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ABSTRACT 
There are numerous commercial tools and research prototypes that offer support for measuring 

technical debt. However, different tools adopt different terms, metrics, and ways to identify and 

measure technical debt. These tools offer diverse features, and their popularity / community 

support varies significantly. Therefore, (a) practitioners face difficulties when trying to select a tool 

matching their needs; and (b) the concept of technical debt and its role in software development 

is blurred. We attempt to clarify the situation by comparing the features and popularity of technical 

debt measurement tools, and analyzing the existing empirical evidence on their validity. Our 

findings can help practitioners to find the most suitable tool for their purposes, and researchers 

by highlighting the current tool shortcomings. 

 

Introduction 
Technical Debt (TD) has grown to be one of the most important metaphors 

[Avgeriou2016][Izurieta2016] to express development shortcuts, taken for expediency, but 

causing the degradation of internal software quality. The metaphor has also served well the 

discourse between engineers and management on how to invest resources on maintenance 

alongside features and bugs. 

Due to its importance, several tools have been released that offer to measure TD through static 

code analysis (the most common way of addressing TD). These are both commercial tools and 

research prototypes. However, each tool uses different metrics, indices, quality models, static 

analysis rules, technical debt remediation models, and definitions of the various technical debt 

concepts. This leaves developers baffled as to how to select the most fitting TD tool for the task 

at hand. Moreover, many of the tools that proclaim themselves as technical debt measurement 

tools, do not even calculate a TD index (TDI) in terms of money or effort, but simply report the 

detection of smells or other code issues. This poses the risk that anything wrong in the code will 



 

be considered as TD; thus the technical debt metaphor will be diluted and lose its value as a 

means that translates internal quality issues into monetary values (currency or effort) and risks.  

Our aim is to provide an overview of the current landscape of TD measurement tools through a 

set of objective criteria, related to the offered features and their popularity. Practitioners can use 

this overview to assess the tools, understand their strengths and weaknesses, and ultimately 

select the most suitable one for their needs. The scope of the comparison is limited to three 

specific types of TD, namely: code, design, and architecture as they are the most studied types 

of technical debt [Rios2018]. We considered 26 tools and filtered them to select 9 for analysis, 

based on whether they actually measure TD either directly or through a proxy. Subsequently, we 

used multiple sources to collect information on their features and popularity, and devised a set of 

criteria to evaluate each tool. To verify our findings in terms of correctness and completeness, we 

asked the corresponding tool vendors to review them, and provide us with feedback. 

Acknowledging that users would be reluctant to rely on tools that provide inaccurate results, we 

further looked into the way these tools were validated in literature and present the amount of 

collected empirical evidence. Finally, to better guide practitioners, we offer our own interpretation 

of the findings, by discussing how to select a tool, which tools are best for what, which are popular 

in different communities, as well as what is still missing. 

 

 

Background 

Technical debt is a ''design or implementation construct that is expedient in the short term, but 

sets up a technical context that can make a future change more costly or impossible” and is 

“limited to internal system qualities, primarily maintainability and evolvability” [Avgeriou2016]. 

Technical debt expresses the development of an artifact: (a) in a ‘quick and dirty’ way for the sake 

of speeding up development; or (b) optimally, but later rendered sub-optimally because of change 

in context (e.g., third-party libraries getting outdated). In any case, this debt may need repayment, 

e.g., through refactoring, as maintainability and evolvability become harder. Many types of 

technical debt have been studied by researchers and academics, such as Code, Architectural, 

Testing and Requirements Debt [Li2015].  

The technical debt metaphor relies on two main concepts, borrowed from economics: principal 

and interest. Principal refers to the cost of refactoring software artifacts, so that they reach the 

desired level of maintainability and evolvability [Avgeriou2016]. Interest is the extra effort that 

developers spend when making changes because of the existence of technical debt, e.g. because 

of code smells or unnecessarily complex code [Avgeriou2016]. 

As related work, Arcelli et al., investigated in detail how TD indices are calculated by five tools 

[Arcelli2016], in terms of both their input (e.g., code violations) and output (e.g., remediation cost). 

Results showed that not all tools use architectural information, while the estimation of remediation 

costs relied predominantly on static analysis. However, to the best of our knowledge, there is no 

comprehensive comparison of available TD tools, especially taking into account the overall set of 

offered features and their popularity among practitioners and researchers.  

 



 

Setting the Stage 
To systematically perform the tool comparison, we have set up an empirical study, comprising 

five steps. For the first step (identify relevant tools), we performed an academic literature search 

and a web search: 

● Literature search: We relied on the IEEE Xplore and ACM Digital Library search engines. 

Our search string was applied on the title and abstract and had the following form: 

“technical debt” AND (measurement OR assessment OR estimation) AND (tool OR 

platform). We gathered the studies that resulted from the aforementioned search and 

filtered out those that neither introduced nor mentioned any TD tool. We then checked the 

papers that cite them (forward snowballing). 

● Web search: We used major search engines such as Google, Bing, and Yahoo, using the 

same query, as in the literature search. The results led us either to the landing pages of 

the websites of companies that own the tools, or to articles introducing tools for assessing 

TD. 

We note that although many synonyms (or near synonyms) of technical debt could be used in the 

search string, we opt not to broaden it using terms similar to Technical Debt symptoms or 

remediation actions, such as refactorings, code smells, anti-patterns, etc. This could lead to 

multiple, narrow-scoped tools that would be later on excluded because they do not aim at 

estimating the effort required to eliminate the identified inefficiencies. 

In order to ensure we did not miss relevant tools, we manually cross-checked with: (a) the tool 

demo sessions of the 1st and 2nd International Conference on Technical Debt, in 2018 and 2019 

respectively; (b) all tools mentioned in a tertiary study on technical debt management [Rios2018]. 

No additional tools were identified through cross-check. The complete list of tools from this step 

is available in the replication package. 

For the second step (tool filtering), we checked the aforementioned list of tools against the 

following criteria: 

● Inclusion criterion: The tool calculates an aggregate measure of the system’s technical 

debt principal and/or interest either directly (in terms of money or effort) or as a proxy, 

based on static code analysis.  

● Exclusion criterion: The tool is not accessible, e.g. not being able to download or install 

it, lack of documentation for installation/deployment, inactive website. 

The inclusion criterion ensures that the selected tools match the scope of the paper: they actually 

estimate the key concepts of the TD metaphor (interest and principal). Tools that identify code 

smells, without any assessment of the time that is required to resolve them, fail this criterion. By 

proxy of TD principal and interest, we refer to any measure that does not directly represent TD 

principal or interest but is correlated to them. For example, DV8 does not provide a complete TD 

interest index, but an accompanying study [Kazman2015] explains how the extra time spent on 

fixing bugs due to the presence of TD was used as a proxy of TD interest. After applying the 

inclusion/exclusion criteria, nine tools were retained for data extraction (see Table 1). 

For the third step (tool assessment criteria), we performed a focus group discussion (among 

the authors of this paper) to derive a set of criteria that can be used by practitioners to assess the 

strengths and weaknesses of each solution. The selected criteria can be classified into three main 

groups: features, popularity, and validation. The offered features were collected  by inspecting 

the documentation and websites of the tools, and by trying them out (whenever a demo license 



 

was available). The major criteria are shown in Table 1 (see [ReplPackage] for the full set of 18 

criteria). The authors worked in groups of either 2 or 3 researchers to collect data, whereas we 

discussed in plenary how to classify calculated measures into principal and interest. The second 

group of criteria refers to the industrial and research popularity of tools. We evaluated popularity 

in terms of how much the tools are mentioned in public online sources. The following sources 

were investigated: 

● Online Media: We investigated a number of channels used by practitioners to share 

information online (posts, tags, users, groups or websites pertaining to the tools). In 

particular, we searched the tools’ own communities, LinkedIn and Google groups, as well 

as the number of appearances in commonly used communities and discussion forums 

such as StackOverflow, Reddit, DZone, and Medium. 

● Scientific Literature: We used Google Scholar and Scopus to investigate the popularity of 

each tool by applying the following search string on all fields including title, abstract, body, 

and references:  

(“tool_Name” or “tool_url”) AND “Technical Debt”.  

In the case of tools with different names (e.g., CAST), we considered all variants in the 

“OR” term, e.g. (“CAST software” OR “Castsoftware” OR “CAST AIP”). Two authors 

independently evaluated the relevance of each publication reported by Google Scholar 

and Scopus, so as to exclude non-English papers, false positives or papers from different 

domains. In case of disagreement, a third author provided his/her opinion. 

For the fourth step (verifying our analysis), we contacted the tool vendors by email, and asked 

them to assess the correctness of our analysis and update any data point that was incorrectly 

recorded. During this process all tool vendors responded, and only minor corrections were 

suggested. 

For the fifth step, (empirical evidence on the accuracy of each tool), we have performed a 

multivocal literature review [Garousi2019], including peer-reviewed (Scopus and Google Scholar) 

and grey literature. In both cases we applied the following search string: “tool_name AND 

(evaluation OR empirical OR validation OR accuracy OR assess*)”. For the keyword “tool_name”, 

we adopted the same combinations of keywords used for the popularity search. We also asked 

the tool vendors to send us any related documents. The origin of each paper (peer-reviewed, grey 

literature, or from a vendor) is referenced in the replication package.  

 

Findings on Features 
Table 1 reports our key findings regarding the tools selected for comparison (tools are sorted in 

chronological order). The table comprises two parts: (a) the characteristics of the different TD 

indices, and (b) additional tool features (such as export, integration with other tools, and 

customizability).  

For every index we look into Interest, Principal, and measurement method (which factors are used 

to compute the index value). Interestingly, not all the tools consider interest, but all (except 

CodeMRI) compute principal. The latter is usually identified with a heuristic based in some cases 

on software metrics and in other cases on the effort needed to fix the identified software violations, 

expressed in either effort (in minutes) or in monetary form.  

In general, every selected tool is able to inspect both sources and binaries of a given software 

project and to analyze at different granularity levels: project, package, class, method and line of 



 

code. The analysis usually results in the identification of violations and anomalies, which are 

highlighted in the code through the tools own user interface, or in the IDEs that support plugins 

for six out of nine of the analyzed tools.  

All tools have different degrees of customization. All the tools in the study allow developers to 

select the rules for the analysis. In addition, five tools (CAST, NDepend, SonarGraph, CodeMRI, 

and SonarQube) allow users to add rules (e.g. define a new metric) and customize their 

thresholds, one tool (SymphonyInsight) allows only customizing the thresholds, and two tools 

(Code Inspector and DV8) do not allow adding rules or customizing thresholds. Finally, all the 

tools, except NDepend and CodeMRI allow creating new plugins.  

Furthermore, all tools address additional quality attributes. We report the names of the qualities 

as reported by the vendors in Table 1, and also provide a mapping to the software quality 

standards that the qualities refer to in the replication package [ReplPackage]. 

 

Table 1: Characteristics of TD indices and other features in the analyzed tools 

CHARACTERISTICS OF TECHNICAL DEBT INDICES 

Name (Release 

Year) 
Type Principal Interest 

Index 

CAST 

(1998) 

Architectural, 

Design, Code 
Time to remove issues Yes Violations * rule criticality * effort 

Sonargraph 

(2006) 

Architectural, 

Design 
Computation of several 

metrics 
No structural debt index * minutes to fix 

NDepend 

(2007) 

Architectural, 

Design, Code 
Estimated man-time to 

fix issues  
Yes Violations * fix effort 

SonarQube 

(2007) 

Code Time to remove issues No Cost to develop 1 LOCe * Number of lines of 

code. 

Squore (2010) Design, Code Time to remove issues No No 

CodeMRI (2013) Design  Not estimated Yes Interest -  Not mentioned 

Code Inspector 

(2019) 

Architectural, 

Design, Code 

Effort needed to avoid 

high TD 

No A function of violations, duplications, 

readability/maintainability issues. 

DV8 (2019) Architectural Number of affected files 

and lines of code  

Yes Penalties: additional bugs and/or changes in 

lines of code. 

SymfonyInsight 

(2019) 

Code  Time to remove issues No Number of issues * time needed to remove the 

issue 



 

ADDITIONAL FEATURES 

Name Platform Integration  Output Other Quality Attributes Execute 

CAST Windows Jenkins, Maven API, GUI Security, Efficiency, Changeability, 

Robustness, Transferability,  

async 

Sonargraph  Independent Eclipse, Gradle, IntelliJ 

Jenkins, Maven, VS 
GUI Changeability real-time 

NDepend  Windows Azure, Jenkins, VS GUI Changeability, Robustness, 

Testability 

async 

SonarQube Independent Eclipse, IntelliJ, VS ALL(*)  Security, Reliability real-time 

Squore  Independent No API, GUI Changeability, Reliability, Efficiency, 

Portability, Security, Testability 

async 

CodeMRI   Windows, Linux No CLI Security, Efficiency, Robustness, 

Portability, Testability 

async 

Code Inspector  Independent Github, Gitlab, Bitbucket 

Jenkins, Travis 

API Security, Changeability, Portability, 

Testability, Maintainability 

async 

DV8 Windows, MAC Depends, Jenkins GUI Maintainability,Evolvability, Security real-time 

SymfonyInsight Independent No GUI, CI Security, Maintainability, Reliability async 

(*) ALL refers to API, GUI, Command Line Interface(CLI), and Continuous Integration (CI) 

 

Findings on Popularity 

In Figure 1 (in the chord diagram) we report the results related to the popularity of the tools in 

Stack Overflow, LinkedIn and Google groups as well as other popular sites such as Reddit, Dzone 

and Medium. Search strings and raw data are available online in the replication package 

[ReplPackage]. Please note that the results are normalized against the number of years since the 

introduction of each tool.  

SonarQube is by far the most popular tool and it is visible in all the channels. In most cases, 

NDepend comes second, being present in all the channels as well, but with lower magnitude than 

SonarQube. SonarGraph covers almost all channels, although with fewer hits than NDepend and 

SonarQube, while it does not have tags in Stack Overflow. CAST scores only a few hits in Stack 

Overflow and other channels, while it has a large community on Linkedin compared to the other 

tools (although it is still second after SonarQube).DV8, CodeInspector, CodeMRI, SQuORE and 

SymfonyInsights are finally the least popular tools, with only a handful of posts. 



 

As for the popularity in scientific literature (radial bar charts in Figure 1), SonarQube and CAST 

are clearly the most popular tools, matching the results reported earlier (see [Lenarduzzi2018]).   

 

Combining the findings from research literature and online media, it is clear that SonarQube is 

the most popular tool, whereas the results for CAST and Sonargraph are comparable. In the case 

of NDepend, it seems to be more popular in industry than academia. 

 

 
Figure 1: Infographic depicting popularity in the scientific literature (radial bar charts normalized 

per tool), popularity on the web (chord chart) and the empirical validation of TD tools in the 

literature (Sankey diagram). All values in the radial diagrams and chord chart are in # of hits 

divided by the number of years. 

 

 



 

Findings on Validation 
Applying the search string returned a total of 5,313 publications. Next, we filtered the obtained 

studies, based on their relevance to technical debt and in particular to the evaluation of the 

proposed indices for TD principal or interest, obtaining a list of 122 papers for more detailed 

inspection. As a final step of study inclusion/exclusion, we proceeded to a full-text reading, 

through which we excluded 72 additional studies as irrelevant. 

The data extraction was performed on the remaining 50 studies. These papers were classified 

based on the relevance of the empirical evaluation. A full relevance point was given to papers 

that evaluate the TD principal or interest index, with respect to its accuracy of measurement in 

terms of the used unit (i.e., effort or money); a partial point was assigned to papers that assess 

the relation of TD principal or interest index to other qualities (e.g., maintainability, reliability, etc.). 

This aligns with the scope of this paper, i.e. the ability of the tools to provide indices for TD 

principal and/or interest. All raw data extracted during this process are available in the replication 

package. 

As shown in Figure 1 (Sankey diagram at the bottom), SonarQube is the tool whose measures 

have been considered more in empirical evaluations, followed by DV8 and CAST. However, when 

considering the accuracy of the TD Index, only  DV8, SonarGraph, and  SonarQube have been 

considered in empirical studies. Based on these results, we find that TD quantification in units of 

effort is still lacking empirical validation regarding its accuracy; this may lead to practitioners not 

having full confidence in the remediation effort and order proposed. However, we argue that the 

existing tools can be safely used for TD refactoring, since they are able to identify TD items, in 

some meaningful (and actionable) way.  

 

Discussion 
How to select a tool? There is no clear “winner” that is the best option for all uses and 

organizations - different tools better fit different purposes. We provide some tips on how teams 

can select a tool, according to their needs.  

First, it is important to think whether measurement of TD principal and interest (or at least their 

proxies) is required to perform TD analysis. Some teams may simply require tools that analyze 

their codebase to find code smells and calculate quality metrics; numerous tools serve this 

purpose [OWASP]. If however principal and interest are a “must have”, as indicated in recent 

studies in several companies [Martini2018], one should restrict the selection to the tools reported 

in this paper. The tools listed in Table 1 calculate principal and interest differently; we advise 

teams to choose tools based on what helps them the most to prioritize refactoring. 

Next, individual developers usually need tools that measure code debt only, but when the analysis 

involves larger or multiple teams, then tools analyzing the architectural debt are highly 

recommended. Other contextual factors that are useful to narrow down the selection of a tool: 

languages, IDEs, platforms,  the license, and the  architecture (server or client side).  

Finally, the involvement of tools in research articles, might provide the practitioners with further 

insights on the reliability of the studied tools, in some cases supported by empirical evidence.  

 

Which tools are best for what? All tools (but one) calculate Principal, but only four of them 

calculate interest: NDepend, CAST, DV8, CodeMRI; so these should be the tools of choice for 

developers interested in estimating extra maintenance effort required in future iterations. For 



 

practitioners interested in Security, both CAST and SonarQube offer support, although CAST 

analyzes a higher number of security rules. Changeability, and more generally speaking 

Maintainability, is considered by all the tools; however the front-runners are CAST, NDepend, and 

SQuORE, offering elaborated functionality to manage Maintainability at multiple levels through 

advanced features, such as custom component dependency violation, dependency graph 

analysis, and control flow analysis. For detailed architectural analysis, CAST, NDepend, and 

Sonargraph provide several features that aid the user in gauging whether the intended 

architecture of the system matches the actual one. Users that manage code bases with a plethora 

of programming languages, should definitely consider SonarQube, which is able to analyse the 

largest number of languages (26). DV8 takes into account not just the source code of a specific 

version but also version history and issue trackers. Such approach renders the analysis richer by 

using more sources of data to measure evolutionary coupling (coupling discovered via co-

changes in different snapshots) and its interest in terms of penalties incurred during bug fixing; 

using historical data also strengthens the reliability of its results.  

 

Which tools are popular among practitioners and researchers? We observed that the communities 

behind the analyzed tools differ significantly. In particular, SonarQube and NDepend are the only 

tools discussed in the Stack Overflow community, with SonarQube being by far the one with the 

most questions asked and answered. The organization behind SonarQube seems to invest in 

supporting the TD community by creating posts, tags and answers to users’ questions. However, 

in the majority of cases, the posts are not explicitly related to technical debt, but more related to 

setting up and customizing the tool.  

Examining the communities on Linkedin, numerous members discuss SonarQube, and to a lesser 

extent CAST, while SonarGraph seems to have a small community in Google groups. However, 

the presence in these communities can be seen both as a sign of popularity but also as a way of 

the tools to create visibility for marketing purposes. In summary, SonarQube seems to have a 

strong community behind the tool, while NDepend and CAST are present in selected channels, 

and to less extent SonarGraph. The remaining tools do not seem to have an online community 

supporting them. 

Although popularity cannot be considered a quality index per se (less precise tools can become 

more popular due to better marketing), we believe that a tool that is widely used by practitioners 

inherently gives them some value or it would not be used and discussed at all. 

 

What is still missing? First, all analyzed tools quantify the level of maintainability issues (i.e., the 

principal), but not all tools focus on the consequence of these issues (i.e., the interest). This 

weakens the use of TD as a communication medium: practitioners can communicate the 

existence of the problem (principal), but they do not have numbers on extra maintenance costs 

(interest) nor the probability of additional maintenance (interest probability) to argue about 

repaying TD. It is crucial that all dimensions of the TD metaphor are represented. 

Second, all analyzed tools but one (DV8) consider only static analysis in their TD calculation 

models. However, current software development practices entail additional rich sources of 

information (e.g., version history, issue trackers, email exchanges, etc); these can be exploited 

for improving the accuracy of  indicators, or providing different perspectives. Third, all tools focus 

on a limited set of types of technical debt: they work predominantly on code technical debt, to a 



 

lesser extent design debt and in a rather limited sense architectural debt. This is not a 

coincidence: code and design debt are the easiest types to detect and usually to repair. However, 

we argue that architectural debt has a much larger impact on maintenance efforts than other types 

[Ernst15]. 

Last but not least, there is no commonly-agreed and validated set of rules and metrics to measure 

Technical Debt. Instead, each tool uses its own set of rules and metrics without detailed 

explanation or motivation. Thus, there might exist discrepancies among the tools regarding the 

rules, the output remediation time, and creates confusion on which rules are important and how 

to customize their severity to match one’s needs. 

 

Limitations 
The results of this work are subject to some limitations. The first one is the narrow search string 

we applied. We are aware that using different synonyms or relaxing the search string might have 

yielded more results. However, we aimed at using the terminology adopted by the TD community. 

The choice of our inclusion/exclusion criteria also affected the selection of tools. We have aligned 

the inclusion criteria with the scope of the paper, thus only tools that directly or indirectly measure 

TD were included.  

As for data extraction, different researchers collected the information for different tools, and 

therefore possibly obtained information differently. We mitigated this threat by first assigning data 

collection per tool to at least two researchers with experience on that tool; any differences in 

opinion among them were discussed and resolved. Subsequently, the tool vendors were 

requested to inspect the results. Furthermore, the online popularity of the tools could be biased 

by the activity of their respective communities: we compared the number of posts and not the 

number of tool users. Some tools may have very active, but small communities; others may be 

widely used but not largely discussed online. In addition, for some tools, the discussion may 

happen elsewhere, such as in mailing lists or forums. In addition, the results rely mostly on 

quantitative indicators to provide useful insights about the tools, but we warn against using such 

numbers as an absolute way to assess their quality. To mitigate this limitation, we have added an 

extensive discussion, based on the researchers’ qualitative interpretation gathered during the 

assessment procedure. 

Finally, despite our best efforts, our personal experience using the analyzed tools might have 

biased the data analysis. Specifically, we have extensive experience with SonarQube (18 

published papers), some experience with CAST (3 papers), with Sonargraph (2 papers) and with 

Squore (1 paper); we had no experience with the other tools. We mitigated this by collecting 

objective data instead of user opinions, and by making all the data for this study freely available 

online, so as to allow other researchers to replicate this work [ReplPackage].  

 

Conclusions and future work 
In this paper, we highlighted the current state of the market for TD tools, focusing on those 

providing an estimation of TD principal and/or interest. These tools have been selected through 



 

a rigorous process and were analyzed regarding their offered features, popularity and 

accompanying evidence.  

The studied tools offer a comprehensive variety of functionalities that cover multiple languages, 

levels of analysis, artifacts, as well as different computations of technical debt principal and 

interest. They can, to some extent, identify, measure, and monitor technical debt as well as 

provide suggestions for repayment. More importantly, they support the communication of 

technical debt through monetary values, both horizontally, between the technical teams, and 

vertically, between the technical and the management teams. 

Our analysis offers practitioners a clearer overview of the current landscape of TD tools and 

highlights their differences in offered features, popularity, empirical validation,  as well as current 

shortcomings. Our results allow to compare the tools against each other and make an informed 

choice on which tool best suits the needs of individual developers or their teams. 

As follow-up of this work, we plan to conduct a user study with practitioners to compare the tools 

based on concrete TD management tasks. This would complement the current study with 

information on the tools usability and usefulness.  
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