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Abstract: If G is a graph and P is a partition of V(G), then the partition distance of G is the sum of
the distances between all pairs of vertices that lie in the same part of P . A colored distance is the dual
concept of the partition distance. These notions are motivated by a problem in the facility location
network and applied to several well-known distance-based graph invariants. In this paper, we apply
an extended cut method to induce the partition and color distances to some subsets of vertices which
are not necessary a partition of V(G). Then, we define a two-dimensional weighted graph and an
operator to prove that the induced partition and colored distances of a graph can be obtained from
the weighted Wiener index of a two-dimensional weighted quotient graph induced by the transitive
closure of the Djoković–Winkler relation as well as by any partition that is coarser. Finally, we utilize
our main results to find some upper bounds for the modified Wiener index and the number of orbits
of partial cube graphs under the action of automorphism group of graphs.

Keywords: partition distance; color distance; Djoković–Winkler relation; orbit; automorphism group;
modified Wiener index

1. Introduction

If G is a graph and P is a partition of V(G), then the colored distance of G is the sum of the
distances between all pairs of vertices that lie in the different parts of P . This concept was defined by
Dankelmann, Goddard, and Slater [1] and is based on a location problem [2]. Klavžar and Nadjafi-Arani
further developed this metric and introduced the dual concept of a colored distance called partition
distance [3]. Dankelmann et al. tackled a few applications of colored distance toward the facility
location problem, median graphs, and the average distance of graphs (see [2,4]). Klavžar et al. [3]
demonstrated that the dual concept has more practical value and addressed some applications in
mathematical chemistry and network analysis [5,6] to obtain general bounds as well as to classify
corresponding extremal graphs. Moreover, they expressed some basic graph invariants such as the
diameter and the clique number by utilizing the partition distance. They also showed that some of
these applications cannot be achieved when using the colored distance.

The usefulness of the cut method and the extended cut method in metric graph theory has
been proved [7]. For instance, the method has been used to define distance-based graph invariants.
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These methods are based on the Djoković–Winkler relation where we apply the canonical metric
representation to find the distance moments between pairs of vertices [8–10]. Especially in metric
graph theory, the methods have already been used to explain distance-based graph invariants based
on quotient graphs and cuts (see the survey [11]). In [12,13], results achieved in [11] were used to
analyze the modified Wiener index [14]. Trees with the maximal value of the modified Wiener index
are analyzed in [15].

The main contributions of this paper involve applying the extended cut method and introducing
new expressions and bounds for distance-based quantities (e.g., modified Wiener index). This paper is
organized as follows. We start by presenting some preliminary definitions and theorems that we need
for proving our main results. In Section 3, we prove a generalization toward computing the partition
and colored distances based on the canonical metric representation. The generalization is twofold.
First, we examine partition and colored distances in graphs induced to subsets of vertices of a graph.
Second, the calculation of colored distances is being performed by computing a two-dimensional
version of the Wiener index of its quotient graph. In Section 4, we apply our main theorems to derive
some bounds for the modified Wiener index and the number of orbits of a partial cube graph G under
the action of Aut(G).

2. Preliminaries

Let G be a simple graph and define dG(u, v) (for short d(u, v)) as the length of a shortest path
between two vertices u and v in G. Let S ⊆ V(G) and define W(S) = ∑{x,y}∈V(G) dG(x, y). If S = V(G),

then W(G) is called the Wiener index. Similarly, average distance, µ(G) = W(G)

(V(G)
2 )

, is an equivalent

number to W(G) (see [16–19]). The Djoković–Winkler relation Θ [8,10] is a reflexive and symmetric
relation between edges of graphs such that two edges e = xy and f = uv of a connected graph G are
under the relation Θ if dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u). The transitive closure Θ∗ of Θ is an
equivalence relation on E(G). The equivalence classes of Θ∗ are shown by F = {F1, . . . , Fr}, which is
called the Θ∗-partition. Define the quotient graph G/Fi as follows: For any i ∈ [r], let the connected
components of the graph G-Fi exist as vertices, and two vertices P and Q are adjacent iff there is at least
an edge uv ∈ Fi such that u ∈ P and v ∈ Q. Consider a vertex weighted graph (G, w); then, the Wiener
index W(G, w) is defined as follows [20]:

W(G, w) = ∑
{u,v}∈(V(G)

2 )

w(u)w(v)dG(u, v) ,

If w ≡ 1, then W(G, w) = W(G).
An isometric subgraph H of a graph G is a subgraph of G such that the distance between any pair

of vertices in H is the same as that in G. A partial cube [21] is an isometric subgraph of a hypercube.
Winkler showed that a connected graph is a partial cube if and only if it is bipartite and the relation
Θ is transitive—that is, Θ = Θ∗ [10].

If G is a graph and {V1, . . . , Vt} is the partition of V(G) into the orbits under the action of Aut(G),
then the modified Wiener index [14] of G is defined by

MW(G) = |V(G)|
t

∑
i=1

1
|Vi| ∑

{u,v}∈(Vi
2 )

dG(u, v) . (1)

The modified Wiener index can also be expressed by

MW(G) =
|V(G)|

2Aut(G) ∑
u∈V(G)

∑
α∈Aut(G)

dG(u, α(u)) . (2)
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Let G be a graph of order n and let S = (n1, n2, . . . , nk) with n1 + n2 + . . . + nk = n. An S-coloring
P = {S1, S2, . . . , Sk} is a partition of V(G) with |Si| = ni. The colored distance of WP (G) is the
sum of the distances between vertices of different colors. The sum of distances between vertices
with same colors, the partition distance of G, is WP (G) = W(S1) + . . . + W(Sk). Note that WP (G) =

W(G)−WP (G).
Henceforth, we collect those results that we will make use of from [3,22,23].

Lemma 1. (i) Let P be a shortest path in G. Then, no two edges of P are in the relation Θ.
(ii) Let e = uv be an edge of a graph G, and let W be a u, v-walk in G that does not contain e. Then,

there exists an edge f of W such that eΘ f .
(iii) Let F be a Θ∗-class of a connected graph G and let u, v ∈ V(G). If P is a shortest u, v-path and Q is

an arbitrary u, v-path, then |Q ∩ F| ≥ |P ∩ F|.

There are many research studies in which the authors applied weighted quotient graphs induced
by the Θ∗-relation method for computing several distance-based graph invariants. For more details,
see the survey [11]. The method is called the cut method. The following theorems are recent results
that we extend to subsets of vertices.

Theorem 1. [3] ([Theorem 2.2]) Let G be a connected graph and let P = {V1, . . . , Vk} be a partition of V(G).
If {F1, . . . , Fr} is the Θ∗-partition of E(G), then

WP (G) =
r

∑
i=1

k

∑
j=1

W(G/Fi, w(j)
i ) ,

where w(j)
i (C) = |C ∩Vj| for any C ∈ V(G/Fi).

We say that a partition E = {E1, . . . , Et} of E(G) is coarser than F = {F1, . . . , Fr} if each set Ej is
the union of one or more Θ∗-classes of G. Theorem 1 then generalizes this as follows:

Theorem 2. [3] ([Theorem 2.3]) Let (G, w) be a connected weighted graph and let P = {V1, . . . , Vk} be a
partition of V(G). If {E1, . . . , Er} is a partition of E(G) coarser than the Θ∗-partition, then

WP (G, w) =
r

∑
i=1

k

∑
j=1

W(G/Ei, w(j)
i ) ,

where w(j)
i (C) = ∑x∈C∩Vj

w(x) for any C ∈ V(G/Ei).

Cut methods that apply to classes larger than partial cubes or a partition coarser than Θ∗-partition
are called extended cut methods [11]. Now, we are ready to formulate our results.

3. Extended Cut Methods on Some Subsets of Vertices

In this section, we extend Theorems 1 and 2 regarding some subsets of vertices that are not
necessary a partition of V(G). This modification enables us to induce the partition and colored
distances in a graph regarding some arbitrary subsets of vertices. Then, we prove and state the
induced partition and colored distances based on the extended cut method. Moreover, we reduce the
computation of the distances between unordered pairs of vertices to a corresponding appropriately
weighted quotient graph of G. The quotient graphs are weighted by a two-dimensional version with
an operator.

The following theorem is an extension of Theorem 2. The idea of the proof is similar with the
argument presented in [3] and we omit it. We point out that in the proof of Theorem 2, Klavžar et al.
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considered P = {V1, . . . , Vk} to be a partition of V(G) and for any vertices x, y ∈ V(G), x 6= y,
that belong to some Vj, j ∈ [k], selected a shortest x, y-path. Then, they utilized a double counting
technique to prove the theorem. To prove Theorem 3, it is not necessary to assume that P is a partition
of V(G). In fact, if P = {V1, . . . , Vk} is the set of some distinct subsets of V(G) (not necessarily the
partition of V(G)), then we select a shortest path between each pair vertices of Vj, j ∈ [k], and continue
the proof using the same idea as used in the proof of Theorem 2. Moreover, we extend the definition of
WP (G, w) accordingly.

Theorem 3. Let (G, w) be a connected weighted graph and let P = {V1, . . . , Vk} be a set containing k distinct
subsets of V(G). If {E1, . . . , Er} is a partition of E(G) coarser than the Θ∗-partition, then

WP (G, w) =
r

∑
i=1

k

∑
j=1

W(G/Ei, w(j)
i ) ,

where w(j)
i (C) = ∑x∈C∩Vj

w(x) for any C ∈ V(G/Ei).

Several invariants of wide interest in basic graph theory, mathematical chemistry, and computer
science can be expressed as instances of Theorem 3. For example, for computing the modified Wiener
index, we need to obtain the summation of distances between unordered pair vertices of an orbit
under the action Aut(G) [14]. Second, in the k-generalized Wiener index [24], we need to compute the
summation of distances between vertices of the same degree k. In basic graph theory, k-diameter dk(G)

of a graph G was introduced as max{W(S) : |S| = k}—that is, as the maximum overall partition
distances of size k. Note that d2(G) = diam(G) and d|V(G)|(G) = W(G) [25]. One of the main
problems in computer science is the network clustering. In a clustering problem, we select some nodes
as a cluster node in the network and we need to cluster nodes to transfer their data together [26]. In this
case, we need to find the distance between cluster nodes—that is, a partition distance of cluster nodes.

In [3,23] and also the survey [11], Klavžar and Nadjafi-Arani introduced the extended cut method.
Generally, they used a partition of vertices and introduced the partition distance of graphs. Klavžar and
Nadjafi-Arani obtained a formula based on the extended cut method for the partition distance of graph.
However, they expressed colored distance using the Wiener index and partition distances of a graph
as follows:

Corollary 1. [3] ([Corollary 2.6]) Let G be a connected graph and let P = {V1, . . . , Vk} be a partition of
V(G). If {F1, . . . , Fr} is the Θ∗-partition of E(G), then

WP (G) =
r

∑
i=1

[
W(G/Fi, wi)−

k

∑
j=1

W(G/Fi, w(j)
i )

]
,

where wi(C) = |C| and w(j)
i (C) = |C ∩Vj| for any C ∈ V(G/Fi).

The weakness of this corollary is twofold. First, using the definition of corresponding quotient
graph based on canonical metric representation, it is not possible to state WP by cuts with the same
weight function. Second, it is not possible to determine the colored distance when we are working
with some subsets of vertices that are not necessarily a partition of V(G). Hence, we need to obtain
WP from Θ∗-partition and extend our results when we consider some subsets of vertices. In this case,
we need to redefine the weighted function w as a two-dimensional function w2 with an operation “.”
where w2 : V(G) → R2. Let vi ∈ V(G) and define w2(vi) = (xi, yi) with an operation “.” such that
w2(vi).w2(vj) = xiyj + xjyi. Similar to the weighted Wiener index (G, w), we introduce the distance
between two vertices vi and vj of a weighted graph (G, w2) as d̄(vi, vj) = w2(vi).w2(vj)d(vi, vj).
Then, the colored distance of a weighted graph (G, w2) can be calculated as follows:
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Theorem 4. Let G be a connected graph and let P = {V1, . . . , Vk} be a set containing k distinct subsets of
V(G) and Vi = ∪k

t=1Vt −Vi. If F = {F1, . . . , Fr} is the Θ∗-partition of E(G), then

WP =
r

∑
j=1

k

∑
i=1

W(G/Fj, w2(j)
i ) (3)

where w2(j)
i (C) =

(
|C ∩Vi|, |C ∩Vi|

)
for any C ∈ V(G/Fj).

Proof. Let A be a set of shortest paths such that there exist exactly one shortest path P(u, v) for each
pair of vertices (u, v), where u ∈ Vi and v ∈ Vj, 1 ≤ i < j ≤ k. Create an incidence matrix M = [mij]

that is a matrix that shows the relationship between two classes of objects. If the first class is A and
the second is F , the matrix has one row for each element of A and one column for each element of F .
We assign |E(Pi(u, v))∩ Fj| for the corresponding entry in row Pi(u, v) and column Fj. In a special case,
if G is a partial cube, then M is a 0,1 matrix in which mij = 1 if and only if the path Pi(u, v) contains
exactly one edge of Fj. We apply a double counting on summation of M arrays. Indeed, the summation
of arrays of ith row corresponding to Pi(u, v) is equal to d(u, v). So, due to the elements of the set A,
the summation of M arrays shows WP . An array of jth column is greather than or equal than 1 if and
only if there is a shortest path in A that goes through an edge of Fj. Hence, initially, we compute the
number of shortest paths in A that have an edge in Fj. For calculating this number, let Cj,1, . . . , Cj,ij be
the connected components of G \ Fj and

Ci
j,t = (xi

j,t, yi
j,t) =

 ∑
x∈Cj,t∩Vi

w(x), ∑
x∈Cj,t∩Vi

w(x)

 .

Thus, the number of shortest paths in A passed through Fj are equal to:

ij

∑
p=1

ij

∑
q=p+1

k

∑
s=1

(xs
j,pys

j,q + ys
j,pxs

j,q).

Alternately, using the definition of the quotient graphs G/Fj, the shortest path Pi(u, v) induces
a path of length t in G/Fi so that dG/Fj

(Cu, Cv) ≤ t. Let dG/Fj
(Cu, Cv) < t hold and let R be a

shortest Cu, Cv-path in G/Fj. Then, R can be naturally lifted into an u, v-path in G which contains
less that t edges from Fj. Since this contradicts Lemma 1(iii), we conclude that dG/Fj

(Cu, Cv) ≥ t and,
consequently, dG/Fj

(Cu, Cv) = t—that is,

d(G/Fj ,wj)
(Cj,p, Cj,q) = |E(Pi(u, v)) ∩ Fj|.

Hence, the summation of the jth column of M is equal to:

ij

∑
p=1

ij

∑
q=p+1

k

∑
s=1

(xs
j,pys

j,q + ys
j,pxs

j,q)d(Cj,p, Cj,q)

= ∑
p,q

w2
j (Cj,p).w2

j (Cj,q)d(Cj,p, Cj,q).

Summing over all columns, we get:

WP =
r

∑
j=1

∑
p<q,s

(xs
j,pys

j,q + ys
j,pxs

j,q)d(G/Fj ,wj)
(Cj,p, Cj,q) =

r

∑
j=1

W(G/Fj, w2
j ) ,

which completes the proof.
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If (G, w) is a connected weighted graph, then we can utilize

w(u)w(v)|E(Pi(u, v)) ∩ Fj|

instead of |E(Pi(u, v)) ∩ Fj| in the incidence matrix. The main idea of the above argument comes
from [23] ([Theorem 3.3]) where the first author with S. Klavžar extended the cut method for a partition
of E(G) coarser than the Θ∗-partition. The main difference between these two theorems is how to
choose the set of shortest paths. In [23], the set of selected shortest paths is Y in G such that for
every pair of vertices u, v ∈ V(G), u 6= v, there exists a unique shortest u, v-path in the list, while in
Theorem 4, the set A is a special set that enables us to calculate the summation of distances between
all pair of vertices selected in A. In fact, coloring helps us to see the selected vertices more clearly.
Since the proof of the extended cut method proceeds similar to how the proof Theorem 4 proceeds,
we omit the details and state the generalized version of above theorem as follows:

Theorem 5. Let (G, w) be a connected weighted graph and let P = {V1, . . . , Vk} be a set containing k distinct
subsets of V(G) and Vj = ∪k

i=1Vi−Vj. If {E1, . . . , Er} is a partition of E(G) coarser than the Θ∗-partition, then

WP =
k

∑
j=1

r

∑
i=1

W(G/Ei, w2(j)
i ) (4)

where w2(j)
i (C) =

(
∑x∈C∩Vj

w(x), ∑x∈C∩Vj
w(x)

)
for any C ∈ V(G/Ei).

Theorems 3 and 5 are quite powerful. Using a sample computer application, we calculate the
summation of distances between two subsets of vertices V1 and V2 in a hypercube graph G. Let V1

and V2 be the sets of white and black vertices, respectively. Clearly, we can ascertain that the parallel
edges of G are the partition F of E(G). Let F = {F1, F2, F3, F4} in which E1 = {F1} shows the vertical
parallel edges and E2 = {F2, F3, F4} are three horizontal paralleled pair edges of G (see Figure 1a).
Let E = {E1, E2} be a coarser partition of F . The quotient graphs G/E1 and G/E2 with the weight
ω2(vi) for each vertex vi are shown in Figure 1b,c respectively. Now, apply Theorem 5 to obtain the
summation of distances between each pair of vertices V1 and V2.

WP =
2

∑
j=1

2

∑
i=1

W(G/Ei, w2(j)
i )

= 2× 2× 1 + 1× 1× 2 + 1× 1× 2 + 1× 1× 3 + 1× 1× 1 = 12.

Let Vp, Vq ⊂ V(G) be two distinct subsets of vertices and let d(Vp, Vq) denote the summation
of distances for each pair of vertices (u, v) in which u ∈ Vp and v ∈ Vq. The following corollary is a
special case of Theorem 5 when we have just two subsets of vertices.
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Figure 1. (a) The colored graph G, (b) The weighted quotient graph G/E1, (c) The weighted quotient
graph G/E2.

Corollary 2. Let (G, w) be a connected weighted graph and let P = {V1, . . . , Vk} be a set containing k distinct
subsets of V(G). If {E1, . . . , Er} is a partition of E(G) coarser than the Θ∗-partition, then

d(Vp, Vq) =
r

∑
i=1

W(G/Ei, w2
i) (5)

where w2
i(C) =

(
∑x∈C∩Vp w(x), ∑x∈C∩Vq w(x)

)
for any C ∈ V(G/Ei).

Corollary 2 plays the main role in our results in the next section. Alternately, the distance
summations between some subsets of V(G) can be calculated by taking a summation on Equation (5).
For instance, from Theorem 5 and Corollary 2, it is easy to see that

WP =
k

∑
j=1

r

∑
i=1

W(G/Ei, w2(j)
i ) = ∑

p 6=q
d(Vp, Vq) = ∑

p 6=q

r

∑
i=1

W(G/Ei, w2
i). (6)

In the following, it is important to mention some special features of the Theorems 3 and 5. In fact,
we can omit the distinct assumption for Vis. In this case, if a node vi has several colors (vi belongs
to different elements of P), we need to define the color of vi due to our desires. For example, if we
consider that the vertex vi belongs to two different subsets (vi has two colors, for instance, red and
blue), and we need to find the distance between blue vertices such that the distance between vi and
other blue vertices is a term of our desire, we consider the color of vi to be blue. Next, set all shortest
paths between vi and blue vertices in A. Alternately, if we need to consider vi as a red vertex, we have
to deposit the corresponding shortest paths in A.

4. Some Bounds on the Modified Wiener Index and the Number of Orbits

In this section, we apply Theorem 4 and Corollary 2 to partial cubes and trees to derive some
upper bounds for modified Wiener index and the number of orbits of the automorphism group.
Before that, the eccentricity of a vertex v is defined to be the greatest distance from v to any other vertex.
The radius r of a graph is the minimum eccentricity of any vertex; in other words, r = minv∈V ε(v) =
minv∈V maxu∈V d(v, u). A vertex with minimal eccentricity is called the center of a graph. The trees
have exactly one center (centered trees) or precisely two adjacent centers (bicentered trees). In bicenterd
trees, the edge between two centers is called the edge center.
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Lemma 2. Let G be a graph of order n and {V1, · · · , Vt} be the set of orbits of Aut(G). Then,

MW(G) =
n
2 ∑

vi

W(vi)

in which vi is the orbit representative of Vi and W(vi) = ∑u∈Vi
d(u, vi).

Proof. Assume that u and v belong to an arbitrary orbit Vi. Due to the orbit properties of an
automorphism group, it is easy to see that ∑w∈Vi

d(u, w) = ∑w∈Vi
d(v, w). Therefore,

W(Vi) = ∑
u,v∈Vi

d(u, v) = |Vi| ∑
vi∈Vi

d(u, vi) = |Vi|W(vi),

Then, by substituting to (1), the result follows.

Lemma 3. If T is a centered tree, then the center of T is an orbit of T with one element. Moreover, the elements
of an arbitrary orbit are an independent set of T. When T is a bicentered tree, the same results hold with a
difference that the edge center maybe be an orbit.

Proof. Initially, let T be a centered tree. Since the elements of each orbit are symmetric, the center of T
is a unique vertex with special properties and it is an orbit with one element. Next, we show that the
elements of an orbit are an independent set. Let e = uv be an edge of T such that u and v belong to the
same orbit. Let c be the center of T and α ∈ Aut(T) such that α(u) = v. Alternately, T is a centered
tree, so α(c) = c—that is, d(c, u) = d(c, v). Hence, there is a closed walk P : c, . . . , u, v, . . . , c in T of
odd length. It means that T has a cycle that is a contradiction. Thus, the elements of an orbit form
an independent set. If T is a bicentered tree based on the structure of T, maybe both of the centers
form an orbit or separately each one becomes an orbit with one element. Let c1, c2 be the centers of
T and let both of them belong to different orbits. Then, with the same argument, we can prove that
there is no edge between vertices of an orbit. When c1, c2 belong to the same orbit, then there exist two
cases. α(c1) = c1, and α(c1) = c2. The proof of the first case is the same as before. For the second one,
we have d(c1, u) = d(c2, v). In this case, the walk P : c1, · · · , u, v, · · · , c2, c1 is a closed walk in T that is
a contradiction and the proof is complete.

Corollary 3. Let T be a tree of order n and radius r with t orbits; then, r ≤ t ≤ n.

Proof. Since the distance between the center of T and the elements of an orbit is a fixed number, r ≤ t.
Alternately, the number of orbits is maximum when Aut(T) = {e} that is, each node is an orbit or
t = n. So, the proof is complete.

In the next theorem, we apply Corollary 2 to find an upper bound for the modified Wiener index
in partial cube graphs based on the number of orbits of the automorphism graph.

Theorem 6. Let G be a partial cube of order n and {F1, . . . , Fk} is the Θ∗-partition of E(G). Let {V1, . . . , Vt}
be the set of orbits of Aut(G) then

MW(G) ≤ nk(n− t)
2

,

and the bound is the best possible.

Proof. Let {F1, . . . , Fk} be the Θ∗-partition of E(G) and {v1, · · · , vt} demonstrates the set of orbit
representatives of {V1, · · · , Vt} respectively. Apply Corollary 2 for an orbit Vj and consider Vp = vj
and Vq = Vj − {vj}. Since for each 1 ≤ i ≤ r the graph G− Fi parted to two connected components
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C and C′, so its quotient graph is a weighted edge ei = αiβi. Thus, w2
ij
(αi) = (|Vq ∩ C|, 0) and

w2
ij
(βi) = (|Vq ∩ C′|, 1). Therefore,

W(vj) = d(vj, Vj − {vj}) = ∑
u∈Vj

d(vj, u) =
k

∑
i=1

W(G/Fi, w2
ij
)

=
k

∑
i=1

w2
ij
(αi).w2

ij
(βi)d(αi, βi) =

k

∑
i=1
|Vq ∩ C| ≤ k(|Vj| − 1). (7)

It concludes that,

MW(G) =
n
2 ∑

vi

W(vi)

≤ n
2

k
t

∑
i=1

(|Vi| − 1) =
nk(n− t)

2
, (8)

This value is attained by the modified Wiener index of a path with three vertexes or each
graph whose automorphism group is identity. Therefore our bound is best possible and the proof
is complete.

We know that trees are a subset of partial cube graphs and each edge of a tree is an element of
Θ∗-partition. The following corollary is obtained from Theorem 6 directly.

Corollary 4. Let T be a tree of order n and Aut(T) has t orbits. Then,

MW(G) ≤ n(n− 1)(n− t)
2

.

Moreover, the equality holds if and only if Aut(T) ∼= {e}, T = K2 or T = P3.

Proof. Since, the trees are partial cubes and each edge of a tree is an element of Θ∗-partition, we can
obtain the upper bound from Theorem 6. For equality, it is enough to show that equality holds in (7)
for each arbitrary i, j. Consider the same notation used in Theorem 6. Clearly, when Aut(T) ∼= {e}
each orbit is formed from a vertex and |Vj| − 1 = 0.

Next, let Aut(T) � {e}, and there is e 6= α ∈ Aut(T) in which, for two distinct vertices u, v ∈ Vj,
we have α(u) = v. If u and v are not pendant vertices, then it is enough to consider the pendant edge
ei as an element of Θ∗-partition. Thus, w2

ij
(αi).w2

ij
(βi) = 0 < |Vj| − 1. Let u, v be pendant vertices and

r ≥ 2. In this case, consider the edge ei as a nonpendant edge. Similar to last argument, we can prove
that the Equation (7) does not hold. If r = 1, then T ∼= Sn where Sn shows a star graph with n vertex.
One can easily see that if n ≥ 4, then there is an edge for which the Equation (7) is not satisfied and the
result follows.

Theorem 7. Let T be an n-vertex tree and {V1, . . . , Vt} be the set of orbits of Aut(T). r shows the radius
of tree. Then,

1. If T is a centered tree, then

MW(G) ≤ nr(n− 3r + 1
2

)

and the equality holds if and only if T is the star graph Sn or the path Pn.
2. If T is a bicentered tree, then

MW(G) ≤ n(r− 1)(n− 3r
2
) +

n
2
(n− r)
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and the equality holds if and only if T is the path Pn.

Proof. Initially, let T be a centered tree with its center named c. Assume that s = {v0 = c, · · · , vt}
demonstrates the set of orbit representatives of S = {V0, · · · , Vt}. V0 denotes a one-element orbit that
contains the center of T. Consider the vertices of a graph with level i ≥ 1 by Li = {Vi1 · · · , Vik} where
it is the set of all orbits such that d(vij , c) = i. Since T is a tree and by Lemma 3, there are no edge
between vertices of Li. Define

Ei,j
t = {e = uv ∈ E(T)|u ∈ V(t−1)i

and v ∈ Vtj}.

Indeed, the set
E = {Ei,j

t |1 ≤ t ≤ r, 1 ≤ i ≤ (t− 1)k, 1 ≤ j ≤ tk},

is a partition of E(G) coarser than the Θ∗-partition. Let v`i
∈ V`i

be the orbit representative and
apply Corollary 2 with considering Vp = v`i

and Vq = V`i
− {v`i

} as two separate subsets of V(T).

Consider the quotient graph T/Ei,j
t that is a star graph (S

T/Ei,j
t

, w2). If t > `, since for all connected

components C except one of them C ∩Vp = C ∩ Vq = ∅, then for each pair of vertices C and C′

from (S
T/Ei,j

t
, w2), we have d̄(C, C′) = 0—that is, W(T/Ei,j

t , w2) = 0. With similar argument, we can

prove that when 1 ≤ t ≤ ` and the shortest paths between V`i
and Vtj (V`i

6= Vtj) is passing from c,

we have W(T/Ei,j
t , w2) = 0. Next, let 1 ≤ t ≤ ` and the shortest paths between V`i

and Vtj (t 6= `),

never pass from c. In this case, the quotient graph T/Ei,j
t —that is, the star graph (S

T/Ei,j
t

, w2)—is

weighted by (0, 0) in the center and for each pendant vertex; for instance C, the weight is equal to
w2(C) = (∑x∈C∩Vp w(x), ∑x∈C∩Vq w(x)). Hence,

W(v`i
) = d(Vp, Vq) = ∑

Ei,j
t

W(T/Ei,j
t , w2) = ∑

Ei,j
t

∑
C,C′

w2(C).w2(C′)d(C, C′)

Since, the center C, of the quotient graph (S
T/Ei,j

t
, w2) has the weight (0, 0), for each vertex C′,

we have d̄(C, C′) = w2(C).w2(C′)d(C, C′) = 0. On the other hand, if C and C′ are two pendant vertices
of (S

T/Ei,j
t

, w2), then

d̄(C, C′) = w2(C).w2(C′)d(C, C′) = 2w2(C).w2(C′)

= 2

 ∑
x∈C∩Vp

w(x)× ∑
x∈C′∩Vq

w(x)

+ ∑
x∈C′∩Vp

w(x)× ∑
x∈C∩Vq

w(x)

 . (9)

Clearly, Vp has one element, hence the maximum value of (9) or, generally, the maximum value of

W(G/Ei,j
t , w2) happened when the connected component corresponding to vp = v`i

called Cvp has no
vertices from Vq = V`i

− {v`i
}—that is,

W(T/Ei,j
t , w2) = ∑

C,C′∈(S
T/Ei,j

t
,w2)

d̄(C, C′)

= ∑
C∈(S

T/Ei,j
t

,w2)

d̄(C, Cvp) ≤ 2(|V`i
| − 1). (10)
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Note in Equation (10) that if Ci, Cj 6= Cvp then w2(Ci) = (0, ∑x∈Ci∩Vq w(x)) and w2(Cj) =

(0, ∑x∈Cj∩Vq w(x)) and w2(Ci).w2(Cj) = 0. Therefore,

W(v`i
) = ∑

Ei,j
t

W(T/Ei,j
t , w2)

= ∑
Ei,j

t

∑
C∈(S

T/Ei,j
t

,w2)

d̄(C, Cvp) ≤ 2`(|V`i
| − 1). (11)

It should be noted that, in the last equation, the value ` comes from this fact that for each 1 ≤ t ≤ `,
the value W(T/Ei,j

t , w2) 6= 0.
Finally, we obtain the main result by applying the Equation (11) in the modified Wiener index

as follows:

MW(G) =
n
2 ∑

vi

W(vi) =
n
2 ∑

vi

∑
E

W(G/Ei, w2)

=
n
2 ∑

Ei,j
t

∑
C∈(S

T/Ei,j
t

,w2)

d(C, Cvp) ≤
n
2 ∑

V`i
∈S

2`(|V`i
| − 1)

= n[
r

∑
i=1

i(|Vi1 |+ · · ·+ |Viki
|)−

r

∑
i=1

iki]

≤ n[r
t

∑
i=1
|Vi| − [(r− 1)(|V11 |+ · · ·+ |V1k1

|)

+ (r− 2)(|V21 |+ · · ·+ |V2k2
|) + · · ·

+ (|V(r−1)1
|+ · · ·+ |V(r−1)kr−1

|)]− r(r + 1)
2

]

≤ n[r(n− 1)− 2[(r− 1) + (r− 2) + · · ·+ 1]− r(r + 1)
2

]

= nr(n− 3r + 1
2

). (12)

The proof is complete in this case.
For equality, from Inequality (12), we obtain that |Vi1 |+ · · ·+ |Viki

| = 2 for each 1 ≤ i ≤ r− 1,
and ki = 1 for each 1 ≤ i ≤ r—that is, r = 1, or if r ≥ 2, then T is a path of odd order (T is a centered
tree). Alternately, the Inequality (11) is equal in the path and star graph. It means that the equality
is satisfied when T ∼= Sn or T ∼= Pn. Vice versa, when T ∼= Sn, then r = 1, and if T ∼= Pn (n is odd),
then r = n−1

2 , so one can easily see that the equality holds.
When T is a bicentered tree, then we have the edge center e = uv. We treat e as a vertex and define

the Θ∗-partition E similar to the previous case. That is somewhat a tree of radius r− 1. Now, we can
realize the Θ∗-partition as E ∪ {e}, and Equation (11) changes to

W(v`i
) ≤ 2`(|V`i

| − 1) + (|V`i
| − 1).

The additional term comes from the edge center e where the quotient graph T − e is an edge.
To complete the proof, we need to continue as before with some changes in the summation indices.

Indeed, our approach gives a new method for computing distance-based graph invariants such
as the modified Wiener index, terminal Wiener index, and so on. There are many research studies in
chemistry, biology, or information theory in which the authors obtained some equalities or bounds
for distance-based graph invariants on molecule graphs or networks, such as dendrimer nanostars,
fullerenes, or mesh networks [27–31]. Almost all of the mentioned researches have been applied to a
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traditional summation method between vertices, whereas in this paper, we prove a method based on a
two-dimensional weight and an equivalence relation.

5. Concluding Remarks

Studying partitions and colored distances has been crucial in metric graph theory, as the usefulness
of those problems when defining/analyzing quantitative graph measures has been proved. As we
have mentioned repeatedly in the paper, its motivation stems from the facility location network
problem [1,2]. Those concepts are usually defined on the whole vertex set of a graph. In this manuscript,
we tackled the problem of inducing these definitions locally and consider subsets of vertices. For a
special case, we demonstrated that the modified Wiener index is a concept that requires finding the
distances between vertices of an orbit. Previous definitions for partitions and colored distances were
not able to compute the modified Wiener index. In this way, we considered the canonical metric
representation method and defined a two-dimensional weight for vertices of graphs with an operator.
Then, we applied quotient graphs and cuts to calculate the induced partition and colored distances for
some subsets of vertices. Two-dimensional weights for quotient graphs are extensions of traditional
one-dimensional weights introduced for canonical metric representation. The problem of finding a
minimum-cost spanning tree is one of the classic algorithmic questions in computer science and graph
theory. In many cases, distances can be used to define cost functions. For instance, the problem of
finding a minimum average distance (MAD) tree is one of the well-known problems in computer
science (see the survey [32]). A MAD tree of a graph is defined as a spanning tree with minimum
average distance or, equivalently, with the minimum Wiener index. In addition to the modified Wiener
index, e.g., the MAD tree, the relative Wiener index, and the k-diameter of a graph G are a few concepts
that would be interesting to consider in terms of certain induced partitions and colored distances.
We will consider these problems in future works.
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