Article

On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials

Modjtaba Ghorbani ${ }^{1, *}$ © ${ }^{(D)}$, Matthias Dehmer ${ }^{2,3,4}$ (©) and Frank Emmert-Streib ${ }^{5}$ (D)
1 Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran 16785-136, Iran
2 Department of Computer Science, Swiss Distance University of Applied Sciences, 3900 Brig, Switzerland; Matthias.Dehmer@umit.at
3 Department of Biomedical Computer Science and Mechatronics, UMIT, Hall in Tyrol A-6060, Austria
4 College of Artficial Intelligence, Nankai University, Tianjin 300071, China
5 Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, 33720 Tampere, Finland; frank.emmert-streib@tut.fi
* Correspondence: mghorbani@sru.ac.ir; Tel.: +98-21-22970029

Received: 8 August 2020; Accepted: 28 August 2020; Published: 7 October 2020

Abstract

The orbit polynomial is a new graph counting polynomial which is defined as $O_{G}(x)=\sum_{i=1}^{r} x^{\left|O_{i}\right|}$, where O_{1}, \ldots, O_{r} are all vertex orbits of the graph G. In this article, we investigate the structural properties of the automorphism group of a graph by using several novel counting polynomials. Besides, we explore the orbit polynomial of a graph operation. Indeed, we compare the degeneracy of the orbit polynomial with a new graph polynomial based on both eigenvalues of a graph and the size of orbits.

Keywords: automorphism group; orbit; group action; polynomial roots; orbit-stabilizer theorem

1. Introduction

In quantum chemistry, the early Hückel theory computes the levels of π-electron energy of the molecular orbitals in conjugated hydrocarbons, as roots of the characteristic/spectral polynomial which are called the eigenvalues of a molecular graph, see [1]. This concept was generalized by Hosoya [2] and the others [3-5] by changing the adjacency matrix with other matrices based on graph invariants. In the mathematical chemistry literature, the counting polynomials have first been introduced by Hosoya, see [6]. Other counting polynomials have later been proposed: Matching polynomial [7,8], independence [9,10], king [11,12], color [12], star or clique polynomials [13,14], etc. An overview of graph polynomials is provided in reference [15].

In the current work, we introduce a novel graph polynomial based on orbit-partitions of regarding graph, see [16,17]. It is derived from the concept of orbit polynomial. The typical terms of the orbit polynomial is of the form $c_{n} x^{n}$, where c_{n} is the number of orbits of the automorphism group of size n. It should be noted that the characteristic polynomials do not characterize graphs due to several isospectral graphs, see [18].

We proceed as follows. In Section 2, the definitions used in the present work are introduced and known results needed are given. Section 3, contains the main results of this paper based on the orbit structure of a graph. Finally, in Section 4, by using the concept of graph spectra, we define a new version of orbit polynomial whose unique positive root is a measure that discriminate all graphs of order six, uniquely.

2. Preliminaries

In this research, $V(G)$ and $E(G)$ indicates the vertex and edge sets of the graph G, respectively. We assume that all graphs are simple, connected and finite.

In this paper, the automorphism group of a graph as well as the vertex-orbits are needed to infer the orbit polynomial. The automorphism group is a collection of all permutations on the set of vertices that preserves the adjacency between vertices of a graph, namely $e=x y$ is an edge of graph G if and only if $\pi(e)=\pi(x) \pi(y)$ is an edge. We denote the automorphism group of a graph G by $\operatorname{Aut}(G)$.

For the vertex u, an orbit containing u is the collection of all $\alpha(v)$'s in which α is an automorphism element of G. The graph G is said to be vertex-transitive, if it has exactly one orbit. This means that in a vertex-transitive all vertices can be mapped to each other, namely for two elements a and b, there is at least an automorphism β that $\beta(a)=b$. An edge-transitive graph can be defined similarly.

Let Γ be a group acting on the set X. The stabilizer of element $x \in X$ is defined as $\Gamma_{x}=\{g \in \Gamma: g \cdot x=x\}$. The orbit-stabilizer theorem implies that $\left|x^{\Gamma}\right| \times\left|\Gamma_{x}\right|=|\Gamma|$, see [19].

3. The Orbit and the Modified Orbit Polynomials

The orbit polynomial was defined by Dehmer et al. in [16] as

$$
O_{G}(x)=\sum_{i=1}^{t} x^{\left|O_{i}\right|}
$$

where $O_{1}, \ldots O_{t}$ are all vertex-orbits of G. Moreover, the the modified version of orbit polynomial, O_{G}^{\star} is defined as

$$
O_{G}^{\star}(x)=1-\sum_{i=1}^{t} x^{\left|O_{i}\right|}
$$

Many structural properties of a graph can be derived from the orbit polynomial. Let G be a graph of order n. From the definition, it is clear that if $A u t(G) \cong i d$, then $O_{G}(x)=n x$ and thus $O_{G}^{\star}(x)=1-n x$. Moreover, a graph is vertex-transitive if and only if $O_{G}(x)=x^{n}$ and consequently $O_{G}^{\star}(x)=1-x^{n}$.

Example 1. The cycle graph C_{n} is vertex-transitive and by the above discussion $O_{C_{n}}(x)=x^{n}$ and $O_{C_{n}}^{\star}(x)=1-x^{n}$.

Example 2. For the path graph P_{n} we obtain

$$
O_{P_{n}}(x)=\left\{\begin{array}{ll}
\frac{n}{2} x^{2}, & 2 \mid n \\
x+\frac{n-1}{2} x^{2}, & 2 \vee n
\end{array},\right.
$$

and

$$
O_{P_{n}}^{\star}(x)=\left\{\begin{array}{ll}
1-\frac{n}{2} x^{2}, & 2 \mid n \\
1-x-\frac{n-1}{2} x^{2}, & 2 \vee n
\end{array} .\right.
$$

From the orbit polynomial P_{n}, one can easily see that if n is even then P_{n} has a pendant edge and if n is odd then P_{n} has a central vertex, since each tree has a central vertex or a central edge, see [20]. We also explore that in the case that n is even (n is odd), then P_{n} has $\frac{n}{2}\left(\frac{n-1}{2}\right)$ orbits of length two.

3.1. Orbit Polynomial of Line Graphs

An edge-automorphism of graph G is a bijection α on $E(G)$ such that two edges e, f are adjacent if and only if $\alpha(e)$ and $\alpha(f)$ are adjacent in G. The set of all edge-automorphisms of graph G is also a group under the composition of functions and we denote it by $A u t_{1}(G)$.

Any automorphism α of G induces a bijection $\bar{\alpha}$ on $E(G)$, defined by $\bar{\alpha}(u v)=\alpha(u) \alpha(v)$. It is clear that $\bar{\alpha}$ is an edge-automorphism. The set

$$
A u t^{\star}(G)=\{\bar{\alpha}: \alpha \in A u t(G)\}
$$

is a subgroup of $A u t(G)$ induced by edge-automorphisms of G.
Theorem 3 ([20]). Assume that G is a graph of order $n \geq 3$. Then $\operatorname{Aut}(G) \cong A u t^{\star}(G)$.
For a graph G, its line graph $\mathcal{L}(G)$ is a new graph with the vertex set is $E(G)$ and two vertices are adjacent in $\mathcal{L}(G)$ if and only if the corresponding edges are adjacent in G. An automorphism of $\mathcal{L}(G)$ is an edge-automorphism of G. Suppose $\mathcal{W}=\left\{W_{1}, W_{2}, W_{3}\right\}$ are the set of graphs as depicted in Figure 1. Then we have the following theorem.

W_{1}

W_{2}

W_{3}

Figure 1. Three graphs W_{1}, W_{2} and W_{3} of order 4.
Theorem 4 ([1]). For a connected graph G, where $G \notin \mathcal{W}$, we have

$$
\operatorname{Aut}(G) \cong \operatorname{Aut}(\mathcal{L}(G))
$$

Consider two graphs G_{1} and $\mathcal{L}\left(G_{1}\right)$ in Figure 2. Both of them have the same orbit polynomial $O_{G_{1}}(x)=O_{\mathcal{L}\left(G_{1}\right)}(x)=2 x^{2}+x$ while for two graphs G_{2} and $\mathcal{L}\left(G_{2}\right)$ in Figure 3, we have $O_{G_{2}}(x)=x^{2}+x^{4}$ and $O_{\mathcal{L}\left(G_{2}\right)}(x)=x^{3}+x$. Finally, consider the graph G_{3} and its line graph as depicted in Figure 4. The automorphism group of both of them is isomorphic with symmetric group \mathbb{S}_{3} but $O_{G_{3}}(x)=x+x^{3}$ and $O_{\mathcal{L}\left(G_{3}\right)}(x)=x^{3}$.

(${ }_{1}$

Figure 2. A graph with its line graph, both of order 5.

G_{2}

Figure 3. A graph of order 6 whose line graph is of order 5 .

G_{3}

$L\left(G_{3}\right)$

Figure 4. A graph and its line graph which have the same automorphism group.
The distance between two vertices x and y a graph G is the length of the shortest path between them and we denote it by $d(x, y)$. For the vertex u of graph G, suppose $\Gamma_{i}(u)$ is the number of vertices at distance i from u. If for two vertices u and v, we have $\Gamma_{i}(u)=\Gamma_{i}(v)(1 \leq i \leq d(G))$ then they are Hosoya-equivalent or H-equivalent, see [21-30].

The set of H-equivalent vertices is called an H-partition of G. Moreover, the Hosoya polynomial is defined as $P_{G}(x)=\sum_{i=1}^{l} x^{h_{i}}$, where H_{1}, \ldots, H_{l} are all H-partitions of G and $h_{i}=\left|H_{i}\right|$. The modified Hosoya polynomial is also $P_{G}^{\star}(x)=1-P_{G}(x)$.

Theorem 5. Suppose O_{1}, \ldots, O_{r} are all orbits of graph G. If for any pair of vertices $v_{i} \in O_{i}$ and $v_{j} \in O_{j}$, we have $\operatorname{deg}\left(v_{i}\right) \neq \operatorname{deg}\left(v_{j}\right)(1 \leq i, j \leq r)$, then O_{i} 's are all H-partitions of G.

Proof. It is clear that two vertices in the same orbit have the same degree. Moreover, two vertices u and v in a same H-partition have the same degree, since $d d s(u)=d d s(v)$ yields that $s_{1}(u)=s_{1}(v)$. Thus, if vertices of different orbits have different degrees, then they are in different H-partitions. This completes the proof.

Corollary 6. If the degrees of orbit vertices are distinct, then the orbit and Hosoya polynomials are the same, namely

$$
O_{G}(x)=P_{G}(x) \text { and } O_{G}^{\star}(x)=P_{G}^{\star}(x)
$$

By considering the definition of action of automorphism group of graph G on the set of edges, the edge version of orbit polynomial can be defined as follows.

Definition 7. Let $E_{1}, \ldots E_{h}$ are all edge-orbits under the action of $A u t(G)$ on the set of edges. Then

$$
\begin{aligned}
& \bar{O}_{G}(x)=\sum_{i=1}^{h} x^{\left|E_{i}\right|}, \\
& \bar{O}_{G}^{\star}(x)=1-\sum_{i=1}^{h} x^{\left|E_{i}\right|} .
\end{aligned}
$$

For example, the star graph S_{n} is edge-transitive; hence $\bar{O}_{S_{n}}=x^{|E|}=x^{n-1}$ and $\bar{O}_{S_{n}}^{\star}=1-x^{n-1}$. On the other hand, if T is a tree on n vertices with $\bar{O}_{T}(x)=x^{n-1}$, then T is edge-transitive and so T is a bi-regular graph, which means that all vertices of T are of degrees r and s for some $r, s \in \mathbb{N}$. If T is regular, then $T \cong K_{2}$ which confirms our claim. If T is a bi-regular tree, then $T \cong S_{n}$, since the pendant vertices compose an orbit and the central vertex is a singleton orbit. Notice that if $n \geq 3$, then an edge-transitive tree has not a central edge. Hence, we proved the following theorem.

Theorem 8. The edge-orbit polynomial $\bar{O}_{T}(x)=x^{n-1}$ if and only if $T \cong S_{n}$.
In continuing this section, we prove that the cycle graph C_{n} can be characterized by its edge-orbit polynomial.

Theorem 9. Let G be a graph without a pendant edge. Then $O_{G}(x)=\bar{O}_{G}(x)$ if and only if $G \cong C_{n}$.
Proof. If $G \cong C_{n}$, then we are done. Conversely, by $O_{G}(x)=\bar{O}_{G}(x)$, one can immediately conclude that the number of edges and the number of vertices of graph G are the same and thus G is a unicycle graph. If G has a vertex of degree greater than two, then G has at least two cycles, a contradiction. Hence, G is a connected regular graph of degree 2 and the assertion follows.

Suppose G is a graph with k orbits of equal sizes. Then $O_{G}(x)=k x^{\frac{n}{k}}$ and thus zero is the only root of O_{G}. On the other hand, if $x=0$ is the only root of O_{G}, then $O_{G}(x)=k x^{t}$, for some $k, t \in \mathbb{N}$. However, the set of orbits of a graph is a partition of the vertex set and thus $k t=n$, which means that $t=\frac{n}{k}$. In particular, if $k=1$ then G is vertex-transitive and if $k=n$ then G is asymmetric graph. Hence, we proved the following theorem.

Theorem 10. The integer $x=1$ is a root of $O_{G}^{\star}(x)$ if and only if G is vertex-transitive.
Proof. If G is vertex-transitive, then $O_{G}^{\star}(x)=1-x^{n}$ and clearly $x=1$ is a zero of it. Conversely, if $x=1$ is a zero of $O_{G}^{\star}(x)=1-\sum_{i=1}^{r} a_{i} x^{\left|O_{i}\right|}$, then $O_{G}^{\star}(1)=1-a_{1}-\ldots-a_{r}=0$. Since, $a_{i} \geq 1$, necessarily $r=1$ and $a_{1}=1$ which yields that G is vertex-transitive as desired.

3.2. Graph Classification with Respect to Orbit Polynomial

One of the classical problem in algebraic graph theory is characterizing the graphs in terms of the graph polynomials. Here, we introduce three classes of trees that can be characterized by their orbit polynomials.

Theorem 11. If G is a graph with orbit polynomial $x+x^{2}+x^{3}$, then G is a graph on 6 vertices. Moreover, if G has a pendant edge, then it has three pendant edges.

Proof. Clearly, G has 6 vertices, since the set of orbits is a partition for the vertex set. If G has only one pendant edge, then its endpoints compose two different singleton orbits, a contradiction. If G has two pendant edges, then necessarily they compose an orbit of size two. These edges share a common vertex, because in other case either we have two orbits of sizes 2 and 4 or three orbits of size two or there are two orbits of size 2 , all of them are contradictions. Hence, three other vertices are in the same orbit and they have the same degree. If they are of degree 2 , then $G \cong\left(K_{3} \cup \bar{K}_{2}\right)+K_{1}$ or $G \cong C_{4}+3 e$. If $G \cong C_{4}+3 e$, then $O_{G}(x)=2 x+2 x^{2}$, a contradiction.

Example 12. All graphs on six vertices with the orbit polynomial $O_{G}(x)=x+x^{2}+x^{3}$ are as depicted in Figure 5. They have different automorphism groups while their orbit polynomials are the same.

Figure 5. All graphs on six vertices with orbit polynomial $x+x^{2}+x^{3}$.

Example 13. Suppose $O_{G}(x)=a x+b x^{2}+c x^{3}$. Then $O_{G}(1)=a+2 b+3 c=n,(1 \leq a, b, c \leq 3)$ and thus $6 \leq n \leq 18$. All graphs with this property have at least six and at most 18 vertices. The problem is solved completely for $n=6$. If $n=7$, then necessarily $a=2$ and $b=c=1$. Hence, $O_{G}(x)=2 x+x^{2}+x^{3}$. This means that the related graph has two orbits of size 1, an orbit of size 2 and an orbit of size 3 . There are 39 graphs of order 7 by this property. Some of them are depicted in Figure 6.

Figure 6. Examples of graphs of order 7 with orbit polynomial $2 x+x^{2}+x^{3}$.
If $n=8$, then $O_{G}(x)=3 x+x^{2}+x^{3}$ or $O_{G}(x)=x+2 x^{2}+x^{3}$, see Figure 7 . Since the orbit sizes are $1,2,3$, then by orbit-stabilizer theorem, we obtain

$$
\begin{equation*}
2,3| | A u t(G) \mid \text { and } \operatorname{gcd}(2,3)=1 \tag{1}
\end{equation*}
$$

and thus $6||A u t(G)|$. On the other hand, G has no a permutation of order 6 , since otherwise we have a singleton orbit. Moreover, by a similar argument, we can show that there is no permutation of order 5 or 4 . This means that G is a $\{2,3\}$ group and thus $|A u t(G)|=2^{\alpha} .3^{\beta}$, since all orbits are of sizes $1,2,3$. If for example, we have only one orbit of each size 1,2 and 3 , then $|A u t(G)|=2^{\alpha} .3^{\beta}$, where $\alpha \in\{0,1\}$ and $\beta \in\{0,1\}$. This means that by applying Equation (1), $|A u t(G)|=6$ or 12 and thus $A u t(G) \cong \mathbb{Z}_{6}$ or \mathbb{S}_{3} or $\mathbb{Z}_{2} \times \mathbb{S}_{3}$. Hence, we proved the following theorem.

$O_{G}(x)=3 x+x^{2}+x^{3}$

$O_{G}(x)=x+2 x^{2}+x^{3}$

Figure 7. Two graphs of order 8 with three distinct orbit sizes.
Theorem 14. Let G be a graph of order 6 . Then $O_{G}(x)=x+x^{2}+x^{3}$ if and only if Aut $(G) \cong \mathbb{Z}_{6}$ or \mathbb{S}_{3} or $\mathbb{Z}_{2} \times \mathbb{S}_{3}$.

4. Orbit-Entropy Polynomial

The characteristic polynomial [1] of a graph G with adjacency matrix $A(G)$ is

$$
\chi(G, \lambda)=\operatorname{det}(\lambda I-A(G)) .
$$

The roots of this polynomial are eigenvalues of G and form the spectrum of G as

$$
\operatorname{spec}(G)=\left\{\left[\lambda_{1}\right]^{m_{1}},\left[\lambda_{2}\right]^{m_{2}}, \ldots,\left[\lambda_{r}\right]^{m_{r}}\right\}
$$

where $m_{i}(1 \leq i \leq r)$ is the multiplicity of eigenvalue λ_{i} and $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}$.
Here, consider all graphs of order six and their orbit polynomials as reported in Tables 1 and 2. There are 13 graphs with the same orbit polynomial $O_{G}=x^{2}+x^{4}$. This means that the orbit polynomial has not a power discrimination to characterize all graphs of the same order. In [16], it is claimed that the degeneracy of roots of the modified version of orbit polynomial is less than orbit polynomial, but for the 13 mentioned graph of order 6 , we obtain $O_{G}^{\star}=1-x^{2}-x^{4}$ which implies that the modified orbit polynomial is not also a powerful discrimination to capture structural information for these graphs. Here, we introduce a new polynomial with more powerful discrimination than orbit polynomial, to capture structural information.

A number of measures using Shannon's entropy function have been introduced and investigated since the fifties, see [31-34]. The discrete form of this well-known function is defined for a probability vector $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and has the form $I(p)=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)$; see [35,36].

Let $\lambda_{1}, \ldots, \lambda_{s}$ be all non-zero eigenvalues of a graph G. Then $I_{\lambda}(G)$ is called the eigenvalue-entropy based on $\lambda_{i}{ }^{\prime} s$, where

$$
\begin{equation*}
I_{\lambda}(G)=-\sum_{i=1}^{s} \frac{c_{i}\left|\lambda_{i}\right|}{\sum_{j=1}^{s} c_{j}\left|\lambda_{j}\right|} \log \left(\frac{c_{i}\left|\lambda_{i}\right|}{\sum_{j=1}^{s} c_{j}\left|\lambda_{j}\right|}\right) \tag{2}
\end{equation*}
$$

If $c_{1}=c_{2}=\ldots=c_{s}$, then the Equation (2) can be reformulated as follows:

$$
I_{\lambda}(G)=-\sum_{i=1}^{s} \frac{\left|\lambda_{i}\right|}{\mathcal{E}(G)} \log \left(\frac{\left|\lambda_{i}\right|}{\mathcal{E}(G)}\right)
$$

where $\mathcal{E}(G)=\sum_{j=1}^{s}\left|\lambda_{j}\right|$ is the adjacency energy of graph G, see [5,37].
The degeneracy problem of orbit polynomial can be overcome, by constructing the so-called super polynomial which is defined by subtracting the orbit polynomial from eigenvalue entropy:

$$
\tilde{O}_{G}(x)=I_{\lambda}(G)-\sum_{i=1}^{r} x^{\left|O_{i}\right|}=I_{\lambda}(G)-O_{G}(x)
$$

The unique positive roots (δ) of the orbit-entropy polynomials \tilde{O}_{G} for all graphs of order six is reported in the third column of Table 1. Comparing these quantities with the orbit polynomial roots, we obtain that δ^{\prime} s are distinct, for all these 13 graphs.

Bear in mind that two vertex-transitive graphs of the same order have the same orbit polynomials and thus the same modified orbit polynomials. However, in general, their orbit-entropy polynomials are not equal. For example, consider two graphs \mathcal{H}_{1} and \mathcal{H}_{2} in Figure 8. The spectrum of these graphs are

$$
\operatorname{spec}\left(\mathcal{H}_{1}\right)=\left\{[-3]^{1},[0]^{4},[3]^{1}\right\}
$$

and

$$
\operatorname{spec}\left(\mathcal{H}_{2}\right)=\left\{[-2]^{2},[0]^{2},[1]^{1},[3]^{1}\right\} .
$$

Then $I_{\lambda}\left(\mathcal{H}_{1}\right)=1$ and $I_{\lambda}\left(\mathcal{H}_{2}\right)=1.41$. Hence, $\tilde{O}_{\mathcal{H}_{1}}=1-x^{6}$, and $\tilde{O}_{\mathcal{H}_{2}}=1.41-x^{6}$ while the orbit polynomial of both of them is $O_{\mathcal{H}_{i}}=x^{6}, i=1,2$.

Table 1. All graphs of order six together with their unique positive roots of O_{G}^{\star} and \tilde{O}_{G}.

Edges	$O_{G}(x)$	δ_{1}	δ_{2}
1215162334364556	x^{6}	1	0.6702212
121416232534364556	x^{6}	0.1666667	1
121314162324253536454656	x^{6}	1	1.0699132
1213142536454656	x^{6}	0.1666667	1.113457
121314151623242526343536454656	x^{6}	1	1.1383303
121623344556	x^{6}	1	1.164993
12131415162326344556	$x^{5}+x$	0.7548777	0.4729019
1213141516	$x^{5}+x$	0.7548777	0.7548777
121314151626364656	$x^{4}+x^{2}$	0.7861514	0.8941061
1213141526364656	$x^{4}+x^{2}$	0.7861514	0.9495666
1213242534354656	$x^{4}+x^{2}$	0.7861514	0.9550358
12131415162324252634354656	$x^{4}+x^{2}$	0.7861514	0.9586942
1213144546	$x^{4}+x^{2}$	0.7861514	0.986161
1213141516232425263435364546	$x^{4}+x^{2}$	0.7861514	0.9962842
1213141523242634354656	$x^{4}+x^{2}$	0.7861514	1.017727
12131423243536454656	$x^{4}+x^{2}$	0.7861514	1.018589
1213232434454656	$x^{4}+x^{2}$	0.7861514	1.032434
12131524263456	$x^{4}+x^{2}$	0.7861514	1.043184
12132324253435454656	$x^{4}+x^{2}$	0.7861514	1.048236
1213142324343536454656	$x^{4}+x^{2}$	0.7861514	1.053093
12132334454656	$x^{4}+x^{2}$	0.7861514	1.064051
1223242526343536454656	$x^{4}+2 x$	0.4746266	0.8519102
12131415162345	$x^{4}+2 x$	0.4533977	0.866788
121416232425263436454656	$2 x^{3}$	0.7937005	0.9545863
121314232536	$2 x^{3}$	0.7937005	1.052146
121623242634454656	$2 x^{3}$	0.7937005	1.0553004
1213141516242634364556	$x^{3}+x^{2}+x$	0.543689	0.6815621
12141516232534364556	$x^{3}+x^{2}+x$	0.543689	0.7255892
121314151656	$x^{3}+x^{2}+x$	0.543689	0.7655241
12131416232426344556	$x^{3}+x^{2}+x$	0.543689	0.8057402
1213141516454656	$x^{3}+x^{2}+x$	0.543689	0.8307845
12131423242526343536454656	$x^{3}+x^{2}+x$	0.543689	0.8466243
121323242526343536454656	$x^{3}+x^{2}+x$	0.543689	0.8593803
121314232434454656	$x^{3}+x^{2}+x$	0.543689	0.8959589
1213141525354556	$x^{3}+3 x$	0.3221854	0.5236913
12131415364656	$x^{3}+3 x$	0.3221854	0.5303547
1213141556	$x^{3}+3 x$	0.3221854	0.5623349
12131423242534354556	$x^{3}+3 x$	0.3221854	0.6598521
1213142324344556	$x^{3}+3 x$	0.3221854	0.7888727
121314232435364546	$3 x^{2}$	0.5773503	0.754669
12131415354556	$3 x^{2}$	0.5773503	0.7832625
1213141525453656	$3 x^{2}$	0.5773503	0.7906526
121314354556	$3 x^{2}$	0.5773503	0.7941527
1213152324263435454656	$3 x^{2}$	0.5773503	0.8132007
12131423243435364546	$3 x^{2}$	0.5773503	0.8189366
13142324354656	$3 x^{2}$	0.5773503	0.8463915
121324343536454656	$3 x^{2}$	0.5773503	0.8475269
12131423242536454656	$3 x^{2}$	0.5773503	0.8496398
121314151623243435454656	$3 x^{2}$	0.5773503	0.8570451
1213141535344556	$3 x^{2}$	0.5773503	0.863892
12131434354556	$3 x^{2}$	0.5773503	0.8752257
121623263435364556	$3 x^{2}$	0.5773503	0.8791742
121423343546	$3 x^{2}$	0.5773503	0.8799624
1223344556	$3 x^{2}$	0.5773503	0.8943799
1213142324354656	$3 x^{2}$	0.5773503	0.8985653

Table 2. (Continuation of Table 1).

Edges	$O_{G}(x)$	δ_{1}	δ_{2}
1213141516344556	$2 x^{2}+2 x$	0.3660254	0.2511261
1213151623344556	$2 x^{2}+2 x$	0.3660254	0.3991883
12141516233435364556	$2 x^{2}+2 x$	0.3660254	0.5461031
12131435364546	$2 x^{2}+2 x$	0.3660254	0.5707891
121314154656	$2 x^{2}+2 x$	0.3660254	0.5840871
12131434354656	$2 x^{2}+2 x$	0.3660254	0.6006301
121314151623263435454656	$2 x^{2}+2 x$	0.3660254	0.6079497
1213141516232634364656	$2 x^{2}+2 x$	0.3660254	0.6146048
121323242534354656	$2 x^{2}+2 x$	0.3660254	0.6146802
12131415163436454656	$2 x^{2}+2 x$	0.3660254	0.6220295
1213141516232634354556	$2 x^{2}+2 x$	0.3660254	0.6358562
1213141524344556	$2 x^{2}+2 x$	0.3660254	0.6387785
1213143536454656	$2 x^{2}+2 x$	0.3660254	0.6393063
12131416232634454656	$2 x^{2}+2 x$	0.3660254	0.6438021
1213141516234556	$2 x^{2}+2 x$	0.3660254	0.6500915
12131415234656	$2 x^{2}+2 x$	0.3660254	0.6508345
12131415162334354556	$2 x^{2}+2 x$	0.3660254	0.6566663
12131415164556	$2 x^{2}+2 x$	0.3660254	0.6618526
121314454656	$2 x^{2}+2 x$	0.3660254	0.6629316
121314151623344556	$2 x^{2}+2 x$	0.3660254	0.6712485
12131415164556	$2 x^{2}+2 x$	0.3660254	0.6736593
121314232434354556	$2 x^{2}+2 x$	0.3660254	0.6858483
121314354656	$2 x^{2}+2 x$	0.3660254	0.6927251
121315162326344556	$2 x^{2}+2 x$	0.3660254	0.6933868
1213141523454656	$2 x^{2}+2 x$	0.3660254	0.7033814
1213143645	$2 x^{2}+2 x$	0.3660254	0.7035179
12152334454656	$2 x^{2}+2 x$	0.3660254	0.7133716
121314162325344556	$x^{2}+4 x$	0.236068	0.409835
1213141534364556	$x^{2}+4 x$	0.236068	0.4131627
1213141526344656	$x^{2}+4 x$	0.236068	0.4183624
121314154556	$x^{2}+4 x$	0.236068	0.4276625
121314253546	$x^{2}+4 x$	0.236068	0.4343068
1213144556	$x^{2}+4 x$	0.236068	0.4411921
12131415162325344556	$x^{2}+4 x$	0.236068	0.4527634
121314152325344556	$x^{2}+4 x$	0.236068	0.4601455
121314151634254556	$x^{2}+4 x$	0.236068	0.4609852
121323242534354556	$x^{2}+4 x$	0.236068	0.4722518
12131415232456	$x^{2}+4 x$	0.236068	0.4798687
12131415232426344556	$x^{2}+4 x$	0.236068	0.4853394
121314151634364546	$x^{2}+4 x$	0.236068	0.4879452
12132324344556	$x^{2}+4 x$	0.236068	0.4913081
1213141536454656	$x^{2}+4 x$	0.236068	0.4950764
1213141516232434354556	$x^{2}+4 x$	0.236068	0.4981524
121316232634354556	$x^{2}+4 x$	0.236068	0.4990413
12131424343536454656	$x^{2}+4 x$	0.236068	0.513049
12131415234546	$x^{2}+4 x$	0.236068	0.5143182
121314153456	$x^{2}+4 x$	0.236068	0.5174416
121314234556	$x^{2}+4 x$	0.236068	0.5219741
1213141523344556	$6 x$	0.1666667	0.3597291
121314162334354556	$6 x$	0.1666667	0.36443
1213141523344556	$6 x$	0.1666667	0.3744274
1213141523344656	$6 x$	0.1666667	0.3752572
12131415453656	$6 x$	0.1666667	0.3787899
12131415353645	$6 x$	0.1666667	0.3788464
12131435454656	$6 x$	0.1666667	0.3808788
121314344556	$6 x$	0.1666667	0.3903846

Figure 8. Two vertex-transitive graphs of order 6 with distinct orbit-entropy polynomials.

5. Summary and Conclusions

The Hosoya partition and the orbit polynomials of several kinds of graphs were investigated. Moreover, a relation between the orbit and Hosoya partition polynomials was explored. We also defined a new polynomial based on both orbit sizes and eigenvalues of a graph, and it was shown that the degeneracy of new polynomial relative to the orbit polynomial is quite low. Applying the theory of groups, especially the automorphism group approach used in this paper, enables one to analyze networks and we capture information about the number of interconnections of components. Finally, a characterization for all graphs with orbit polynomial $O_{G}(x)=x+x^{2}+x^{3}$ is given.

Author Contributions: M.G., M.D. and F.E.-S. wrote the paper. All authors have read and agreed to the published version of the manuscript.
Funding: Matthias Dehmer thanks the Austrian Science Funds for supporting this work (project P30031).
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cvetković, D.; Doob, M.; Sachs, H. Spectra of Graphs Theory and Applications; Academic Press: Heidelberg, Germany, 1995.
2. Hosoya, H. On some counting polynomials in chemistry. Applications of graphs in chemistry and physics. Discret. Appl. Math. 1988, 19, 239-257. [CrossRef]
3. Gutman, I.; Harary, F. Generalizations of the matching polynomial. Util. Math. 1983, 24, 97-106.
4. Gutman, I.; Bonchev, D.; Rouvray, D.H. Polynomials in Graph Theory. Chemical Graph Theory, Introduction and Fundamentals; Abacus Press: New York, NY, USA, 1991; pp. 133-176.
5. Gutman, I.; Furtula, B.; Katanić, V. Randić index and information. AKCE Int. J. Graphs Comb. 2018, 15, 307-312. [CrossRef]
6. Hosoya, H. Topological index, A newly proposed quantity characterizing the topological nautre of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332-2339. [CrossRef]
7. Hosoya, H. Clar's aromatic sextet and sextet polynomial. Top. Curr. Chem. 1990, 153, 255-272.
8. Farrell, E.J. An introduction to matching polynomials. J. Comb. Theory 1979, 27, 75-86. [CrossRef]
9. Gutman, I.; Hosoya, H. Molecular graphs with equal Zcounting and independence polynomials. Z. Naturforsch. 1990, 45, 645-648.
10. Gutman, I. Some analytical properties of the independence and matching polynomials. Match Commun. Math. Comput. Chem. 1992, 28, 139-150.
11. Stevanović, D.; Motoyama, A.; Hosoya, H. King and domino polynomials for polyomino graphs, Graph Theory Notes. J. Math. Phys. 1977, 34, 31-36.
12. Balasubramanian, K.; Ramaraj, R. Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics. J. Comput. Chem. 1985, 6, 447-454. [CrossRef]
13. Farrell, E.J.; De Matas, C.M. On star polynomials of complements of graphs. Ark. Mat. 1988, 26, 85-190. [CrossRef]
14. Farrell, E.J.; De Matas, C.M. Star polynomials of some families of graphs with small cyclomatic numbers. Util. Math. 1988, 33, 33-45.
15. Balasubramanian, K. On Graph Theoretical Polynomials in Chemistry. In Mathematical and Computational Concepts in Chemistry; Trinastic, N., Ed.; Ellis Horwood Ltd.: New York, NY, USA, 1986; pp. 20-33.
16. Dehmer, M.; Chen, Z.; Emmert-Streibd, F.; Mowshowitz, A.; Varmuzag, K.; Jodlbauer, H.; Shih, Y.; Tripathi, S.; Tao, J. The orbit-polynomial: A novel measure of symmetry in graphs. IEEE Access 2020, 8, 36100-36112. [CrossRef]
17. Dehmer, M.; Chen, Z.; Emmert-Streib, F.; Shi, Y.; Tripathi, S. Graph measures with high discrimination power revisited: A random polynomial approach. Inform. Sci. 2018, 467, 407-414. [CrossRef]
18. Balasubramanian, K.; Basak, S. C. Characterization of isospectral graphs using Ggraph invariants and derived orthogonal parameters. J. Chem. Inf. Comput. Sci. 1998, 38, 367-373. [CrossRef]
19. Dixon, J.D.; Mortimer, B. Permutation Groups; Springer: New York, NY, USA, 1996.
20. Harary, F. Graph Theory; Addison-Wesley Publishing Company: Boston, MA, USA, 1969.
21. Dehmer, M.; Mowshowitz, A.; Shi, Y. Structural differentiation of graphs using Hosoya-based indices. PLoS ONE 2014, 7, e102459. [CrossRef] [PubMed]
22. Dehmer, M.; Emmert-Streib, F.; Shi, Y. Graph distance measures based on topological indices revisited. Appl. Math. Comput. 2015, 266, 623-633. [CrossRef]
23. Mowshowitz, A.; Dehmer, M. The Hosoya entropy of a graph. Entropy 2015, 17, 1054-1062. [CrossRef]
24. Ghorbani, M.; Dehmer.; M.; Rajabi-Parsa, M.; Emmert-Streib, F.; Mowshowitz, A. Hosoya entropy of fullerene graph. Appl. Math. Comput. 2019, 352, 88-98.
25. Ghorbani, M.; Dehmer; Mowshowitz, A.; Emmert-Streib, F. The Hosoya entropy of graphs revisited. Symmetry 2019, 11, 1013. [CrossRef]
26. Ghorbani, M.; Dehmer.; M.; Cao, S.; Feng, L.; Tao, J.; Emmert-Streib, F. On the zeros of the partial Hosoya polynomial of graphs. Inf. Sci. 2020, 524, 199-215. [CrossRef]
27. Jachiymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359-1373. [CrossRef]
28. Eskandar, A.; Aydi, H.; Arshad , M.; De la Sen, M. Hybrid Ćirić type graphic (Y, Λ)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 2020, 12, 467.
29. Afshari, H.; Aydi, H.; Karapinar, E. On generalized $\alpha-\psi$-Geraghty contractions on b-metric spaces. Georg. J. Math. 2020, 27, 9-21. [CrossRef]
30. Karapinar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018. [CrossRef]
31. Bollobás, B. Random Graphs, 2nd ed.; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2001.
32. Bonchev, D.; Trinajestić, N. Information theory, distance matrix and molecular branching. J. Chem. Phys. 1977, 67, 4517-4533. [CrossRef]
33. Bonchev, D.; Rouvray, D.H. Introduction and Fundamentals. In Chemical Graph Theory; Abacus Press: New York, NY, USA, 1991.
34. Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82-94. [CrossRef]
35. Rashevsky, N. Life, information theory, and topology. Bull. Math. Biophys. 1955, 17, 229-235. [CrossRef]
36. Mowshowitz, A. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175-204. [CrossRef]
37. Gutman, I. The Energy of a Graph: Old and New Results. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue, R., Wassermann, A., Eds.; Springer: Berlin, Germany, 2001; pp. 196-211.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
