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ABSTRACT This article investigates circular formation control problems for a group of anonymous mobile
robots in the plane, where all robots can converge asymptotically to a predefined circular orbit around a
fixed target point without collision, and maintain any desired relative distances from their neighbors. Given
the limited resources for communication and computation of robots, a distributed event-triggered method is
firstly designed to reduce dependence on resources in multi-robot systems, where the controller’s action is
determined by whether the norm of the event-trigger function exceeds zero through continuous sampling.
And then, to further minimize communications costs, a self-triggered strategy is proposed, which only uses
discrete states sampled and sent by neighboring robots at their event instants. Furthermore, for the two
proposed control laws, a Lyapunov functional is constructed, which allows sufficient stability conditions to
be obtained on the circular formation formulti-robot systems. And at the same time, the controllers are proved
to exclude Zeno behavior. At last, numerical simulation of controlling uniform and non-uniform circular
formations by two control methods are conducted. Simulation results show that the designed controller can
control all mobile robots to form either a uniform circular formation or a non-uniform circular formation
while maintaining any desired relative distances between robots and guaranteeing that there is no collision
during the whole evolution. One of the essential features of the proposed control methods is that they reduce
the update rates of controllers and the communication frequency between robots. And also, the spatial order
of robots is also preserved throughout the evaluation of the system without collision.

INDEX TERMS Multi-robot system, circular formation, event-triggered, self-triggered, directed network.

I. INTRODUCTION
In recent years, the control of multi-robot systems (MRSs)
has gained increasing attention due to their wide appli-
cations, such as source localization [1], [2], pursuit and
evasion [3] and surveillance [4]–[6], as well as theoretical
challenges arising from the limitation in implementations.
Formation control for MRSs aiming to drive multiple mobile
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robots to form and maintain a predetermined geometry has
been actively studied [7]–[12]. In these studies, robots can
move towards the desired location while maintaining spe-
cific geometries through collaboration [13], [14]. By form-
ing desired patterns, the robots can complete tasks with
improved quality of the collected data and better robustness
against adverse environmental interferences [15]. However,
practical implementations of robots often have limited
computational and communication capabilities, while tasks
become increasingly complex. Therefore, it is highly

167288 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7393-2579
https://orcid.org/0000-0001-7373-4695
https://orcid.org/0000-0003-1066-1809
https://orcid.org/0000-0001-8454-5857
https://orcid.org/0000-0003-0745-5641
https://orcid.org/0000-0001-6504-0087
https://orcid.org/0000-0002-3772-8340
https://orcid.org/0000-0002-3819-3878
https://orcid.org/0000-0002-8095-399X


P. Xu et al.: Distributed Event-Triggered Circular Formation Control for Multiple Anonymous Mobile Robots

desirable to design algorithms that can effectively utilize the
communication medium’s throughput capacity and robots’
computing resources.

Event-triggered control mechanisms can replace com-
monly used periodic sampling, and consequently reduce
the costs of computation, communication, and actuator
effort, while maintaining the required performance [16]–[18],
[21]–[26]. For first-order MRSs, event-triggered control
methods have been actively studied for distributed forma-
tion control. For example, both centralized and distributed
event-triggered control methods were designed to achieve
consensus [17]. By utilizing sampled data instead of continu-
ous data, a periodic event-based control framework was pro-
posed for designing consensus protocols [18]. [19] addressed
the circular formation problems with limited communication
bandwidth using an encoder-decoder strategy. [20] further
considered the scenario when the agents are under communi-
cation and computation constraints. Note that in [19], [20],
all the robots were restricted to move in the 1-D space of a
circle. For second-order MRSs, a distributed event-triggered
control algorithm was proposed to reach consensus [21].
To further reduce computation resources and communica-
tion costs, an event-triggered control protocol based on
the random sampling data and an improved time-dependent
threshold was developed for the consensus of second-order
multi-agent systems [22].

Forming circular formations is one of the most actively
studied topics within the realm of formation control. On the
one hand, circle formations are one of the simplest classes
of formations with geometric shapes, and on the other hand,
they are natural choices of the geometric shapes for a group
of robots to exploit an area of interest. The circular for-
mation problems can be classified into two essential tasks,
target circling and spacing adjustment [27], [28]. The target
circling aims to drive all robots to converge onto a circle
around the target, while spacing adjustment aims to adjust
all agents to reach the desired angular distance between pairs
of neighboring robots. For example, [29] dealt with the
situation that the mobile robots are subject to locomotion
constraints. A limit-cycle-based decoupled-design approach
was proposed to the circular formation problem [30], where
each agent is modeled as a kinematic point and can merely
obtain the relative positions of the target and its limited neigh-
bors. For promoting the more general formation framework
to establish, [31] studied a general formation problem for a
group of mobile robots in a plane, in which the robots are
required to maintain a distribution pattern, as well as to rotate
around or remain static relative to a static/moving target.
Moreover, event-triggered control has been widely applied
to control the movement of robots in one-dimensional (1-D)
space [19]–[22], [32]. However, few studies have been con-
ducted for circular formation via event-triggered control
in 2-D space, i.e., in the plane.

In our work, each robot, similar to Pioneer 3-DX [35],
perceives the relative position of the target and the dis-
tance between the robot and its nearest counterclockwise

neighbor through communication, while the neighbor robot
will sense information in a clockwise direction. The main
contributions of this article are listed as follows. Firstly, a dis-
tributed event-triggered control method is designed to solve
the circular formation control problems for MRSs. Secondly,
a self-triggered strategy is proposed to further reduce the
number of control actions and the amount of communication
between neighbors without a significant performance reduc-
tion. In fact, the self-triggered control strategy is a class of
special event-triggered control. The self-triggered strategy
only uses the discrete states sampled and sent by neighbors
at their event instants, such that continuous communication
is avoided. Thirdly, Lyapunov functions are constructed, that
allows to derive a sufficient stability condition on circular
formation for MRSs. Our theoretical analysis and numerical
simulations show that the proposed control methods can drive
all mobile robots to converge to desired expected equilibrium
points. Additionally, our results show that Zeno behavior,
which is a phenomenon in hybrid systems that is of special
interest, and it exists when an infinite number of discrete
transitions occur in a finite time interval, can be avoided. The
differences between this article and previous works lie in:
(i) Different from previous works [19], [20], [29]–[31],

the main goal of this article is to design distributed
event-triggered control laws that can guide a group of
anonymous mobile robots with restricted computation
and communication ability to form any given circular
formation.

(ii) Different from [33] paying attention to incorporating an
initial trajectory generator with the gradient-based inner
optimizer, the main objective of this article is to provide
the conditions of order preservation guarantees collision
avoidance in our problem setting.

(iii) Different from [34] addressing the highly constrained,
nonlinear, and high-dimensional autonomous vehi-
cle overtaking maneuver planning problem with an
enhanced multiobjective particle swarm optimization,
a more concise form of obstacle avoidance condition is
provided to solve the circular formation problems for
first-order dynamics MASs.

The remainder of this article is organized as follows.
In Section II, the preliminary definitions and the problem for-
mulation are presented. A distributed event-triggered circle
formation control law for a first-order system is designed,
and the rigorous analysis of its performance is provided in
Section III. Section IV addresses a self-triggered circle for-
mation problem without continuous monitoring of the state
of neighbors. Simulation results are given in Section V to
validate the theoretical analysis. Section VI concludes the
paper and indicates possible extensions.

II. PRELIMINARIES AND PROBLEM STATEMENT
This section first lays down the notions and basic concepts
from algebraic graph theory, then formulate the circular for-
mation problem for multiple autonomousmobile robots in the
plane.
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A. PRELIMINARIES
The following two lemmas are used in our theoretical anal-
ysis. Lemma 1 is introduced to verify stability of the entire
system. Due to each agent is described by a kinematic point,
the interaction network between agents is described by a
directed graph using algebraic graph theory. Lemma 2, which
describes the properties of the directed graph, is required
to perform further theoretical analysis. The notations used
throughout this article are listed in Table 1.

TABLE 1. Notations.

Lemma 1 [36]: For any x, y ∈ R and a > 0, the following
two properties are applied

1) xy ≤
a
2
x2 +

1
2a
y2,

2) (x2 + y2) ≤ (x + y)2, if xy ≥ 0. (1)

Lemma 2 [37]: Given a directed graph G, composed of
spanning trees, the vector ξ = [ξ1, ξ2, . . . , ξN ]T > 0
satisfies

∑N
i=1 ξi = 1 and ξTL = 0N , in which ξ

denotes the left eigenvector corresponding to zero eigen-
value of the Laplacian matrix L. Furthermore, LT2+2LT
is semi-positive definite where 2 = diag{ξ1, ξ2, . . . , ξN }.
After taking square root of each element of 2, we obtain
ϒ = diag{γ1, γ2, . . . , γN }, where γi =

√
ξi, i = 1, . . . ,N.

B. PROBLEM FORMULATION
Suppose in an obstacle-free plane, there exists N mobile
robots p = (p1, p2, . . . , pN ) and the predefined target p0 that
to be circle around, as shown in Fig. 1. Here, each robot is
anonymous and cannot recognize one from another and can
move freely in the plane. The initial position of each robot
is randomly generated and is not required to be distinguished
from each other, whereas no robots occupy the same position
with the target. For simplicity, the robots are labeled based
on their initial positions according to the following three
rules [30].

FIGURE 1. N robots are initially located in the plane.

1) The labels are sorted in ascending order counterclock-
wise around the target.

2) For a robot located on the same ray extending from the
target, its label is sorted in ascending order from the
distance to the target point.

3) For robots occupying the same position, their labels will
be randomly selected.

Then, the robots’ neighbor relationships are modeled by a
directed graph G = (V, E,A), where V = {p1, p2, . . . , pN }
denotes a group of mobile robots, E = V × V is a set
of communication edges that connects pairs of robots, and
A = [aij] ∈ RN×N denotes a weighted adjacency matrix.
In this relationship, each robot has only two adjacent neigh-

bors, i.e., in front of or behind itself, marked asNi = {i−, i+},
where

i+ =

{
i+ 1, i = 1, 2, . . . ,N − 1,
1, i = N ,

(2)

and

i− =

{
N , i = 1,
i− 1, i = 2, 3, . . . ,N .

(3)

Let pi(t) = [xi(t), yi(t)]T ∈ R2 be the position of robot pi
at the time t , and p0 = [x0, y0]T ∈ R2 be the predefined target
point. Therefore, robot pi is modeled by a kinematic point

ṗi(t) = ui(t), i = 1, 2, . . . ,N , (4)

where ui ∈ R2 is the control input of robot pi to be designed.
Suppose that each robot can only use the relative positions

between the target and its two neighbors under the neighbor
relationship G, and it is worth noting that robots do not know
the label information. The following notations are introduced
to formulate the problem, as shown in Fig. 2.

Let

p̂i(t) = pi(t)− p0, i = 1, 2, . . . ,N . (5)

be the position of robot pi relative to the target point p0.
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FIGURE 2. Relative positions and angles of robot pi and its neighbors.

The position of robot pi relative to its neighbor pi+ is
expressed as

p̃i(t) = pi+ (t)− pi(t), i = 1, 2, . . . ,N . (6)

The angle between robot pi and robot pi+ is described as

αi(t) = 6 pip0pi+ , i = 1, 2, . . . ,N .. (7)

Let α∗i represent the desired angle from robot pi to its
neighbor robot pi+ , the desired angle of N robots is deter-
mined by the vector

α∗i = [α∗1 , α
∗

2 , . . . , α
∗
N ]

T . (8)

Similarly, refers to (6), (7) and (8), the definations of robot
pi and robot pi− are written as

p̃i− (t) = pi− (t)− pi(t),

αi− (t) = 6 pip0pi− ,

α∗i− = [α∗1− , α
∗

2− , . . . , α
∗

N− ]
T . (9)

It is worth noting that there exists the desired radius r > 0,
α∗i > 0 and

∑N
i=1 α

∗
i = 2π such that the desired circular

formation is admissible, where r is the radius of the desired
circular formation.

Furthermore, to provide the N anonymous robots’ ini-
tial states with their labels combined with the mathematical
descriptions, the following definitions of the robots’ spatial
ordering are proposed.
Definition 1 (Counterclockwise Order): The N robots are

indicated to be arranged in a counterclockwise order if αi ∈
(0, 2π ) for all i = 1, 2, . . . ,N and

∑N
i=1 = αi = 2π .

Definition 2 (Almost Counterclockwise Order): The N
robots are indicated to be arranged in an almost counter-
clockwise order if 1) αi ∈ [0, 2π ) for all i = 1, 2, . . . ,N and∑N

i=1 = αi = 2π ; and 2) when αi = 0, ‖p̂i+‖ > ‖p̂i‖.
The definition of the circular formation problem is

described as follows.
Definition 3 (Circular Formation Problem): Given an

admissible circular formation in the plane charac-
terized by α∗ and r, a distributed control protocol
ui(t, α∗, r, p̂i(t), p̃i(t), p̃i− (t)), i = 1, 2, . . . ,N is designed

such that the solution to the MRS (4) converges to some
equilibrium points under any initial conditions, namely,

‖p̂i‖ = r, i = 1, 2, . . . ,N , (Target radius) (10)

and

αi = α
∗
i , i = 1, 2, . . . ,N , (Spacing adjustment) (11)

are satisfied.
Moreover, the desired properties of circular formation con-

trol for MRSs are presented as follows.
Definition 4 (Order Preservation): For an MRS with N

robots, under the control law ui(t), the robots’ spatial order-
ing is maintained if N robots are initially located in an
almost counterclockwise order in the plane. The solution to
the MRS (4) can guarantee N robots maintain in a counter-
clockwise order, for all t > 0.
Definition 5 (Collision Avoidance): For an MRS with N

robots, under the control law ui(t), the robots have the prop-
erty of collision avoidance if N robots are initially arranged
in an almost counterclockwise order in the plane. The solution
to the MRS (4) satisfies ‖pi‖ − ‖pj‖ > 0 for any pair of i, j
(i 6= j), for all t > 0.

III. EVENT-TRIGGERED CONTROL STRATEGY
Given a sampled-date protocol designed in [30], given as

ui(t)=ϕ
[
kr li(t) − 1
1 kr li(t)

]
p̂i(t)gi(t), i = 1, 2, . . . ,N , (12)

where ϕ > 0, kr > 0 are constant. li(t) = r2 − ‖p̂i(t)‖ and

gi(t) = 1+
1
2π

[
α∗i−

α∗i + α
∗

i−
αi(t)−

α∗i

α∗i + α
∗

i−
αi− (t)

]
. (13)

From (13), the variable αi can be treated as an additional
state of the MRS. It is known that each robot has to transmit
a request continuously to its neighbors for acquiring their
additional states, and then calculate gi(t) and li(t). However,
in reality, the communication and computing capabilities of
robots usually have limitations, which makes the control
law (12) unable to be implemented in practice.

In order to address this issue, an event-triggered strategy is
proposed based on the addition states, in which computations
of gi(t) and li(t) are only conducted at discrete event instants.
Therefore, undesirable transmission and computation can
be avoided. Let an increasing sequence (t i0, t

i
1, . . . , t

i
k , . . .)

denote the event instants of robot pi, such that αi(t ik ) is the
state of of robot pi at the k-th event instants. Note that due
to all robots trigger asynchronously and have their own event
sequences. Then, the control law based on the event-triggered
scheme is designed as

ui(t) = ϕ
[
kr li(tki ) − 1

1 kr li(tki )

]
p̂i(t)gi(tki ), t ∈ (tki , t

k+1
i ].

(14)
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Substituting (12) into (4), the closed-loop dynamics of
robot pi is presented as

ṗi(t) = ϕ
[
kr li(tki ) − 1

1 kr li(tki )

]
p̂i(t)gi(tki ), i = 1, 2, . . . ,N .

(15)

By p̂i(t), (15) can be rearanged as

˙̂pi(t) = ϕ
[
kr li(tki ) − 1

1 kr li(tki )

]
p̂i(t)gi(tki ), i = 1, 2, . . . ,N .

(16)

Moreover, from (7), we have

˙̂αi(t) = ˙̃αi+ (t
k
i )− ˙̃αi(t

k
i ), i = 1, 2, . . . ,N , (17)

where α̃i(tki ) denotes the angle of the vector p̂i(t
k
i ).

Then,

˙̃αi(tki ) = ϕgi(t
k
i ),

‖˙̂pi(tki )‖ = krϕ‖p̂i(tki )‖(r
2
− ‖p̂i(tki )‖

2)gi(tki ). (18)

Substituting (18) into (17), the dynamical equation of the
additional states combined with the event-triggered strategy
is obtained as

α̇i(t) = ϕ(gi+ (t
i
k )− gi(t

i
k )), t ∈ [t ik , t

i
k+1), (19)

Assuming that α̂i(t) = αi(t ik ), δi(t) = αi(t)/α∗i , δ̂i(t) =
α̂i(t)/α∗i , (19) can be rearranged as

α∗i δ̇i(t) =
ϕ

2π

([
α∗i

α∗i+ + α
∗
i
α̂i+ (t)−

α∗i+

α∗i+ + α
∗
i
α̂i(t)

]

−

[
α∗i−

α∗i + α
∗

i−
α̂i(t)−

α∗i

α∗i + α
∗

i−
α̂i− (t)

])
. (20)

Using δi, (20) can be summarized into a simple form as

δ̇i(t) =
ϕ

2π

∑
j∈Ni

α∗j

α∗i + α
∗
j

(
δ̂j(t)− δ̂i(t)

)
, t ≥ 0. (21)

A deviation variable is defined as ei(t) = δ̂i(t)−δi(t). Then
a compact form of the system dynamics can be derived as

δ̇(t) = −
ϕ

2π
LTd (δ(t)+ e(t)), t ∈ [t ik , t

i
k+1), (22)

where δ(t) = [δ1(t), δ2(t), . . . , δN (t)] ∈ RN , and e(t) =
[e1(t), e2(t), . . . , eN (t)] ∈ RN .

For the dynamical equation (19), the event-triggered circu-
lar formation control for MRSs can be solved by Theorem 2.
Theorem 1: Given any admissible circular formations

characterized by α∗ and r, considering the MRS (4) and the
designed control law (14) over a strongly connected weight
unbalanced digraph G, the circular formation problem is
solvable when the event-trigger condition designs as

fi(t) = ‖ei(t)‖ −
σ‖γiδ̄i(t)‖

‖ϒLTd ‖ρe
‖li(t)‖

, 0 < σ < 1, (23)

where ρ > 1, δ̄i(t) is the i-th elements of δ̄(t) = [δ̄1(t), δ̄2(t),
. . . , δ̄N (t)]T , LTd δ(t), ϒ is the same diagonal matrix as
described in Lemma 2, γi is the i-th diagonal element of
matrix ϒ .
Furthermore, in the MRS (4), there exists at least one robot

m ∈ V for which the next inter-event interval is strictly
positive under event-triggered condition (23).

Proof: A Lyapunov function candidate is considered as

V (t) =
1
4
δT (t)(Ld2+2LTd )δ(t), (24)

where 2 is the same diagonal matrix as in Lemma 2, such
that Ld2+2LTd is semi-positive definite.

As a result, V (t) ≤ 0 and V (t) = 0 if the circular formation
problem is solvable. Then, the derivative of the Lyapunov
function (24) along with the trajectories of the MRS yields to

V̇ (t) = δT (t)Ld2(−
ϕ

2π
LTd (δ(t)+ e(t)))

= −
ϕ

2π
δT (t)Ld2LTd δ(t)−

ϕ

2π
δT (t)Ld2LTd e(t)

≤ −
ϕ

2π
‖ϒLTd δ(t)‖

2

+
ϕ

2π
‖ϒLTd δ(t)‖‖ϒL

T
d e(t)‖ρe

‖li(t)‖, (25)

Enforcing the event condition (23), we obtain that
‖ei(t)‖ ≤

σ‖γi δ̄i(t)‖
‖ϒLTd ‖ρe

‖li(t)‖
. Subsequently, ρe‖li(t)‖‖ϒLTd e(t)‖ ≤

ρe‖li(t)‖‖ϒLTd ‖‖e(t)‖ ≤ σ‖ϒLTd δ(t)‖. Then, (25) is rear-
ranged into

V̇ (t) ≤
ϕ

2π
‖ϒLTd δ(t)‖

2(σ − 1)

≤
ϕ

2π
‖ϒδ̄(t)‖2(σ − 1). (26)

Ld=



α∗2

α∗2 + α
∗

1
+

α∗N

α∗N + α
∗

1
−

α∗1

α∗2 + α
∗

1
0 . . . 0 −

α∗1

α∗N + α
∗

1

−
α∗2

α∗2 + α
∗

1

α∗3

α∗3 + α
∗

2
+

α∗1

α∗2 + α
∗

1
−

α∗2

α∗3 + α
∗

2
. . . 0 0

...
...

...
...

...
...

0 0 0 . . .
α∗N

α∗N + α
∗

N−1
+

α∗N−2

α∗N−1 + α
∗

N−2
−

α∗N−1

α∗N + α
∗

N−1

−
α∗N

α∗N + α
∗

1
0 0 . . . −

α∗N

α∗N + α
∗

N−1

α∗1

α∗N + α
∗

1
+

α∗N−1

α∗N + α
∗

N−1
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As 0 < σ < 1, we obtain that V̇ (t) ≤ 0 and V̇ (t) = 0 if
the circular formation problem is solvable.

In the following, the realization of the desired addition state
is explained in detail.

Since the graph G = (V, E,A) is strongly connected,
we have

lim
t→∞

δ(t) = clN (27)

where c > 0 is a constant.
By the definition of δ(t), we have

lim
t→∞

α(t) = cα∗ (28)

Note that αi(t) satisfies
∑N

i=1 αi = 2π for all t ≥ 0,
and α∗i (t) satisfies

∑N
i=1 α

∗
i = 2π , we derive c = 1. More

precisely,

lim
t→∞

α(t) = α∗.

This result indicates that the desired addition states can be
achieved by all robots.

Further, an estimate of the positive lower bound on the
inter-event times is proved. It is easy to obtain that for
robot pi, the event interval between t ik+1 and t

i
k is the period

‖ei(t)‖
γi δ̄i(t)

, which increases from 0 to σ

‖ϒLTd ‖ρe
‖li(t)‖

. Define m =

argmaxi∈V ‖γiδ̄i(t)‖, robot m stands for maximum the maxi-
mum norm of γiδ̄i(t) among all the robots, which implies

‖em(t)‖

‖γmδ̄m(t)‖
≤
‖e(t)‖

‖γmδ̄m(t)‖
≤

√
N‖e(t)‖

‖ϒδ̄(t)‖
. (29)

From (29), the time ‖em(t)‖
‖γm δ̄m(t)‖

attains σ

‖ϒLTd ‖ρe
‖li(t)‖

is longer

than
√
N‖e(t)‖
‖ϒδ̄(t)‖

costs. That is, τm > τ , where τm represents
positive interval (tmk+1 − tmk ) is lower bounded, and τ is the
time ‖e(t)‖

‖ϒδ̄(t)‖
increasing from 0 to σ

√
N‖ϒLTd ‖ρe

‖li(t)‖
. Thereby,

the time derivative of ‖e(t)‖
‖ϒδ̄(t)‖

is written as see (30), as shown
at the bottom of the page.

Let β stand for ‖e(t)‖
‖ϒδ̄(t)‖

, then, β̇ ≤
ϕ
2π ‖ϒ

−1
‖(1 +

‖ϒLTd ‖β)
2. Here, β ≤ ε(t, ε0), where ε(t, ε0) is the solu-

tion of ε̇(t, ε0) =
ϕ
2π ‖ϒ

−1
‖(1 + ‖ϒLTd ‖α(t, α0))

2, and
ε(0, ε0) = ε0.

According to

2πdε

ϕ‖ϒ−1‖(1+ ‖ϒLTd ‖ε(t, ε0))
2
= dt, (31)

we can see that the interval between event instants tk and tk+1
is lower bounded by the interval τ which satisfies ε(τ, 0) =

σ

‖ϒLTd ‖ρe
‖li(t)‖

. By solving (31), we have

τ =
2πε(τ, 0)

ϕ‖ϒ−1‖(1+ ‖ϒLTd ‖ε(τ, 0))

=
2πσ

ϕ(ρe‖li(t)‖ + σ )‖ϒLTd ‖‖ϒ
−1‖

. (32)

From (32), we obtain

τ ′ =
2πσ

ϕ(
√
Nρe‖li(t)‖ + σ )‖ϒLTd ‖‖ϒ

−1‖
,

where τ ′ is the time ‖e(t)‖
‖ϒδ̄(t)‖

ranging from 0 to σ
√
N‖ϒLTd ‖ρe

‖li(t)‖
.

The minimal interval between two event instants of robot
m can be written as

τm =
2πσ

ϕ(
√
Nρe‖li(t)‖ + σ )‖ϒLTd ‖‖ϒ

−1‖
. (33)

From τm > 0, we draw a conclusion that there exists at least
one robot m ∈ N in the MRS (4), which prevents the occur-
rence of Zeno behavior under the event-trigger condition (23).

IV. SELF-TRIGGERED CONTROL STRATEGY
The event-triggered solution, earlier discussed in Section III,
assumes continuous communication among the neighboring
robots. In this section, a self-triggered strategy, which is a
special class of event-triggered control, is applied tominimize
communications costs further. Namely, the self-triggered
strategy only uses the discrete states that are sampled and sent
by neighbors at their own event instants.

For the designed dynamical equation (19), the self-
triggered circular formation control for the distributed MRSs
is solved by Theorem 2.
Theorem 2: Given any admissible circular formations

characterized by α∗ and r, and considering the MRS (4)
and the designed control law (14) over a strongly connected

d
dt
‖e(t)‖

‖ϒδ̄(t)‖
=

d
dt

(e(t)T e(t))1/2

(δ̄T (t)ϒϒδ̄(t))1/2

=
e(t)ė(t)

‖e(t)‖‖ϒδ̄(t)‖
−
δ̄T (t)ϒϒ ˙̄δ(t)‖e(t)‖

‖ϒδ̄(t)‖3

=
−ϕe(t)ϒ−1ϒ(δ̄(t)+ LTd e(t))

2π‖e(t)‖‖ϒδ̄(t)‖
−
ϕδ̄T (t)ϒϒLTd (δ̄(t)+ L

T
d e(t))‖e(t)‖

2π‖ϒδ̄(t)‖2‖ϒδ̄(t)‖

≤
ϕ‖ϒ−1‖(‖ϒδ̄(t)‖ + ‖ϒLTd e(t))‖

2π‖ϒδ̄(t)‖
+
ϕ‖ϒLTd ‖‖ϒ

−1
‖(‖ϒδ̄(t)‖ + ‖ϒLTd e(t)‖)‖e(t)‖

2π‖ϒδ̄(t)(t)‖2

≤
ϕ‖ϒ‖

2π

(
1+
‖e(t)‖‖ϒLTd ‖‖ϒδ̄(t)‖

‖ϒδ̄(t)‖

)2

(30)
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weight-unbalanced digraph G, the circular formation prob-
lem is solvable when the event-triggered condition is designed
as

f̃i(t) = ‖ei(t)‖ −
‖LTd (i, j)δ̂(t)‖

(b+ 1)‖LTd ‖ρe
‖li(t)‖

, b > 0, (34)

where LTd (i, j)δ̂(t) =
∑

j∈Ni
LTd (i, j)(δ̂i(t)− δ̂j(t)).

And the condition

−ξi +
ξ2i

2a
+

b+ 1
b3(t)M

> 0, i = 1, 2, . . . ,N , (35)

holds simultaneously, where M = min{ρe‖li(t)‖}. Moreover,
the self-trigger condition (34) helps the MRS (4) to avoid the
occurrence of Zeno behavior.

Proof: A Lyapunov function candidate is considered as

V (t) =
1
4
δT (t)(Ld2+2LTd )δ(t), (36)

As a result, V (t) > 0 and V (t) = 0 if the circular formation
problem is solvable. Then the derivative of the Lyapunov
function along of the trajectories of the MRS (4) yields to

V̇ (t) = δT (t)Ld2(−
ϕ

2π
LTd (δ(t)+ e(t)))

= −
ϕ

2π
δT (t)Ld2LTd δ(t)−

ϕ

2π
δT (t)Ld2LTd e(t). (37)

From Lemma 1, there exists δT (t)Ld2LTd e(t) ≤
1
2aδ

T (t)
Ld22 LTd δ(t) +

a
2e

T (t)LdLTd e(t) such that (37) is rearranged
into

V̇ (t)≤−
ϕ

2π
δT (t)Ld2LTd δ(t)

+
ϕ

2π
(
1
2a
δT(t)Ld22LTd δ(t)+

a
2
eT (t)LdLTd e(t)). (38)

In the following, we explain the analytical relationship
between δT (t)LdLTd δ(t) and e

T (t)LdLTd e(t).
From the designed self-trigger condition (34), we have

LTd e(t) ≤ ‖L
T
d ‖‖e(t)‖ ≤

‖LTd δ̂(t)‖

(b+ 1)ρe‖li(t)‖
. (39)

Together with the definition of ei and (39), it yields to

eT (t)LdLTd e(t) ≤
1

(b+ 1)2ρ2e2‖li(t)‖(
(δ(t)+ e(t))TLdLTd (δ(t)+ e(t))

)
≤

1
(b+ 1)2ρ2e2‖li(t)‖

(
δ(t)TLdLTd δ(t)

+

(
.e(t)TLdLTd e(t)+ 2δ(t)TLdLTd e(t))

)
≤

1
(b+ 1)2ρ2e2‖li(t)‖

(1+
1
b
)δ(t)TLdLTd δ(t)

+
1+ 2b

(b+ 1)2ρ2e2‖li(t)‖
e(t)TLdLTd e(t). (40)

Thus,

eT (t)LdLTd e(t) ≤
b+ 1
b3(t)M

δ(t)TLdLTd δ(t). (41)

Substituting (41) into (38), we have

V̇ (t) ≤ −
ϕ

2π
δT (t)Ld2LTd δ(t)+

ϕ

2π
(
1
2a
δT (t)Ld22LTd δ(t)

+
b+ 1
b3(t)M

δ(t)TLdLTd δ(t))

≤ −
ϕ

2π

N∑
i=1

(−ξi +
ξ2i

2a
+

b+ 1
b3(t)M

)‖δ̄i‖. (42)

Therefore, the condition (34) guarantees V̇ (t) < 0 and
V̇ (t) = 0 if the circular formation problem is solvable.
To avoid Zeno behavior, an estimate of the positive lower

bound on the inter-event times is further proved. Assuming
that the k + 1th event of robot pi occurs at the time t ik + τi,
we derives ‖ei(t ik )‖ = 0, and

‖ei(t ik + τi)‖ =
‖LTd (i, j)δ̂(t)‖

(b+ 1)‖LTd ‖ρe
‖li(t)‖

. (43)

From the trajectory of ei(t), we have

‖ei(t ik + τi)‖ =

∥∥∥∥∥
∫ t ik+τi

t ik

ėi(t)dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ t ik+τi

t ik

δ̇i(t)dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ t ik+τi

t ik

ϕ

2π
LTd (i, j)δ̂(t)dt

∥∥∥∥∥
≤

ϕ

2π
‖LTd (i, j)δ̂(t)‖τ (44)

Substituting (43) into (44), we get

‖LTd (i, j)δ̂(t)‖

(b+ 1)‖LTd ‖ρe
‖li(t)‖

≤
ϕ

2π
‖LTd (i, j)δ̂(t)‖τ, (45)

where τ = 2π
ϕ(b+1)‖LTd ‖ρe

‖li(t)‖
≥ 0.

To sum up, if a neighbour triggers during the interval
between two consecutive events of robot pi, that is, the neigh-
bour triggers at time t ik + τj ≤ t ik + τi. Then the interval is
greater than τj. We conclude that the intervals between events
that generated by the self-triggered function are positive.

V. NUMERICAL EXAMPLES
Considering an MRS, consisting of six mobile robots located
in the plane, the target point is set to (0, 0), and the desired
angle distances between each pair of neighboring robots are
set to satisfy (8). Namely, the desired distribution pattern can
be set arbitrarily as long as the coefficients of the designed
controller make sure the condition holds. The initial positions
of six robots are randomly generated.

To show the relative superiority of the event triggered strat-
egy, the event detection of all those simulations is executed
using a sampled-data approach. Here, h = 0.01s is chosen as
the sampling periods in real-time control.We choose the coef-
ficients of the controller to make ensure the condition holds.
To our best knowledge, the role of coefficients mentioned is
to keep li(t) remain at least an order of magnitude comparing
to g(t).
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A. EXAMPLE OF EVENT-TRIGGERED
FORMATION CONTROL
We first apply the event-triggered control strategy to the
uniform circular formation control with the desired angle
distance α∗i = π/3 and the desired radius of the circular
formation r = 100. Using the proposed control law, the coef-
ficients of which are set to ϕ = 0.4, kr = 0.002 to satisfy the
event-triggered condition (23), to solve the uniform circle for-
mation problem and the simulation results are shown in Fig. 3.
Fig. 3(a) reveals the trajectories of six robots in the plane, and
Fig. 3(b) shows the difference between the event-triggered
angled and the set angles, the distances difference between
the event-triggered radius of the circular formation and the
predefined radius, and the evolution of control laws of the
six robots, respectively. We observe that the desired uniform
circular formation can be achieved asymptotically under the
designed control law. Furthermore, the average inter-event
time for all robots is obtained as havg = 0.0229. Comparing

FIGURE 3. Uniform circular formation control via event-triggered strategy.

to the sampling period h, we can observe that the average
inter-event period havg has the advantages of reducing the
amount of control update. Note that increasing σ can further
reduce computation over the whole process, but will increase
the cumulative error of the system, which leads to system
uncertainties.

We then extend the method to the non-uniform circular
formation, where the desired angle distance is set to α∗ =
[π/4, π/3, 3π/8, 7π/24, π/3, 5π/12]. Furthermore, r , ini-
tial positions of robots, as well as the coefficients ϕ, kr are
set the same as the first case. The simulation results are
shown in Fig. 4. Fig. 4(a) reveals the trajectories of six robots
in the plane, and Fig. 4(b) shows the differences between
the event-triggered angles and the set angles, the distances
differences between the event-triggered radius of the circular
formation and the predefined radius, and the evolution of con-
trol laws of the six robots, respectively. We can observe that

FIGURE 4. Non-uniform circular formation control via event-triggered
strategy.
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compared to the convention circular formation control algo-
rithm, as shown in Reference [30], due to the event-triggered
strategy, trade-offs among actuator effort and computation
would be reduced dramatically by as much as 1/3 with-
out increasing the computational complexity. For both uni-
form and non-uniform circular formation, the multiple robots
under the control law (14) have the properties of order preser-
vation and collision avoidance. It should be noted that com-
pared with traditional protocols, the use of event-triggered
control may introduce convergence errors.

B. EXAMPLE OF SELF-TRIGGERED FORMATION CONTROL
The self-triggered control strategy is first applied to the
uniform circular formation control with the desired angle
distance α∗i = π/3 and the desired radius of the circular
formation r = 100. Using the proposed control law, the coef-
ficients of are set to ϕ = 0.4, kr = 0.002 to satisfy the
trigger function (34), to solve the uniform circle formation
problem and the simulation results are shown in Fig. 5.

FIGURE 5. Uniform circular formation control via event-triggered strategy.

Fig. 5(a) shows the trajectories of six robots in the plane, and
Fig. 5(b) shows the difference between the event-triggered
angled and the set angles, the difference of the distances
between the event-triggered radius of the circular formation
and the predefined radius, and the evolution of control laws
of the six robots, respectively. We observe that the desired
uniform circular formation can be achieved asymptotically
under the designed self-triggered control law.

The self-triggered control strategy is also extended to the
non-uniform circular formation problem, where the desired
angle distance is set to α∗ = [π/4, π/3, 3π/8, 7π/24, π/3,
5π/12]. And r , initial positions of robots, as well as the
coefficients ϕ, krare set the same as the previous case. The
simulation results are shown in Fig. 6. Fig. 6(a) reveals the
trajectories of six robots in the plane, and Fig. 6(b) shows
the differences between the event-triggered angles and the set
angles, the distances differences between the event-triggered

FIGURE 6. Non-uniform circular formation control via self-triggered
strategy.
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radius of the circular formation and the predefined radius,
and the evolution of control laws of the six robots, respec-
tively. We can see that the desired non-uniform circular for-
mation can be achieved asymptotically under the designed
self-triggered control law. Comparing Fig. 4(b) with Fig. 6(b),
we observe that under the self-triggered control with inter-
mittent monitoring of measurement errors, the MRS can
still achieve circular formation. Hence, the energy consump-
tion of communication can be reduced under the designed
self-triggered control law.

To further compare the performance between the
event-triggered and self-triggered control strategies, the aver-
age inter-event period, the amount of computation, and data
transmissions of each simulation case are listed in Table 2.
We can see from Table 2 that in terms of the frequency of con-
trol updates, the result of the self-triggered method is more
conservative than the event-triggered schemes. However,
event-triggered control still requires continuous communica-
tion. The self-triggered control law is effective in reducing
both data transmission and amounts of computation, in which
the next triggered instance is predicted relied upon the last
triggered data. Thus, we draw a conclusion that the proposed
self-triggered control law is effective in reducing data trans-
mission, and the control time changes very little. From a
practical point of view, this is more straightforward to apply
to resource-limited situations.

TABLE 2. Data transmission comparison.

VI. CONCLUSION
This article investigated the problem of controlling a group
of anonymous mobile robots distributed in a circular for-
mation. Given the robots’ limited communication and com-
putation resources, a distributed event-triggered algorithm
was designed to reduce dependence on resources in MRSs.
Through continuous sampling among the neighboring robots,
the designed event-trigger controller judges whether the event
trigger function’s norm exceeds zero to determine the con-
troller’s update. To further minimize communications costs,
a self-triggered strategy only uses the discrete states that
sampled and sent by neighboring robots at their own event
instants was proposed, which can reduce both the compu-
tation and the communication frequency between robots by
up to 1/3. Moreover, theoretical analysis proved that the two
proposed controllers could completely avoid Zeno behavior.
At last, numerical simulation results of using two controllers

to control uniform and non-uniform circular formations were
given to verify the theoretical analysis. Future work will
extend the proposed method in this article to more complex
systems, such as adding the influence of space-time topology
or considering unreliable links in communication networks.
Also, finding convincing comparison results is also one of the
main focuses of our next work.
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