an embedded pair of IRK formulas whose A matrix is given
by (2). Let this pair have the following properties: (a) A3 is a 3× 3 matrix, (b) the
b-formula is of order 2 and is strictly proper, (c) the b̂-formula is of order 3 and is
strictly proper. These conditions imply that R(z) = R̂(z).

Proof Expressions (21)–(25) are valid for the b-formula. Analogous expressions
are valid for the b̂-formula when b is replaced with b̂. Using the fact that A1 and A6

in A of (2) were triangular with zero diagonals, and that A3 is a 3 × 3 nonsingular
matrix, we can write

det(I − zA) = det(I − zA1) det(I − zA3) det(I − zA6) = det(I − zA3) = H(z) .
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V3 =

⎡⎢⎢⎢⎣
1 c1 c1

2

1 c2 c2
2

1 c3 c3
2

⎤⎥⎥⎥⎦ A3 =

⎡⎢⎢⎢⎣
0 0 2μ3

1 0 −6μ2

0 1/2 3μ

⎤⎥⎥⎥⎦
⎡⎢⎣ a41
a42
a43

⎤⎥⎦ = (V −1
3 )T

⎡⎢⎣ ă41
ă42
ă43

⎤⎥⎦

b̂ = [2/3 − 1/3 2/3 0]T , c = [1/4 1/2 3/4]T

μ = 1 − cos(�/3)/
√
2 +

√
3 sin(�/3)/

√
2 , � = arctan(

√
2/4)

ă41 = 1 , ă43 = 2μ (μ2 − 3μ+ 3a42 )

b = [b3 + 2b4 , 1− 2b3 − 3b4 , b3 , b4]
T ,

b3 = 5 b4 + 16μ3 − 16 b4 a42− 48μ2 + 24μ− 2

Figure 1: An embedded SIRK pair satisfying the conditions of Theorem 8. The
Butcher table for this method is given in (66).

Since A3 is a 3× 3 nonsingular matrix, it follows that degree(H) = 3. For R(z) and
R̂(z) to be strictly proper, the numerator polynomials must obey gj = ĝj = 0, j > 2.
Using exactly the same arguments as in Theorem 8, we may prove that gj = ĝj, j =

0, 1, 2. It follows that R(z) = R̂(z).

Remarks
Consider the local error estimate provided by (8) and (9) for the linear problem (3).
If R(z) = R̂(z), then this error estimate is always 0, and hence it is useless. The
same conclusion can be drawn if λ in (3) is a matrix. Hence any embedded pairs
fulfilling the conditions of Theorem 9 cannot be used on linear problems.

5 Error coefficients

In this section we will make some comments on the truncation error coefficients of
implicit Runge-Kutta methods. Suppose we are numerically integrating a set of
ODE’s of the form

y′ = f(y, t) . (71)

For smooth f the local truncation error (lte) made when we advance the solution
from tn to tn + h using the estimator formula can be given by

lte =
∞∑

i=p+1

hi

⎛⎝ σi∑
j=1

Tij Dij

⎞⎠ , (72)

where p is the order of the method. Similarly, assuming p̂ = p + 1, the local
truncation error for the auxiliary formula is given by

l̂te =
∞∑

i=p+2

hi

⎛⎝ σi∑
j=1

T̂ij Dij

⎞⎠ . (73)
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In (72) and (73) the Dij are elementary differentials or sums and products of partial
differentials of f . For more details one should consult Hosea’s paper [6]. Our interest
however is with the truncation error coefficients, Tij and T̂ij , and the desirable
properties they should have.

The usual assumption is that the hp+1 term in (72) dominates the other terms.
Given that this assumption is true, we would like the coefficients of hp+1 in (72),
[Tp+1,1 , Tp+1,2 , . . . , Tp+1,σp+1 ], to be “small”. The smaller these coefficients, the
more accurate the results from the estimator formula will be for a given h. Now we
address the assumption that the hp+1 term in (72) dominates.

Let yn+1 and ŷn+1 be the results provided by the estimator and auxiliary formulas
respectively at tn+1 = tn + h. The error estimate can then be written as follows

δn+1 ≡ ŷn+1 − yn+1 = −hp+1
σp+1∑
j=1

Tij Dij +
∞∑

i=p+2

hi

⎛⎝ σi∑
j=1

( T̂ij − Tij )Dij

⎞⎠ . (74)

The error estimate is typically used to control h. One standard controller used to
adjust h is given by

hn+1 =

(
ϕ

rn+1

)1/(p+1)

hn , (75)

where rn is some scalar estimate of (relative) error obtained from δn and ϕ is a
desired value for rn provided by the user. This controller assumes the local error
estimate behaves like a formula of order p+1. For this assumption to be reasonable,
and hence for the controller to perform reasonably, we have two objectives: (i) the
i = p + 1 term in the summation of (72) dominates the terms i > p + 1, and
(ii) the first summation on the right hand side of (74) should dominate the second
summation. The Dij terms arise from f , which we cannot affect when designing an
embedded pair. However we can affect the Tij and T̂ij terms. Lacking any better
knowledge, we will assume that all Dij are the same size. With this assumption,
the two objectives above can be expressed in terms of these truncation coefficients
as follows:

‖ Tp+1,• ‖ > hj‖ Tj+p,• ‖, j = 2, 3, . . . (76)

‖ Tp+1,• ‖ > hj‖ T̂j+p,• − Tj+p,• ‖, j = 2, 3, . . . (77)

(The notation Ti• means row i of matrix T .) When designing an embedded pair we
cannot know what values of h are to be used. What we can hope for is that the
following ratios,

κ1(j) ≡ ‖ Tj+p,• ‖ / ‖ Tp+1,• ‖ , j = 2, 3, . . . (78)

κ2(j) ≡ ‖ T̂j+p,• − Tj+p,• ‖ / ‖ Tp+1,• ‖ , j = 2, 3, . . . (79)

are “small”. Shampine [11, p. 375] states that in recent work efforts have been
made to make (78) small for several j values. Although this is no doubt desirable,
in what follows we will restrict ourselves to considering (78) and (79) for j = 2.
Other workers have also been content with looking at these ratios for only j = 2 [7].

Let us consider the consequences when (77) does not hold. We will consider the
simple test equation given by (3). For this simple test equation the error estimate
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is given by (8) and (9), which when expanded in a Taylor series can be written as

δn+1 = ( R̂(hλ)− R(hλ) ) (yn − q)

=

⎡⎣−Cp+1(hλ)
p+1 +

∞∑
j=p+2

(Ĉj − Cj)(hλ)
j

⎤⎦ (yn − q) . (80)

For this simple test equation the truncation error coefficients corresponding to R
and R̂ are Cj and Ĉj respectively. For simplicity we will assume that the first term
in the summation of (80) is of comparable size to |Cp+1(hλ)

p+1| and all other terms
in the summation are much smaller. Using these assumptions we obtain

δn+1 ≈
[
−Cp+1(hλ)

p+1 + (Ĉp+2 − Cp+2)(hλ)
p+2

]
(yn − q) . (81)

We will use rn+1 = |δn+1|/(|yn| + η) as our error in the controller (75), where η is
some positive scaling factor. Using (81) we may write rn+1 as follows:

rn+1 =
∣∣∣(hnλ)

p+1 (−Cp+1 + hnλDp+2)
∣∣∣ ζn , (82)

where ζn ≡ |yn − q|/(|yn|+ η) and Dp+2 ≡ (Ĉp+2 −Cp+2) and the subscript n on hn

indicates that it is the step size used at tn. Let us suppose that the step at tn has
been accepted, i. e. rn+1 < ϕ. The next step size given by the controller (75) is

hc
n+1 =

(
ϕ

rn+1

)p+1

hn .

We add a superscript c to emphasize that this is the step size given by the controller.
If we use this hc

n+1, what rn+2 can we expect? We can find out by substituting hc
n+1

into (82):

rcn+2 =
∣∣∣(hc

n+1λ)
p+1 (−Cp+1 + hc

n+1λDp+2)
∣∣∣ ζn

=
ϕ
∣∣∣ hnλDp+2(ϕ/rn+1)

1/(p+1) − Cp+1

∣∣∣
| hnλDp+2 − Cp+1 |

ζn+1

ζn
(83)

Let us suppose the following hold: ζn+1 ≥ ζn, Re(λ) < 0, and Cp+1Dp+2 < 0. Since
we have already assumed that the previous step has been accepted, rn+1 < ϕ, then
from (83) it follows that rcn+2 > ϕ. In other words the controller will produce a step
size hc

n+1 whose corresponding rcn+2 is bigger than the desired ϕ. Typically, step
sizes are accepted if r < (1 + τ)ϕ, for some τ > 0. If we have not chosen τ to be
large enough, then the step size will be rejected, which implies wasted computations.
The underlying reason for this is that (77) did not hold: i. e. the assumption of the
controller that our error estimate was of order p+ 1 did not hold.

We summarize here what we consider to be desirable properties for the truncation
error coefficients:

1. We would like small Tp+1,j coefficients, ∀j.

2. We would like κ1(2) of (78) to be small.

3. We would like κ2(2) of (78) to be small.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(
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(
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√
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)
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(
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)
/4 μ

(
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)
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−μ2
(
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(
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√
2
) )
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(
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√
2
) )
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√
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)
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√
2
)
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(
1−

√
2
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√
2
)
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]
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√
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√
2
)
+ 1

12μ
(
μ
(
3
√
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−
√
2
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6μ2
(
−2 +

√
2
)
+ 3μ

(
3−

√
2
)
− 1

12μ
(
μ
(
3
√
2 + 2

)
−

√
2
) ,

6μ2 − 6μ+ 1

21μ2 − 18μ+ 3

]

Figure 2: The one-parameter embedded SIRK pair of Burrage [2].

6 Analysis of embedded pairs

In this section we analyze embedded pairs of IRK formulas. Some of these embedded
pairs come from the literature and some are our own designs. Most of the pairs have
formulas of orders 2 and 3, although there are a few exceptions.

We have restricted ourselves to considering pairs of SIRK or SDIRK formulas
where s = 3. We will try to explain why. Based on the arguments presented
in section 3, we consider the L-stability of R(z) and the properness of R̂(z) to
be desirable. But R(z) cannot be L-stable if it is not strictly proper (15). From
Table 1 we can see that we cannot have these desirable properties if si ≤ s < 3. By
restricting ourselves to s = 3, from Table 1 it follows that we cannot obtain a pair
where both R(z) and R̂(z) are strictly proper, and so they cannot both be L-stable.
As was shown in Figure 1, SIRK pairs exists for si = 3 and se = 1 for which both
R(z) and R̂(z) are L-stable. However the fact that R(z) = R̂(z) for such pairs was
disconcerting and raised questions. Is there use for an embedded pair which will
only work on problems that are genuinely nonlinear? How can one be sure that
even a genuinely nonlinear problem does not act very much like a linear problem for
some time range? Because of these uncertainties, we did not investigate such SIRK
pairs.

Table 2 contains the literature embedded pairs that we investigated. The list
of pairs in Table 2 is only a representative sample of existing pairs; we did not do
an exhaustive survey. Table 3 contains pairs that we designed. We shall discuss
these in more detail below. Tables 4 and 5 contain analysis of the pairs presented
in Tables 2 and 3 respectively. We shall comment on the analysis results at the end
of this section.

An explanation is needed for interpreting the stability properties shown in Ta-
bles 4 and 5. The stability property shown is the strongest that applies to the
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formula. The following implications show the ranking:

strongly S−stable ⇒ L−stable ⇒ A−stable , strictly proper R(z)

S−stable ⇒ A−stable ⇒ proper R(z)

We shall now discuss the pairs that we designed shown in Table 3. We restricted
ourselves to SDIRK designs, hence all comments regarding pairs 8–13 apply only
to SDIRK pairs. We do not take all the credit (or blame!) for the pairs 8–13.
Only pair 10 is completely our own design. For all other pairs we took a single
existing SDIRK formula and added another SDIRK formula to the existing one.
These existing formulas all had some desirable properties as will become evident.
We next give a brief description of how these pairs were designed. In designing these
pairs, if we had free parameters left over, we did not use any optimization routine to
find the final values; we selected the values ourselves. The “truncation coefficients
demands” referred to are those presented at the end of section 5..

Pairs 8 and 9 The starting point for these two pairs was the unique 2-stage order
3 A-stable SDIRK formula [1]. This order 3 SDIRK formula corresponds to b̂ and the
upper right 2×2 block of A in Table 3. For pair 8, we required the estimator formula
to be L-stable and stiffly accurate. These requirements left no free parameters. For
pair 9 we no longer required the stiff accuracy property, which meant that after
satisfying L-stability and order requirements we had two free parameters left. We
used these parameters to try to satisfy the truncation coefficient demands. Pairs 8
and 9 are peculiar when compared to “traditional” embedded pairs in the following
sense. In traditional embedded pairs, e. g. pairs 1, 3 and 7 Table 2, the order 2
formula uses the first 2 stages and the order 3 formula uses all 3 stages, i. e. b3 = 0.
In pairs 8 and 9, the order 3 formula uses the first 2 stages and the order 2 formula
uses all 3 stages, i. e. b̂3 = 0. The reason for this is as follows: given an L-stable
estimator formula with b3 = 0, it is impossible to find an A-stable 3 stage auxilairy
formula. However in pairs 8 and 9 the auxiliary formula is A-stable.

Pair 10 Pair 10 is our completely our own design. After satisfying L-stability and
stiff accuracy requirements we had one parameter left. We used this parameter to
try to satisfy the demands on the truncation coefficients. Finally, we checked that
γ̂ = lim|z|→∞ |R̂(z)| was significantly less than 1.

Pairs 11 and 12 These pairs are based on the unique 3-stage A-stable SDIRK
formula of order 4. The rationale behind using an order 4 formula for an auxiliary
formula is as follows. Typically we use an order 3 formula and estimate the error
of the order 2 formula by essentially assuming that the order 3 formula provides an
exact value (see section 5). This assumption should be much better if the auxiliary
formula is order 4. In pair 11 we required the estimator formula to be L-stable.
After satisfying this requirement there were no free parameters. In pair 12 we did
not require the estimator formula to be L-stable. With the one free parameter left
we tried to make the truncation coefficients better than those obtained in pair 11.
We had to reach some compromise between improving the truncation coefficients
demands and not making γ̂ too close to γ (see section 3).
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Pair 13 Pair 13 is based on the unique 3 stage order 3 SDIRK that is strongly
S-stable. (So is pair 7.) We use this as the auxiliary formula. From Theorem 4
we know that it is impossible to obtain an L-stable estimator formula to go along
with this auxiliary formula. After satisfying the order conditions on the estimator
formula, we have one parameter left. We use this one parameter to strike some sort
of compromise between the truncation coefficient demands and the size of γ̂.

We now present some comments on Tables 2–5.

1. Most of the pairs from the literature, Table 2, have b3 = 0, i. e. the estimator
formula does not use the third stage. In designing our pairs, Table 3, we have
not restricted ourself to pairs with b3 = 0. Our reasoning was that since three
stages are needed to get an error estimate, then one may as well use all three
stages in both estimator and auxiliary formulas. If we had not allowed b3 to be
nonzero, it would have not been possible to obtain L-stable estimator formulas
in pairs 8 and 11.

2. We will give an example of the compromises that had to be made when de-
signing the pairs in Table 3. Our example concerns pairs 11 and 12. By
removing the L-stability requirement of pair 11, we gained one free parameter,
in our case b3. With b3 we tried to improve the truncation error coefficients,
in particular we tried to make ‖T3•‖ smaller than in pair 11. The problem
was that improving ‖T3•‖, also brought γ closer to γ̂, which as discussed in
section 3 is not desirable. The reason for this soon became obvious: ‖T3•‖ got
smaller when b was made closer to b̂. We chose b3 = 0 to strike a compromise
between having a small ‖T3•‖ and having γ “far” from γ̂. If we could allow
γ to be closer to γ̂ than in pair 12, we could get a much better ‖T3•‖ value.
For example, when b = [1/10 , 4/5 , 1/10]T , then T3• = [9.3e−3 , 4.4e−2] but
γ = −5.9e−1 and γ̂ = −6.3e−1.

3. All the SIRK pairs, 4–6 in Table 2, have T32 = 0. According to Shampine [11,
p. 374] this is not a desirable property: if T31 = 0 or T32 = 0 ‘. . . there would
be a class of problems for which the formula is of order three rather than order
two. This causes obvious difficulties with error estimation . . . ’

4. Pairs 6, 11 and 12 have an order 4 auxiliary formula. Hence for these pairs
T̂4• is the zero vector.

5. Pair 11 has an L-stable estimator formula and an order 4 auxiliary formula.
Burrage [2] was not able to obtain such a pair with his SIRK formulation (see
pair 6).

6. When using an RK formula to advance the states from tn to tn+h, the function
f(y, t) is evaluated at tn + cih, i = 1, 2, . . . s, where ci is the sum of row i of
A. In general it is desirable that 0 ≤ ci ≤ 1, ∀i. Except for pairs 5, 6, 11 and
12, all pairs have 0 ≤ ci ≤ 1, ∀i.
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7. Hosea and Shampine [8] do realize that R̂(z) of pair 2 is not proper. To
compensate for this they propose using one additional “Rosenbrock” stage on
the error estimate. One should consult their paper for more details.

8. We have been assuming that the lower order estimator formula was the one
used to advance the state, y, since typically the estimator formula had better
stability properties. This reasoning does not hold for pairs 3, 7 and 13. Cash
[4] advances using the auxiliary formula when using pair 7 and is of the opin-
ion that it is beneficial. There are different opinion on this matter though.
One should consult Shampine [11, p. 342] and Thomas and Gladwell [12] for
discussion on this.

9. Based on the previous, we will ignore pairs 3, 7 and 12 in this comment. We
believe that pair 10 compares quite favorably with all other pairs. Its stability
properties are good and its ‖T3•‖, κ1(2), κ2(2) and γ̂ values are certainly
“small” compared to the averages of these measures for all other pairs. In
addition to the extra freedom provided by not assuming b3 = 0 (see comment 1
above), we believe the main reason for the goodness of pair 10 is that the two
formulas were designed together, rather than as separate formulas. All other
pairs in Table 3 were based on existing SDIRK formulas, that by themselves
had desirable properties. But trying to “staple” on another SDIRK formula to
create an embedded pair seems to result in something which is comparatively
poor. For example in pairs 11 and 12 we cannot attain simulataneously a small
‖T3•‖ value and an estimator formula which is L-stable. In a sense, some of the
literature pairs suffer from this same defect. For example pair 2 results from
the following conditions: (a) a11 = 0, (b) the estimator formula is strongly S-
stable, (c) 0 ≤ ck ≤ 1, k = 1, 2, 3, (d) p = 2, and (e) p̂ = 3. Note that the only
condition related explicitly to the auxiliary formula is (e). Similarly setting
b3 = 0 and requiring strong S-stability of the estimator formula in pair 4 fixes
both the estimator and auxiliary formulas. The discussion in sections 3 and 5
were meant to show that merely satisfying order conditions on the auxiliary
formula does not necessarily result in a good pair.
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