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Abstract: The orbit polynomial is a new graph counting polynomial which is defined as
OG(x) = ∑r

i=1 x|Oi |, where O1, . . ., Or are all vertex orbits of the graph G. In this article, we investigate
the structural properties of the automorphism group of a graph by using several novel counting
polynomials. Besides, we explore the orbit polynomial of a graph operation. Indeed, we compare the
degeneracy of the orbit polynomial with a new graph polynomial based on both eigenvalues of a
graph and the size of orbits.
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1. Introduction

In quantum chemistry, the early Hückel theory computes the levels of π-electron energy of the
molecular orbitals in conjugated hydrocarbons, as roots of the characteristic/spectral polynomial which
are called the eigenvalues of a molecular graph, see [1]. This concept was generalized by Hosoya [2]
and the others [3–5] by changing the adjacency matrix with other matrices based on graph invariants.
In the mathematical chemistry literature, the counting polynomials have first been introduced by
Hosoya, see [6]. Other counting polynomials have later been proposed: Matching polynomial [7,8],
independence [9,10], king [11,12], color [12], star or clique polynomials [13,14], etc. An overview of
graph polynomials is provided in reference [15].

In the current work, we introduce a novel graph polynomial based on orbit-partitions of regarding
graph, see [16,17]. It is derived from the concept of orbit polynomial. The typical terms of the orbit
polynomial is of the form cnxn, where cn is the number of orbits of the automorphism group of size
n. It should be noted that the characteristic polynomials do not characterize graphs due to several
isospectral graphs, see [18].

We proceed as follows. In Section 2, the definitions used in the present work are introduced and
known results needed are given. Section 3, contains the main results of this paper based on the orbit
structure of a graph. Finally, in Section 4, by using the concept of graph spectra, we define a new
version of orbit polynomial whose unique positive root is a measure that discriminate all graphs of
order six, uniquely.
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2. Preliminaries

In this research, V(G) and E(G) indicates the vertex and edge sets of the graph G, respectively.
We assume that all graphs are simple, connected and finite.

In this paper, the automorphism group of a graph as well as the vertex-orbits are needed to infer
the orbit polynomial. The automorphism group is a collection of all permutations on the set of vertices
that preserves the adjacency between vertices of a graph, namely e = xy is an edge of graph G if and
only if π(e) = π(x)π(y) is an edge. We denote the automorphism group of a graph G by Aut(G).

For the vertex u, an orbit containing u is the collection of all α(v)’s in which α is an automorphism
element of G. The graph G is said to be vertex-transitive, if it has exactly one orbit. This means that in
a vertex-transitive all vertices can be mapped to each other, namely for two elements a and b, there is
at least an automorphism β that β(a) = b. An edge-transitive graph can be defined similarly.

Let Γ be a group acting on the set X. The stabilizer of element x ∈ X is defined as
Γx = {g ∈ Γ : g.x = x}. The orbit-stabilizer theorem implies that |xΓ| × |Γx| = |Γ|, see [19].

3. The Orbit and the Modified Orbit Polynomials

The orbit polynomial was defined by Dehmer et al. in [16] as

OG(x) =
t

∑
i=1

x|Oi |,

where O1, . . . Ot are all vertex-orbits of G. Moreover, the the modified version of orbit polynomial, O?
G

is defined as

O?
G(x) = 1−

t

∑
i=1

x|Oi |.

Many structural properties of a graph can be derived from the orbit polynomial. Let G be a
graph of order n. From the definition, it is clear that if Aut(G) ∼= id, then OG(x) = nx and thus
O?

G(x) = 1− nx. Moreover, a graph is vertex-transitive if and only if OG(x) = xn and consequently
O?

G(x) = 1− xn.

Example 1. The cycle graph Cn is vertex-transitive and by the above discussion OCn(x) = xn and
O?

Cn
(x) = 1− xn.

Example 2. For the path graph Pn we obtain

OPn(x) =

{
n
2 x2, 2 | n
x + n−1

2 x2, 2 6| n
,

and

O?
Pn
(x) =

{
1− n

2 x2, 2 | n
1− x− n−1

2 x2, 2 6| n
.

From the orbit polynomial Pn, one can easily see that if n is even then Pn has a pendant edge and
if n is odd then Pn has a central vertex, since each tree has a central vertex or a central edge, see [20].
We also explore that in the case that n is even (n is odd), then Pn has n

2 ( n−1
2 ) orbits of length two.

3.1. Orbit Polynomial of Line Graphs

An edge-automorphism of graph G is a bijection α on E(G) such that two edges e, f are adjacent
if and only if α(e) and α( f ) are adjacent in G. The set of all edge-automorphisms of graph G is also a
group under the composition of functions and we denote it by Aut1(G).
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Any automorphism α of G induces a bijection ᾱ on E(G), defined by ᾱ(uv) = α(u)α(v). It is clear
that ᾱ is an edge-automorphism. The set

Aut?(G) = {ᾱ : α ∈ Aut(G)}

is a subgroup of Aut(G) induced by edge-automorphisms of G.

Theorem 3 ([20]). Assume that G is a graph of order n ≥ 3. Then Aut(G) ∼= Aut?(G).

For a graph G, its line graph L(G) is a new graph with the vertex set is E(G) and two vertices
are adjacent in L(G) if and only if the corresponding edges are adjacent in G. An automorphism of
L(G) is an edge-automorphism of G. SupposeW = {W1, W2, W3} are the set of graphs as depicted in
Figure 1. Then we have the following theorem.

Figure 1. Three graphs W1, W2 and W3 of order 4.

Theorem 4 ([1]). For a connected graph G, where G 6∈ W , we have

Aut(G) ∼= Aut(L(G)).

Consider two graphs G1 and L(G1) in Figure 2. Both of them have the same orbit polynomial
OG1(x) = OL(G1)

(x) = 2x2 + x while for two graphs G2 and L(G2) in Figure 3, we have
OG2(x) = x2 + x4 and OL(G2)

(x) = x3 + x. Finally, consider the graph G3 and its line graph as
depicted in Figure 4. The automorphism group of both of them is isomorphic with symmetric group
S3 but OG3(x) = x + x3 and OL(G3)

(x) = x3.

Figure 2. A graph with its line graph, both of order 5.

Figure 3. A graph of order 6 whose line graph is of order 5.
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Figure 4. A graph and its line graph which have the same automorphism group.

The distance between two vertices x and y a graph G is the length of the shortest path between
them and we denote it by d(x, y). For the vertex u of graph G, suppose Γi(u) is the number of vertices
at distance i from u. If for two vertices u and v, we have Γi(u) = Γi(v) (1 ≤ i ≤ d(G)) then they are
Hosoya-equivalent or H-equivalent, see [21–30].

The set of H-equivalent vertices is called an H-partition of G. Moreover, the Hosoya polynomial

is defined as PG(x) =
l

∑
i=1

xhi , where H1, . . . , Hl are all H-partitions of G and hi = |Hi|. The modified

Hosoya polynomial is also P?
G(x) = 1− PG(x).

Theorem 5. Suppose O1, . . . , Or are all orbits of graph G. If for any pair of vertices vi ∈ Oi and vj ∈ Oj,
we have deg(vi) 6= deg(vj) (1 ≤ i, j ≤ r), then Oi’s are all H-partitions of G.

Proof. It is clear that two vertices in the same orbit have the same degree. Moreover, two vertices u
and v in a same H-partition have the same degree, since dds(u) = dds(v) yields that s1(u) = s1(v).
Thus, if vertices of different orbits have different degrees, then they are in different H-partitions.
This completes the proof.

Corollary 6. If the degrees of orbit vertices are distinct, then the orbit and Hosoya polynomials are the
same, namely

OG(x) = PG(x) and O?
G(x) = P?

G(x).

By considering the definition of action of automorphism group of graph G on the set of edges,
the edge version of orbit polynomial can be defined as follows.

Definition 7. Let E1, . . . Eh are all edge-orbits under the action of Aut(G) on the set of edges. Then

ŌG(x) =
h

∑
i=1

x|Ei |,

Ō?
G(x) = 1−

h

∑
i=1

x|Ei |.

For example, the star graph Sn is edge-transitive; hence ŌSn = x|E| = xn−1 and Ō?
Sn

= 1− xn−1.
On the other hand, if T is a tree on n vertices with ŌT(x) = xn−1, then T is edge-transitive and so T is
a bi-regular graph, which means that all vertices of T are of degrees r and s for some r, s ∈ N. If T is
regular, then T ∼= K2 which confirms our claim. If T is a bi-regular tree, then T ∼= Sn, since the pendant
vertices compose an orbit and the central vertex is a singleton orbit. Notice that if n ≥ 3, then an
edge-transitive tree has not a central edge. Hence, we proved the following theorem.

Theorem 8. The edge-orbit polynomial ŌT(x) = xn−1 if and only if T ∼= Sn.

In continuing this section, we prove that the cycle graph Cn can be characterized by its
edge-orbit polynomial.
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Theorem 9. Let G be a graph without a pendant edge. Then OG(x) = ŌG(x) if and only if G ∼= Cn.

Proof. If G ∼= Cn, then we are done. Conversely, by OG(x) = ŌG(x), one can immediately conclude
that the number of edges and the number of vertices of graph G are the same and thus G is a unicycle
graph. If G has a vertex of degree greater than two, then G has at least two cycles, a contradiction.
Hence, G is a connected regular graph of degree 2 and the assertion follows.

Suppose G is a graph with k orbits of equal sizes. Then OG(x) = kx
n
k and thus zero is the only

root of OG. On the other hand, if x = 0 is the only root of OG, then OG(x) = kxt, for some k, t ∈ N.
However, the set of orbits of a graph is a partition of the vertex set and thus kt = n, which means
that t = n

k . In particular, if k = 1 then G is vertex-transitive and if k = n then G is asymmetric graph.
Hence, we proved the following theorem.

Theorem 10. The integer x = 1 is a root of O?
G(x) if and only if G is vertex-transitive.

Proof. If G is vertex-transitive, then O?
G(x) = 1 − xn and clearly x = 1 is a zero of it.

Conversely, if x = 1 is a zero of O?
G(x) = 1 − ∑r

i=1 aix|Oi |, then O?
G(1) = 1 − a1 − . . . − ar = 0.

Since, ai ≥ 1, necessarily r = 1 and a1 = 1 which yields that G is vertex-transitive as desired.

3.2. Graph Classification with Respect to Orbit Polynomial

One of the classical problem in algebraic graph theory is characterizing the graphs in terms of
the graph polynomials. Here, we introduce three classes of trees that can be characterized by their
orbit polynomials.

Theorem 11. If G is a graph with orbit polynomial x + x2 + x3, then G is a graph on 6 vertices. Moreover, if G
has a pendant edge, then it has three pendant edges.

Proof. Clearly, G has 6 vertices, since the set of orbits is a partition for the vertex set. If G has only
one pendant edge, then its endpoints compose two different singleton orbits, a contradiction. If G has
two pendant edges, then necessarily they compose an orbit of size two. These edges share a common
vertex, because in other case either we have two orbits of sizes 2 and 4 or three orbits of size two or
there are two orbits of size 2, all of them are contradictions. Hence, three other vertices are in the same
orbit and they have the same degree. If they are of degree 2, then G ∼= (K3 ∪ K̄2) + K1 or G ∼= C4 + 3e.
If G ∼= C4 + 3e, then OG(x) = 2x + 2x2, a contradiction.

Example 12. All graphs on six vertices with the orbit polynomial OG(x) = x + x2 + x3 are as depicted in
Figure 5. They have different automorphism groups while their orbit polynomials are the same.

Figure 5. All graphs on six vertices with orbit polynomial x + x2 + x3.
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Example 13. Suppose OG(x) = ax + bx2 + cx3. Then OG(1) = a + 2b + 3c = n, (1 ≤ a, b, c ≤ 3) and
thus 6 ≤ n ≤ 18. All graphs with this property have at least six and at most 18 vertices. The problem is solved
completely for n = 6. If n = 7, then necessarily a = 2 and b = c = 1. Hence, OG(x) = 2x + x2 + x3.
This means that the related graph has two orbits of size 1, an orbit of size 2 and an orbit of size 3. There are
39 graphs of order 7 by this property. Some of them are depicted in Figure 6.

Figure 6. Examples of graphs of order 7 with orbit polynomial 2x + x2 + x3.

If n = 8, then OG(x) = 3x + x2 + x3 or OG(x) = x + 2x2 + x3, see Figure 7. Since the orbit sizes
are 1, 2, 3, then by orbit-stabilizer theorem, we obtain

2, 3 | |Aut(G)| and gcd(2, 3) = 1, (1)

and thus 6 | |Aut(G)|. On the other hand, G has no a permutation of order 6, since otherwise we have
a singleton orbit. Moreover, by a similar argument, we can show that there is no permutation of order
5 or 4. This means that G is a {2, 3} group and thus |Aut(G)| = 2α.3β, since all orbits are of sizes 1, 2, 3.
If for example, we have only one orbit of each size 1, 2 and 3, then |Aut(G)| = 2α.3β, where α ∈ {0, 1}
and β ∈ {0, 1}. This means that by applying Equation (1), |Aut(G)| = 6 or 12 and thus Aut(G) ∼= Z6

or S3 or Z2 × S3. Hence, we proved the following theorem.

Figure 7. Two graphs of order 8 with three distinct orbit sizes.

Theorem 14. Let G be a graph of order 6. Then OG(x) = x + x2 + x3 if and only if Aut(G) ∼= Z6 or S3 or
Z2 × S3.

4. Orbit-Entropy Polynomial

The characteristic polynomial [1] of a graph G with adjacency matrix A(G) is

χ(G, λ) = det(λI − A(G)).
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The roots of this polynomial are eigenvalues of G and form the spectrum of G as

spec(G) = {[λ1]
m1 , [λ2]

m2 , . . ., [λr]
mr} ,

where mi (1 ≤ i ≤ r) is the multiplicity of eigenvalue λi and λ1 ≥ λ2 ≥ . . . ≥ λr.
Here, consider all graphs of order six and their orbit polynomials as reported in Tables 1 and 2.

There are 13 graphs with the same orbit polynomial OG = x2 + x4. This means that the orbit polynomial
has not a power discrimination to characterize all graphs of the same order. In [16], it is claimed that the
degeneracy of roots of the modified version of orbit polynomial is less than orbit polynomial, but for
the 13 mentioned graph of order 6, we obtain O?

G = 1− x2 − x4 which implies that the modified orbit
polynomial is not also a powerful discrimination to capture structural information for these graphs.
Here, we introduce a new polynomial with more powerful discrimination than orbit polynomial,
to capture structural information.

A number of measures using Shannon’s entropy function have been introduced and investigated
since the fifties, see [31–34]. The discrete form of this well-known function is defined for a probability

vector p = (p1, p2, . . . , pn) and has the form I(p) = −
n

∑
i=1

pi log(pi); see [35,36].

Let λ1, . . . , λs be all non-zero eigenvalues of a graph G. Then Iλ(G) is called the
eigenvalue-entropy based on λi’s, where

Iλ(G) = −
s

∑
i=1

ci|λi|
∑s

j=1 cj|λj|
log(

ci|λi|
∑s

j=1 cj|λj|
). (2)

If c1 = c2 = . . . = cs, then the Equation (2) can be reformulated as follows:

Iλ(G) = −
s

∑
i=1

|λi|
E(G)

log(
|λi|
E(G)

),

where E(G) = ∑s
j=1 |λj| is the adjacency energy of graph G, see [5,37].

The degeneracy problem of orbit polynomial can be overcome, by constructing the so-called super
polynomial which is defined by subtracting the orbit polynomial from eigenvalue entropy:

ÕG(x) = Iλ(G)−
r

∑
i=1

x|Oi | = Iλ(G)−OG(x).

The unique positive roots (δ) of the orbit-entropy polynomials ÕG for all graphs of order six is
reported in the third column of Table 1. Comparing these quantities with the orbit polynomial roots,
we obtain that δ’s are distinct, for all these 13 graphs.

Bear in mind that two vertex-transitive graphs of the same order have the same orbit polynomials
and thus the same modified orbit polynomials. However, in general, their orbit-entropy polynomials
are not equal. For example, consider two graphs H1 and H2 in Figure 8. The spectrum of these
graphs are

spec(H1) = {[−3]1, [0]4, [3]1},

and
spec(H2) = {[−2]2, [0]2, [1]1, [3]1}.

Then Iλ(H1) = 1 and Iλ(H2) = 1.41. Hence, ÕH1 = 1− x6, and ÕH2 = 1.41− x6 while the orbit
polynomial of both of them is OHi = x6, i = 1, 2.
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Table 1. All graphs of order six together with their unique positive roots of O?
G and ÕG.

Edges OG(x) δ1 δ2

12 15 16 23 34 36 45 56 x6 1 0.6702212
12 14 16 23 25 34 36 45 56 x6 0.1666667 1
12 13 14 16 23 24 25 35 36 45 46 56 x6 1 1.0699132
12 13 14 25 36 45 46 56 x6 0.1666667 1.113457
12 13 14 15 16 23 24 25 26 34 35 36 45 46 56 x6 1 1.1383303
12 16 23 34 45 56 x6 1 1.164993
12 13 14 15 16 23 26 34 45 56 x5 + x 0.7548777 0.4729019
12 13 14 15 16 x5 + x 0.7548777 0.7548777
12 13 14 15 16 26 36 46 56 x4 + x2 0.7861514 0.8941061
12 13 14 15 26 36 46 56 x4 + x2 0.7861514 0.9495666
12 13 24 25 34 35 46 56 x4 + x2 0.7861514 0.9550358
12 13 14 15 16 23 24 25 26 34 35 46 56 x4 + x2 0.7861514 0.9586942
12 13 14 45 46 x4 + x2 0.7861514 0.986161
12 13 14 15 16 23 24 25 26 34 35 36 45 46 x4 + x2 0.7861514 0.9962842
12 13 14 15 23 24 26 34 35 46 56 x4 + x2 0.7861514 1.017727
12 13 14 23 24 35 36 45 46 56 x4 + x2 0.7861514 1.018589
12 13 23 24 34 45 46 56 x4 + x2 0.7861514 1.032434
12 13 15 24 26 34 56 x4 + x2 0.7861514 1.043184
12 13 23 24 25 34 35 45 46 56 x4 + x2 0.7861514 1.048236
12 13 14 23 24 34 35 36 45 46 56 x4 + x2 0.7861514 1.053093
12 13 23 34 45 46 56 x4 + x2 0.7861514 1.064051
12 23 24 25 26 34 35 36 45 46 56 x4 + 2x 0.4746266 0.8519102
12 13 14 15 16 23 45 x4 + 2x 0.4533977 0.866788
12 14 16 23 24 25 26 34 36 45 46 56 2x3 0.7937005 0.9545863
12 13 14 23 25 36 2x3 0.7937005 1.052146
12 16 23 24 26 34 45 46 56 2x3 0.7937005 1.0553004
12 13 14 15 16 24 26 34 36 45 56 x3 + x2 + x 0.543689 0.6815621
12 14 15 16 23 25 34 36 45 56 x3 + x2 + x 0.543689 0.7255892
12 13 14 15 16 56 x3 + x2 + x 0.543689 0.7655241
12 13 14 16 23 24 26 34 45 56 x3 + x2 + x 0.543689 0.8057402
12 13 14 15 16 45 46 56 x3 + x2 + x 0.543689 0.8307845
12 13 14 23 24 25 26 34 35 36 45 46 56 x3 + x2 + x 0.543689 0.8466243
12 13 23 24 25 26 34 35 36 45 46 56 x3 + x2 + x 0.543689 0.8593803
12 13 14 23 24 34 45 46 56 x3 + x2 + x 0.543689 0.8959589
12 13 14 15 25 35 45 56 x3 + 3x 0.3221854 0.5236913
12 13 14 15 36 46 56 x3 + 3x 0.3221854 0.5303547
12 13 14 15 56 x3 + 3x 0.3221854 0.5623349
12 13 14 23 24 25 34 35 45 56 x3 + 3x 0.3221854 0.6598521
12 13 14 23 24 34 45 56 x3 + 3x 0.3221854 0.7888727
12 13 14 23 24 35 36 45 46 3x2 0.5773503 0.754669
12 13 14 15 35 45 56 3x2 0.5773503 0.7832625
12 13 14 15 25 45 36 56 3x2 0.5773503 0.7906526
12 13 14 35 45 56 3x2 0.5773503 0.7941527
12 13 15 23 24 26 34 35 45 46 56 3x2 0.5773503 0.8132007
12 13 14 23 24 34 35 36 45 46 3x2 0.5773503 0.8189366
13 14 23 24 35 46 56 3x2 0.5773503 0.8463915
12 13 24 34 35 36 45 46 56 3x2 0.5773503 0.8475269
12 13 14 23 24 25 36 45 46 56 3x2 0.5773503 0.8496398
12 13 14 15 16 23 24 34 35 45 46 56 3x2 0.5773503 0.8570451
12 13 14 15 35 34 45 56 3x2 0.5773503 0.863892
12 13 14 34 35 45 56 3x2 0.5773503 0.8752257
12 16 23 26 34 35 36 45 56 3x2 0.5773503 0.8791742
12 14 23 34 35 46 3x2 0.5773503 0.8799624
12 23 34 45 56 3x2 0.5773503 0.8943799
12 13 14 23 24 35 46 56 3x2 0.5773503 0.8985653
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Table 2. (Continuation of Table 1).

Edges OG(x) δ1 δ2

12 13 14 15 16 34 45 56 2x2 + 2x 0.3660254 0.2511261
12 13 15 16 23 34 45 56 2x2 + 2x 0.3660254 0.3991883
12 14 15 16 23 34 35 36 45 56 2x2 + 2x 0.3660254 0.5461031
12 13 14 35 36 45 46 2x2 + 2x 0.3660254 0.5707891
12 13 14 15 46 56 2x2 + 2x 0.3660254 0.5840871
12 13 14 34 35 46 56 2x2 + 2x 0.3660254 0.6006301
12 13 14 15 16 23 26 34 35 45 46 56 2x2 + 2x 0.3660254 0.6079497
12 13 14 15 16 23 26 34 36 46 56 2x2 + 2x 0.3660254 0.6146048
12 13 23 24 25 34 35 46 56 2x2 + 2x 0.3660254 0.6146802
12 13 14 15 16 34 36 45 46 56 2x2 + 2x 0.3660254 0.6220295
12 13 14 15 16 23 26 34 35 45 56 2x2 + 2x 0.3660254 0.6358562
12 13 14 15 24 34 45 56 2x2 + 2x 0.3660254 0.6387785
12 13 14 35 36 45 46 56 2x2 + 2x 0.3660254 0.6393063
12 13 14 16 23 26 34 45 46 56 2x2 + 2x 0.3660254 0.6438021
12 13 14 15 16 23 45 56 2x2 + 2x 0.3660254 0.6500915
12 13 14 15 23 46 56 2x2 + 2x 0.3660254 0.6508345
12 13 14 15 16 23 34 35 45 56 2x2 + 2x 0.3660254 0.6566663
12 13 14 15 16 45 56 2x2 + 2x 0.3660254 0.6618526
12 13 14 45 46 56 2x2 + 2x 0.3660254 0.6629316
12 13 14 15 16 23 34 45 56 2x2 + 2x 0.3660254 0.6712485
12 13 14 15 16 45 56 2x2 + 2x 0.3660254 0.6736593
12 13 14 23 24 34 35 45 56 2x2 + 2x 0.3660254 0.6858483
12 13 14 35 46 56 2x2 + 2x 0.3660254 0.6927251
12 13 15 16 23 26 34 45 56 2x2 + 2x 0.3660254 0.6933868
12 13 14 15 23 45 46 56 2x2 + 2x 0.3660254 0.7033814
12 13 14 36 45 2x2 + 2x 0.3660254 0.7035179
12 15 23 34 45 46 56 2x2 + 2x 0.3660254 0.7133716
12 13 14 16 23 25 34 45 56 x2 + 4x 0.236068 0.409835
12 13 14 15 34 36 45 56 x2 + 4x 0.236068 0.4131627
12 13 14 15 26 34 46 56 x2 + 4x 0.236068 0.4183624
12 13 14 15 45 56 x2 + 4x 0.236068 0.4276625
12 13 14 25 35 46 x2 + 4x 0.236068 0.4343068
12 13 14 45 56 x2 + 4x 0.236068 0.4411921
12 13 14 15 16 23 25 34 45 56 x2 + 4x 0.236068 0.4527634
12 13 14 15 23 25 34 45 56 x2 + 4x 0.236068 0.4601455
12 13 14 15 16 34 25 45 56 x2 + 4x 0.236068 0.4609852
12 13 23 24 25 34 35 45 56 x2 + 4x 0.236068 0.4722518
12 13 14 15 23 24 56 x2 + 4x 0.236068 0.4798687
12 13 14 15 23 24 26 34 45 56 x2 + 4x 0.236068 0.4853394
12 13 14 15 16 34 36 45 46 x2 + 4x 0.236068 0.4879452
12 13 23 24 34 45 56 x2 + 4x 0.236068 0.4913081
12 13 14 15 36 45 46 56 x2 + 4x 0.236068 0.4950764
12 13 14 15 16 23 24 34 35 45 56 x2 + 4x 0.236068 0.4981524
12 13 16 23 26 34 35 45 56 x2 + 4x 0.236068 0.4990413
12 13 14 24 34 35 36 45 46 56 x2 + 4x 0.236068 0.513049
12 13 14 15 23 45 46 x2 + 4x 0.236068 0.5143182
12 13 14 15 34 56 x2 + 4x 0.236068 0.5174416
12 13 14 23 45 56 x2 + 4x 0.236068 0.5219741
12 13 14 15 23 34 45 56 6x 0.1666667 0.3597291
12 13 14 16 23 34 35 45 56 6x 0.1666667 0.36443
12 13 14 15 23 34 45 56 6x 0.1666667 0.3744274
12 13 14 15 23 34 46 56 6x 0.1666667 0.3752572
12 13 14 15 45 36 56 6x 0.1666667 0.3787899
12 13 14 15 35 36 45 6x 0.1666667 0.3788464
12 13 14 35 45 46 56 6x 0.1666667 0.3808788
12 13 14 34 45 56 6x 0.1666667 0.3903846
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Figure 8. Two vertex-transitive graphs of order 6 with distinct orbit-entropy polynomials.

5. Summary and Conclusions

The Hosoya partition and the orbit polynomials of several kinds of graphs were investigated.
Moreover, a relation between the orbit and Hosoya partition polynomials was explored. We also
defined a new polynomial based on both orbit sizes and eigenvalues of a graph, and it was shown
that the degeneracy of new polynomial relative to the orbit polynomial is quite low. Applying the
theory of groups, especially the automorphism group approach used in this paper, enables one to
analyze networks and we capture information about the number of interconnections of components.
Finally, a characterization for all graphs with orbit polynomial OG(x) = x + x2 + x3 is given.
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