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Abstract
Spatial modes of light directly give the most easily accessible degree of freedom that span an
infinite dimensional Hilbert space. The higher dimensional spatial mode entanglement realized
using spontaneous parametric down conversion (SPDC) process is generally restricted to the
subspace defined by a single spatial mode in pump. Access to other modal subspaces can be
realized by pumping beams carrying several easily tunable transverse modes. As a proof of
principle experiment, we generate twin-photon states in an SPDC process with pump as a
superposition of first order Laguerre–Gaussian (or Hermite–Gaussian) modes. We show that the
generated states can be easily tuned between different subspaces by controlling the respective
modal content in the pump superposition.

1. Introduction

Photonic quantum information has made an explosive growth scientifically and technologically after the
realization of various protocols utilizing various fundamental properties of photons. Experiments ranging
from testing the fundamental principles of quantum mechanics to applications in quantum communication
are easily realized by utilizing the correlations and entanglement observed between the twin photons (called
signal and idler) generated in a second order nonlinear optical process called spontaneous parametric down
conversion (SPDC) [1]. In earlier days, more attention was given toward theoretical and experimental
realization of two-dimensional Hilbert space of photon polarization [2]. Two photon higher dimensional
entanglement has been realized using various degrees of freedom such as time [3], frequency [4] and space
[5]. Such systems are used in quantum communication involving multi-dimensional states [6].

Entangled photons in high dimensions are shown to have stronger Bell violations [7–9], and can
provide greater information content per photon [5, 10, 11] with increased tolerance for noise [12]. Such
systems can be utilized for the implementation of quantum communication schemes with greater security
[13]. Spatial modes of light are commonly used to represent higher dimensional quantum states.
Entanglement of photon pairs in different spatial modes directly provides several choices of subspaces in a
multidimensional Hilbert space [14]. Most common among them are the Laguerre–Gaussian (LG) and
Hermite–Gaussian (HG) modes. Light beams with LG mode have a cylindrical symmetry along
propagation axis and have a doughnut-like intensity distribution. They have an associated azimuthal index
that gives orbital angular momentum (OAM) of l� to each photon, where l is the azimuthal index [15–17].
In classical optics, such light beams are generally known as optical vortices. HG modes have a rectangular
symmetry along the beam propagation [18]. They each form a complete orthonormal basis with infinite
dimensionality [16, 19, 20]. Access to higher dimensions in Hilbert space makes OAM of light a suitable
candidate for realizing new types of secure quantum information schemes [13, 21, 22].

The theoretical and experimental aspects of correlations and entanglement of OAM of photons are well
established after initial experimental realizations of OAM entanglement of twin photons in a down
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conversion process [23, 24]. A combination of a grating hologram, a single-mode fiber and a single photon
detector acts as a mode projector for signal and idler photons in most of the quantum optics experiments
involving spatial modes [23, 25]. Parametric down conversion experiments involving OAM generally use
fundamental Gaussian pump and thereby measuring the correlations between the generated signal and idler
photons having equal but opposite OAM values. Higher dimensional states of OAM are generally prepared
by projecting signal and idler into appropriately designed holograms [8]. Dimension of the state generated
by OAM entangled photons is determined by Schmidt decomposition [26, 27]. Interestingly, schemes were
proposed for the preparation of photons in multidimensional vector states using optical vortex pancakes
made of Gaussian beam with distributions of nested azimuthal singularities in the pump [28]. As
generation of paired photons is highly dependent on the pump beam and the nonlinear crystal, modal
correlations can be manipulated by careful engineering of the pump [27, 29] as well as the phase-matching
parameters [30]. Along with LG modes, correlations and entanglement of other spatial modes are further
explored using different structured beams [31, 32]. With an HG mode in the pump, two-photon maximally
entangled states in HG basis are experimentally realized [32] and interference of twin-photons in HG basis
has been verified [33].

A pump carrying a single spatial mode generates twin photons that are correlated in different spatial
modes defined according to certain selection rules in SPDC [34, 35]. The spectrum constitutes a transverse
subspace defined by a spatial mode in the pump. For a pump containing many spatial modes altogether,
correlations between signal and idler will be present in the subspaces corresponding to each mode in the
pump. So, multidimensional states with higher modal capacity can be easily generated by adding several
modes to the pump. OAM correlations in multiple subspaces using phase-flipped Gaussian pump has been
reported [31]. Recent experiments showed that maximally entangled ququarts (four-dimensional states)
and qudits (d-dimensional states) can be generated by careful shaping of pump beam having additional
spiral modes along with Gaussian using spatial light modulator [36, 37].

In this work, we use interferometric technique [38] to switch between different helical modes in the
pump. A half-wave plate in the interferometer controls the tuning between modes in the pump. We give
simple and generic theoretical description of tuning of pump modes in HG and LG basis using
interferometry. The tuning leads to the corresponding switching among the subspaces that satisfies modal
selection rules. We showed that the quantum spiral spectrum of twin photons contains multiple diagonals,
where each diagonal corresponds to a spatial mode in the pump. Since LG modes can be expressed in terms
of sums of HG modes [39], the same interferometric setup inherently gives a variable superposition of
different HG modes in the pump. We also measured the two-photon spectrum in HG basis, which have
states from two different HG subspaces.

The article goes as follows: section 2 gives the detailed theoretical description of pump preparation,
SPDC joint states in LG and HG bases and their projective measurements. The experimental details are
given in section 3. The results of the experiments for selective tuning of states and further discussion on
modal spectra in LG and HG bases are included in section 4. The presented work is concluded in section 5.

2. Theory

A pump beam having a single spatial mode can be represented by the state |ψp〉. When a pump photon
interacts in a nonlinear crystal, twin photons are generated with different spatial modes. The correlations
between the modes is governed by certain spatial selection rules [34, 35]. Based on this, the joint
signal–idler state can be represented as

|ψ〉 =
∑

j

C(j)
ab |aj〉s|bj〉i, (1)

where aj and bj represent the jth spatial modes of signal (s) and idler (i) photon respectively. C(j)
ab is the

probability amplitude for occurrence of the state |aj〉s|bj〉i.
When pump contains superposition of many spatial modes, the state of the pump is written as

|ψp〉 =
∑

k ak|fk〉, then the corresponding SPDC state is given by

|ψ〉 =
∑

k

Gk

∑
j

C(j)
ab |aj〉s|bj〉i, (2)

where Gk is the weight factor for each pump mode. For each mode fk in the pump, the j-summation in
equation (2) represents the biphoton eigenstate corresponding to fk. In experiments, the probability
amplitude corresponds to the coincidence counts obtained by projecting conjugate spatial modes in signal
and idler. The coincidence counts representing jth state is given by
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Figure 1. Experimental setup for the generation of variable superposition of optical vortices. HWP—half wave plate;
PBS—polarizing beam splitter; SPP—spiral phase plate. Counter clockwise propagating beam shown with red arrows and
clockwise propagating beam is shown with blue arrows.

|C(j)
ab |

2 ∝ |s〈a(proj)
j |i〈b(proj)

j |ψ〉|2. (3)

Here, a(proj)
j and b(proj)

j represent spatial modes considered in projective measurement. In field

representation, equation (3) is an overlap integral of the interacting pump (Ep

(
kp⊥

)
), signal (Es (ks⊥)) and

idler (Ei (ki⊥)), where kp⊥, ks⊥ and ki⊥ are respective transverse wave vectors that satisfy the momentum
conservation

kp⊥ = ks⊥ + ki⊥ (4)

For a collinear phase-matched SPDC, the probability amplitude in equation (3) is rewritten as an overlap
integral with the interacting fields

C(j)
ab =

∫∫
Ep(ks⊥ + ki⊥)E∗

s (ks⊥)E∗
i (ki⊥)dks⊥ dki⊥. (5)

The above integral depends on the momentum coordinates of signal and idler. In this paper, we consider
the tunable superposition of two LG modes as the pump for our down conversion process experiment.

2.1. Controlled generation of tunable superposition of LG modes
For this purpose, we use the technique of polarization based Sagnac interferometer as shown in figure 1. We
start with a horizontally polarized Gaussian pump beam. The state of the laser beam before the first
half-wave plate (HWP1) can be expressed as the tensor product of polarization and OAM bases,

|ψin〉 = |H〉|0〉, (6)

where |H〉 represents the state of horizontally polarized input Gaussian beam and |0〉 denotes it is zero
azimuthal index. Using Jones matrix notation, we can represent horizontally and vertically polarized light
with the respective column vectors

|H〉 =
(

1
0

)
; |V〉 =

(
0
1

)
, (7)

and the action of HWP1 whose fast axis is at an angle θ1 with respect to vertical axis is given by a 2 × 2
Jones matrix

ÛHWP(θ1) =

(
cos 2θ1 sin 2θ1

sin 2θ1 − cos 2θ1

)
. (8)

After passing through HWP1, state of the beam becomes

ÛHWP(θ1)|V〉| 0〉 =
(
sin 2θ1|H〉 − cos 2θ1|V〉

)
|0〉. (9)

Now the beam is fed into a polarizing Sagnac interferometer where the orthogonally polarized beams
(|H〉 and |V〉) counter-propagate and combine at the output of the interferometer. A spiral phase plate
(SPP) of winding order 1 converts the forward propagating Gaussian beam |l = 0〉 to |l = +1〉 and
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back-propagating Gaussian beam |l = 0〉 to |l = −1〉. So, the output state of generated beam after
interferometer is

|Ψsag〉 = sin 2θ1|H〉|+ 1〉+ cos 2θ1|V〉| − 1〉. (10)

This light is then passed through the second half-wave plate (HWP2), whose fast axis is at an angle θ2 with
respect to the vertical axis. Using similar calculations, we can find the state of output beam from Sagnac
interferometer as

|Ψout〉 = |H〉
(
sin 2θ1 cos 2θ2|+ 1〉+ cos 2θ1 sin 2θ2| − 1〉

)
+ |V〉

(
sin 2θ1 sin 2θ2|+ 1〉 − cos 2θ1 cos 2θ2| − 1〉

)
. (11)

When the tuned pump in the state given by equation (11) is incident on a non-linear crystal, it will down
convert only the beam having polarization oriented along its optic axis. During the down conversion
process, the crystal acts as a polarizer and down converts either |H〉 or |V〉 part of |Ψout〉. Considering the
crystal to be aligned for down converting only |H〉 part, for a fixed HWP2 angle θ2 = π/8, the pump state
being down-converted is

|Ψp〉 =
1√
2

(
sin 2θ1|+ 1〉+ cos 2θ1| − 1〉

)
. (12)

The above equation represents a variable superposition of |+ 1〉 and | − 1〉 modes. We can tune the OAM
content in the beam between |+ 1〉 and | − 1〉 by varying θ1. Then we measure the two photon spatial
mode spectrum, in both LG and HG bases.

2.2. Projections in LG basis
In field representation, equation (12), can be rewritten in momentum coordinates (ρ,φ), as

Ep =
1√
2

(
sin 2θ1LG1

p(ρ,φ) + cos 2θ1LG−1
p (ρ,φ)

)
, (13)

where LGl
p represents the LG mode distribution of radial index p = 0 and azimuthal index l given by [16]

LGl
p(ρ,φ) =

√
w2p!

2π(p + |l|)!

(
wρ√

2

)|l|
L|l|

p

(
w2ρ2

2

)
× exp

(
−w2

4
ρ2

)
exp(ilφ), (14)

where L|l|
p (.) is the associated Laguerre polynomial. In our experiment we have taken LG modes with radial

index p = 0 only. In LG eigenbasis, the spatial modes projected in signal and idler are respectively

Es = LGls
0 (ρ,φ) and Ei = LGli

0(ρ,φ). (15)

Substituting equations (13) and (15) in equation (5), the three field overlap integral becomes

Cls ,li =

∫ 2π

0
dφ

∫ ∞

0
ρ dρ

(
sin 2θ1LG1

0(ρ,φ) + cos 2θ1LG−1
0 (ρ,φ)

)
[LGls

0 (ρ,φ)LGli
0(ρ,φ)]∗. (16)

Calculating integral of each terms and summing them [40], we get

Cls ,li =

√
w2

p

π|ls|!|li|!
(δ1,ls+li sin 2θ1 + δ−1,ls+li cos 2θ1)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

3

)α+1√
π

α+ 1
2∏

n=1

(2n − 1) if 2α is odd, or(
2

3

)α+1

α! otherwise,

(17)

where α = (1 + |ls|+ |li|)/2 and δ represents Kronecker delta function. For simplification, the pump and
collection waists are taken to be same (wp = ws = wi). Equation (17) is an exact expression in terms of ls
and li. The twin photon’s spectrum in LG basis based on equation (17) is shown in figure 2. The spectrum
explains the independent OAM conservation relation for l = +1 and l = −1, where the sum of OAMs of
pump, signal and idler photons equals zero. The decrease in the value of C for higher l values is due to the
increase in overall size of the beams and results in less overall overlap. By varying the value of θ1, the
spectrum in LG basis can be tuned easily and dynamically. The value of θ1 tunes the contribution to the
above and below to diagonal series of overlap. The parameter θ1 is easy to manipulate in the experiment
and a wide range of OAM spectrum can be obtained.
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Figure 2. Theoretically estimated two-photon OAM spectrum (Cls,li ) of SPDC photons in LG basis with equal superposition of
+1 and −1 order optical vortex pump (θ1 = π/8).

2.3. Projections in HG basis
A HG mode in momentum coordinates is written as

um,n(kx, ky) =
−im+n

√
2m+n+1πm!n!

Hm

(
wkx√

2

)
Hn

(
wky√

2

)
× exp

(
−w2

4
(k2

x + k2
y )

)
. (18)

To make calculation of overlap integral in equation (5) simpler, we consider the interacting fields in
momentum coordinates. A LG mode from |Ψp〉 can be written in terms of sum of HG modes as in [39]

LG1
0 =

1√
2

(u1,0(kx, ky) + iu0,1(kx, ky)), and

LG−1
0 =

1√
2

(u1,0(kx, ky) − iu0,1(kx, ky)). (19)

Substituting equation (19) in equation (13), we get

Ep(ks⊥ + ki⊥) =
1

2

[
(sin 2θ1 + cos 2θ1)u1,0(ks⊥ + ki⊥)

+ i(sin 2θ1 − cos 2θ1)u0,1(ks⊥ + ki⊥)
]

(20)

In an HG eigenbasis, the signal and idler modes are given as

Es(ks⊥) = ums,ns (ks⊥); Ei(ki⊥) = umi,ni (ki⊥) (21)

Then, the three beam overlap integral will be

Cmi ,ni
ms ,ns

=

∫ ∞

−∞

∫ ∞

−∞
dks⊥ dki⊥Ep(ks⊥ + ki⊥) × u∗

ms,ns
(ks⊥)u∗

mi,ni
(ki⊥) (22)

After evaluating the above integral (detailed calculation is shown in appendix A), we get

Cmi,ni
ms ,ns

=

√
π

8

[
(sin 2θ1 + cos 2θ1)b(ms, mi, M − 1) × b(ns, ni, N)uM−1,N(0, 0)

+ i(sin 2θ1 − cos 2θ1)b(ms, mi, M) × b(ns, ni, N − 1)uM,N−1(0, 0)
]

(23)

where M = ms + mi, N = ns + ni and

b(n, m, k) =

√
(n + m − k)!k!

2n+mn!m!

1

k!
× dk

dtk
[(1 − t)n(1 + t)m]|t=0. (24)
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Figure 3. Theoretical twin photon OAM spectrum of SPDC photons in HG basis (C
mi,ni
ms,ns ) with equal superposition of +1 and

−1 order optical vortex pump (θ1 = π/8).

Equation (23), together with equation (24), forms the complete expression for projections of signal and
idler modes in HG basis. Here, uγ,δ is the HG mode (18) evaluated at Hγ(0) × Hδ(0). For θ1 = π/8, the
second term in the equation (23) vanishes and the pump field will have only HG1,0 term. When γ is odd,
the Hermite polynomial [41] Hγ(0) = 0. So, for non-zero values of uM−1,N, M − 1 and N must be even.
Also, in the above expression, the coefficient b will give non-zero values when the third independent
variable in b is a positive integer. Combining the two conditions for non-zero values of Cmi,ni

ms,ns , we can derive
the selection rule for down converted fields as [35]

M = ms + mi � 1; parity(ms + mi) = odd

N = ns + ni � 0; parity(ns + ni) = even. (25)

Evaluating for a particular value of index-set is easy. HG spectrum can also be engineered easily by tuning
the HWP1 i.e. θ1. Theoretically obtained spectrum in HG basis is shown in figure 3. This is the spectrum
obtained for the HWP1 at θ1 = π/8. The spectrum consists of two diagonals that corresponds to HG1,0 part
of the pump. From the spectrum, we can see that the values of C are zero for both sum of indices, ms + mi

and ns + ni having same parity (odd or even) or even and odd parities respectively.

3. Experiment

The experimental setup to measure spatial correlation between signal and idler photons for a pump of
superposed vortices, is shown in figure 4. The setup consists of a UV diode laser (Toptica iBeam smart) of
wavelength 405 nm and power 250 mW with a spectral band-width of 2 nm. To generate required state, we
set up a polarizing Sagnac interferometer as discussed in section 2.1. The output beam prepared through
the Sagnac interferometer pumps the non-linear crystal type-I β-barium borate (BBO) of thickness 5 mm.
A band pass filter (BPF) of pass band 810 ± 5 nm is used after the crystal to block pump beam and pass
down converted photons. The down converted signal and idler photons of wavelength 810 nm each
(degenerate pair) generated from the crystal, are imaged to spatial light modulators (SLM-A and SLM-B)
using lenses L1 (f = 100 mm) and L2 (f = 500 mm). SLMs are used to project the signal–idler pair to a
particular LG/HG state. We select the first diffraction order of the output of each SLM so that the projected
photons in the first order are Gaussian. This is achieved by imaging SLM plane to the fiber couplers (FC)
in each arm using lenses L3 (f = 750 mm) and the aspheric lenses L4 attached with the fiber coupler
(f = 2 mm).

The FC are attached to the single mode fibers (SMF) each having a numerical aperture of 0.13 and a
mode field diameter of 5.0 ±0.5 μm, which in turn are connected to the single photon counting modules
(SPCM, Excelitas SPCM-AQRH-16-FC). The SPCMs have a timing resolution of 350 ps with 25 dark
counts per second. Two BPFs of pass band 810 ± 5 nm are kept very close to the fiber couplers to make sure

6
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Figure 4. Experimental setup for the generation of required state and measurement of modal correlations in down-conversion
process with pump as superposition of LG +1 and −1 modes. The setup for the pump preparation and the two-photon modal
measurements are shown with different background colors.

that other unwanted wavelengths are properly filtered out. To measure the number of correlated photon
pairs, the two detectors are connected to a coincidence counter (CC, IDQuantique ID800) having a time
resolution of 81 ps. LabVIEW is used for the automation of projective measurements, in both LG and HG
basis, by controlling the two modes on SLMs, performing the coincidence measurements from ID800, and
recording the singles and coincidences in the text files. A coincidence window of 8.1 ns was kept throughout
the measurement.

4. Results and discussion

From equation (12), we can see that the |+ 1〉 and | − 1〉 state in pump varies periodically and this change
is complementary to each other. This means that when |+ 1〉 OAM content is maximum, there is no
contribution of | − 1〉 OAM to the superposition, and vice versa. Considering only the non-zero
probabilities in the LG spectrum, we can explicitly write the output OAM state of SPDC as

|ψ〉 ∝ cos 2θ1

[
C1,0|1〉s|0〉i + C0,1|0〉s|1〉i + C2,−1|2〉s|−1〉i + C−1,2|−1〉s|2〉i + · · ·

]
+ sin 2θ1

[
C−1,0|−1〉s|0〉i + C0,−1|0〉s|−1〉i + C1,−2|1〉s|−2〉i + C−2,1|−2〉s|1〉i + · · ·

]
. (26)

Here, the terms in the square brackets represent states in subspaces corresponding to |+ 1〉 and | − 1〉 OAM
in the pump, respectively.

To obtain the biphoton OAM spectrum experimentally, we recorded the coincidences of signal and idler
photons coming in the first diffraction order of forked gratings on the two SLMs, coupled to single-mode
fibers. For example, to obtain the probability for generating |+ 1〉a|0〉b, we projected fork hologram of
charge −1 in SLM1 and hologram of charge zero in SLM2. Due to the cancellation of equal but opposite
azimuthal phases at the SLM, the amount of Gaussian light coupled into a SMF in individual arms gives the
singles counts, and the coincidence counts are measured with these. Figure 5 shows the experimentally
measured OAM spectrum by performing projective measurements in signal and idler arms with OAM
values ranging from l = −4 to 4. The number of modes contributing to the state is determined by the
Schmidt number K given by the expression K = (

∑
i,jCij)2/

∑
i,jC

2
ij, where Cij is the coincidence counts in

the two-photon modal spectrum corresponding to the measurement basis setting (i, j) [42]. For both
theoretically (figure 2) and experimentally (figure 5) estimated spiral spectra, the Schmidt number is 15 ± 1
[43–45]. This is approximately the total number of non-zero diagonal elements in the spectra. For a spectra
of states in a single subspace, the dimensionality will be almost half of that with two subspaces.

Considering the pump as a superposition of HG modes (as in equation (20)), and the selection rule for
HG spectrum (equation (25)), biphoton state in HG basis can be written as

|ψ〉 ∝ (sin 2θ1 + cos 2θ1)
[
C1,0

0,0|00〉s|10〉i + C0,0
1,0|10〉s|00〉i + C1,1

0,1|01〉s|11〉i

+ C0,1
1,1|11〉s|01〉i + · · ·

]
+ (sin 2θ1 − cos 2θ1)

[
C0,1

0,0|00〉s|01〉i + C0,0
0,1|01〉s|00〉i

+ C0,2
0,1|01〉s|02〉i + C0,1

0,2|02〉s|01〉i + · · ·
]
. (27)

7
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Figure 5. Experimentally measured two-photon OAM spectrum of SPDC photons in LG basis with equal superposition of +1
and −1 order optical vortex pump (θ1 = π/8).

Figure 6. Experimentally measured two-photon spectrum of SPDC photons in HG basis with equal superposition of +1 and −1
order optical vortex pump (θ1 = π/8).

For θ1 = π/8, the pump field in terms of HG mode is obtained as

Ep(ks⊥ + ki⊥) =
u1,0(ks⊥ + ki⊥)√

2
. (28)

For such a pump, the second term in equation (27) vanishes and the contribution from the first term
constitutes the spectrum. In experiment, we varied all the four indices of the two HG modes, two each for
signal and idler (ms, mi, ns and ni) and measured the coincidences. The measured HG spectrum is shown in
figure 6. The observed mode spectrum follows the mode selection rules given in equation (25). Similar to
the OAM spectrum, HG spectrum also contains two diagonals, which represent states corresponding to
HG1,0 pump mode. From the HG spectrum given in figure 3, the Schmidt number is estimated to be
33 ± 8. The experimental HG spectrum in figure 6 gives a Schmidt number of 33 ± 6.

To verify the tuning of biphoton states further, we varied θ1 and recorded the coincidences in different
signal–idler OAM bases. The coincidences for signal–idler OAM states |1〉s|0〉i, |0〉s|1〉i, | − 1〉s|0〉i,
|0〉s| − 1〉i, |2〉s| − 1〉i, | − 1〉s|2〉i, |1〉s| − 2〉i and | − 2〉s|1〉i with respect to θ1 are plotted in figures 7(a) and
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Figure 7. Plots of coincidence counts with respect to HWP1 angles for (a) |1〉s|0〉i , |0〉s|1〉i , | − 1〉s|0〉i, |0〉s| − 1〉i and
(b) |2〉s| − 1〉i, | − 1〉s|2〉i , |1〉s| − 2〉i and | − 2〉s|1〉i signal–idler OAM states.

(b). We observed a sinusoidal variation of coincidence counts with θ1. At the angles θ1 where |1〉s|0〉i and
| − 1〉s|0〉i coincidence curves intersect, the generated entangled state have equal contributions of |1〉s|0〉i,
|0〉s|1〉i, | − 1〉s|0〉i and |0〉s| − 1〉i. When θ1 is changed such that there is more +1 OAM and less −1 OAM
in the pump, then the coincidences corresponding to |1〉s|0〉i and |0〉s|1〉i, increase and that corresponding
to | − 1〉s|0〉i and |0〉s| − 1〉i decrease.

Similar to the case of LG basis, we can see that the probabilities of occurrence of states corresponding to
HG10 and HG01 pump varies from zero to maximum, when θ1 is tuned from 0◦ to 180◦. This results in the
variation of effective number of accessible modes in HG basis. This is clear from equation (27). So, by
controlling the amount of H- and V-polarized light in the interferometer, one can generate biphoton OAM
state in particular selected bases in a controllable manner. Similar states are prepared using pump
superposition obtained with spatial light modulators (SLM) [36, 37]. However, SLMs have restrictions on
repetition rates and damage threshold. They give relatively poor mode quality that needs to be corrected by
additional imaging systems. Interferometric method presented here provides absolute refresh rates which
could be advantageous for fast information transfer and higher key rates in quantum key distribution.
Output of the interferometer directly gives cleaner modes over large distances. The interferometric method
is thus useful in building a compact and stable system without any restriction in power.

5. Conclusion

Spatial modes of light are one of the useful resources for encoding multidimensional quantum states to
implement various quantum information protocols. The twin photon states in spatial modes generated via
parametric down conversion process are generally restricted to a single modal subspace, due to the pump
carrying a single spatial mode. We experimentally showed that the biphoton state can be spanned over
multiple spatial eigenbases by adding several modes to the pump. We verified, both theoretically and
experimentally, the mode spectrum in LG basis and in HG basis. Both the modal spectra can be easily
engineered using a half-wave plate. Further, the generated state can be switched among different OAM bases
by controlling the amount of the individual OAM contribution in the pump superposition that corresponds
to a particular basis.

We also verified the tuning of entangled states in modal basis with changing the angle of half wave plate.
Calculated values of Schmidt numbers showed that the dimensionality of the tunable state with multiple
subspaces is significantly higher than that with a single subspace. Also, the tuning of states in two different
subspaces is complementary to each other, which directly comes from similar change to modal contribution
in the pump. The presented results may find applications in the generation of novel higher dimensional
OAM entangled states for quantum key distribution and communication.

Appendix A. Calculation of Cmi,ni
ms,ns

To derive the analytical expression of Cmi,ni
ms,ns , we have adapted calculations from [35]. In the HG basis, the

mode overlap integral is given by

Cmi,ni
ms ,ns

=

∫ ∞

−∞

∫ ∞

−∞
dks⊥ dki⊥Ep(ks⊥ + ki⊥) × E∗

s (ks⊥)E∗
i (ki⊥). (A.1)
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Here, ks⊥ and ki⊥ are the transverse wave vectors of signal and idler respectively. A HG mode in momentum
coordinates is given in equation (18) with equations (20) and (18), equation (A.1) becomes

Cmi,ni
ms,ns

=
1

2

∫ ∞

−∞

∫ ∞

−∞
dks⊥ dki⊥

[
(sin 2θ1 + cos 2θ1)U1,0(ks⊥ + ki⊥)

+ i(sin 2θ1 − cos 2θ1)U0,1(ks⊥ + ki⊥)
]
× u∗

ms,ns
(ks⊥)u∗

mi,ni
(ki⊥). (A.2)

Here, Um,n(k) is equivalent to the expression (18) but characterized by the wavelength λp and beam radius
wp of the pump. To simplify the integral, we change the coordinates

Q = ks⊥ + ki⊥; P = ks⊥ − ki⊥, (A.3)

such that dks⊥dki⊥ = 1
2 dQ dP. Then, we have

Cmi,ni
ms,ns

=
1

4

∫ ∞

−∞

∫ ∞

−∞
dQ dP

[
(sin 2θ1 + cos 2θ1)U1,0(Q)

+ i(sin 2θ1 − cos 2θ1)U0,1(Q)
]
× u∗

ms,ns

(
Q + P

2

)
u∗

mi,ni

(
Q + P

2

)
. (A.4)

The interacting pump and SPDC fields in HG mode will have maximum overlap when ws = wi =
√

2wp.
For degenerate down conversion, λs = λi = 2λp. So, it can be easily shown that um,n(k/

√
2,λs,ws) =

um,n(k/
√

2,λi,wi) = Um,n(k,λp,wp). Expanding u∗
ms,ns

and u∗
mi,ni

in equation (A.4) using equation (18) and
regrouping x and y terms, we get

u∗
ms,ns

(
Q + P

2

)
u∗

mi,ni

(
Q + P

2

)
=

U∗
ms,mi

(
Qx + Px√

2
,

Qx − Px√
2

)
× U∗

ns,ni

(
Qy + Py√

2
,

Qy − Py√
2

)
. (A.5)

To simplify the integral further, we make use of diagonal Hermite–Gaussian (DHG) modes, defined as

DHGm,n(k̃x, k̃y) =
m+n∑
α=0

b(m, n,α)um,n(kx, ky), (A.6)

with k̃x = (kx + ky)/
√

2, k̃y = (kx − ky)/
√

2 and the coefficient b(m, n,α) defined as

b(m, n,α) =

√
(m + n − α)!α!

2m+nm!n!

1

α!

dα

dtα
[(1 − t)m(1 + t)n]|t=0. (A.7)

Substituting equation (A.6) on the rhs of equation (A.5), the product becomes

u∗
ms,ns

(
Q + P

2

)
u∗

mi,ni

(
Q + P

2

)
=

M∑
α=0

b(ms, mi,α)U∗
M−α,α(Qx, Px)

×
N∑

β=0

b(ns, ni,β)U∗
N−β,β(Qy, Py), (A.8)

where M = ms + mi and N = ns + ni. Substituting this equation (A.8) back in equation (A.4), the
coefficient C becomes

Cmi ,ni
ms ,ns

=
1

4

M∑
α=0

N∑
β=0

b(ms, mi,α)b(ns, ni,β) ×
∫ ∞

−∞
dQ

[
(sin 2θ1 + cos 2θ1)U1,0(Q)

+ i(sin 2θ1 − cos 2θ1)U0,1(Q)
]
× U∗

M−α,N−β(Q)

∫ ∞

−∞
dP U∗

α,β(P). (A.9)

The orthonormality condition of HG modes is∫ ∞

−∞
dQ U∗

M−α,N−β(Q)Um,n(Q) = δM−α,mδN−β,n, (A.10)

10
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and by straightforward calculation of P-integral in equation (A.9) using the series expansion of Hermite
polynomial, the coefficient C becomes

Cmi,ni
ms,ns

=

√
π

8

[
(sin 2θ1 + cos 2θ1)b(ms, mi, M − 1)b(ns, ni, N)uM−1,N(0, 0)

+ i(sin 2θ1 − cos 2θ1)b(ms, mi, M)b(ns, ni, N − 1)uM,N−1(0, 0)
]

(A.11)

where b(.) is defined by equation (24).
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